123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- ---
- title: "Solutions for Guided Project: Exploring NYC Schools Survey Data"
- author: "Rose Martin"
- data: "January 22, 2019"
- output: html_document
- ---
- **Here are suggested solutions to the questions in the Data Cleaning With R Guided Project: Exploring NYC Schools Survey Data.**
- Load the packages you'll need for your analysis
- ```{r}
- library(readr)
- library(dplyr)
- library(stringr)
- library(purrr)
- library(tidyr)
- library(ggplot2)
- ```
- Import the data into R.
- ```{r}
- combined <- read_csv("combined.csv")
- survey <- read_tsv("survey_all.txt")
- survey_d75 <- read_tsv("survey_d75.txt")
- ```
- Filter `survey` data to include only high schools and select columns needed for analysis based on the data dictionary.
- ```{r}
- survey_select <- survey %>%
- filter(schooltype == "High School") %>%
- select(dbn:aca_tot_11)
- ```
- Select columns needed for analysis from `survey_d75`.
- ```{r}
- survey_d75_select <- survey_d75 %>%
- select(dbn:aca_tot_11)
- ```
- Combine `survey` and `survey_d75` data frames.
- ```{r}
- survey_total <- survey_select %>%
- bind_rows(survey_d75_select)
- ```
- Rename `survey_total` variable `dbn` to `DBN` so can use as key to join with the `combined` data frame.
- ```{r}
- survey_total <- survey_total %>%
- rename(DBN = dbn)
- ```
- Join the `combined` and `survey_total` data frames. Use `left_join()` to keep only survey data that correspond to schools for which we have data in `combined`.
- ```{r}
- combined_survey <- combined %>%
- left_join(survey_total, by = "DBN")
- ```
- Create a correlation matrix to look for interesting relationships between pairs of variables in `combined_survey` and convert it to a tibble so it's easier to work with using tidyverse tools.
- ```{r}
- cor_mat <- combined_survey %>% ## interesting relationshipsS
- select(avg_sat_score, saf_p_11:aca_tot_11) %>%
- cor(use = "pairwise.complete.obs")
- cor_tib <- cor_mat %>%
- as_tibble(rownames = "variable")
- ```
- Look for correlations of other variables with `avg_sat_score` that are greater than 0.25 or less than -0.25 (strong correlations).
- ```{r}
- strong_cors <- cor_tib %>%
- select(variable, avg_sat_score) %>%
- filter(avg_sat_score > 0.25 | avg_sat_score < -0.25)
- ```
- Make scatter plots of those variables with `avg_sat_score` to examine relationships more closely.
- ```{r}
- create_scatter <- function(x, y) {
- ggplot(data = combined_survey) +
- aes_string(x = x, y = y) +
- geom_point(alpha = 0.3) +
- theme(panel.background = element_rect(fill = "white"))
- }
- x_var <- strong_cors$variable[2:5]
- y_var <- "avg_sat_score"
-
- map2(x_var, y_var, create_scatter)
- ```
- Reshape the data so that you can investigate differences in student, parent, and teacher responses to survey questions.
- ```{r}
- # combined_survey_gather <- combined_survey %>%
- # gather(key = "survey_question", value = score, saf_p_11:aca_tot_11)
- combined_survey_gather <- combined_survey %>%
- pivot_longer(cols = saf_p_11:aca_tot_11,
- names_to = "survey_question",
- values_to = "score")
- ```
- Use `str_sub()` to create new variables, `response_type` and `question`, from the `survey_question` variable.
- ```{r}
- combined_survey_gather <- combined_survey_gather %>%
- mutate(response_type = str_sub(survey_question, 4, 6)) %>%
- mutate(question = str_sub(survey_question, 1, 3))
- ```
- Replace `response_type` variable values with names "parent", "teacher", "student", "total" using `if_else()` function.
- ```{r}
- combined_survey_gather <- combined_survey_gather %>%
- mutate(response_type = ifelse(response_type == "_p_", "parent",
- ifelse(response_type == "_t_", "teacher",
- ifelse(response_type == "_s_", "student",
- ifelse(response_type == "_to", "total", "NA")))))
- ```
- Make a boxplot to see if there appear to be differences in how the three groups of responders (parents, students, and teachers) answered the four questions.
- ```{r}
- combined_survey_gather %>%
- filter(response_type != "total") %>%
- ggplot() +
- aes(x = question, y = score, fill = response_type) +
- geom_boxplot()
- ```
|