123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- ---
- title: 'Guided Project: New York Solar Resource Data'
- author: "Dataquest"
- date: "11/26/2020"
- output: html_document
- ---
- # Introduction
- - Title: Analyzing New York solar data.
- - Using APIs gives us access to an incredible amount of data only available online. In this exercise, we want to extract New York City solar data. Such data can, for example, allow us to determine on average the most productive periods of the year for solar panel deployment.
- # Finding the Suitable Endpoint and Parameters to Query the API
- ```{r}
- # Storing my api key in a variable
- the_key = "" #TODO Store your API key here
- # Identifying the API URL
- url <- "https://developer.nrel.gov/api/solar/solar_resource/v1.json"
- # Specifying the necessary parameters to request the New York City solar data
- parameters_list <- list(api_key = the_key, lat = 41, lon = -75)
- ```
- # Extracting the New York Solar Resource Data
- ```{r}
- # Loading the `httr` package
- library(httr)
- # Using the `GET()` function to request the data from the API with `url` and `parameters_list`
- response <- GET(url, query = parameters_list)
- # Tracking errors
- ## Displaying the status code with the `status_code()` function
- status <- status_code(response)
- status
- ## Displaying the API response format
- response_type <- http_type(response)
- response_type
- # Extracting the API response content as text
- content <- content(response, "text")
- # Displaying this content to check how it looks visually.
- print(content)
- ```
- # Parsing the JSON into R Object
- ```{r}
- # Parsing the `json_text` to a R object using the `jsonlite::fromJSON()` function
- json_lists <- jsonlite::fromJSON(content)
- # Displaying the structure of the R object using the `str()` function
- str(json_lists)
- ```
- # How to Create a Datarame from a Complex List
- # Building Datarame from a Complex List
- ```{r}
- # Extracting the outputs data
- outputs_list <- json_lists$outputs
- # Extracting the monthly vector (`monthly`) from the (`avg_dni`) list in the outputs data
- avg_dni <- outputs_list$avg_dni$monthly
- # Extracting the monthly vector (`monthly`) from the (`avg_ghi`) list in the outputs data
- avg_ghi <- outputs_list$avg_ghi$monthly
- # Extracting the monthly vector (`monthly`) from the (`avg_lat_tilt`) list in the outputs data
- avg_lat_tilt <- outputs_list$avg_lat_tilt$monthly
- # Combining the monthly vectors into a dataframe using the `tibble::tibble()` function
- ## Adding the `month` column containing month abbreviations: `Jan`, `Fev`,...,`Dec`
- dataframe <- tibble::tibble("month" = month.abb,
- "avg_dni" = avg_dni,
- "avg_ghi" = avg_ghi,
- "avg_lat_tilt" = avg_lat_tilt)
- # Displaying the dataframe
- dataframe
- ```
- - (Instruction 4's answer)
- We can see that all the columns are still lists containing one item. For future use of this dataframe, it would likely be necessary to convert these columns to numeric data type.
- # Extracting Datarame from a Complex List:
- ```{r}
- # Extracting the outputs list
- outputs_list <- json_lists$outputs
- # Simplifying the outputs list
- simplified_outputs_list <- unlist(outputs_list)
- # Restructuring the simplified list into a matrix of 13 rows (the annual value and 12 months values)
- data_matrix <- matrix(data = simplified_outputs_list, nrow = 13)
- # Removing the annual values from the data matrix
- data_matrix <- data_matrix[-1, ]
- # Converting the matrix into a dataframe using the `as.data.frame()` function
- another_dataframe <- as.data.frame(data_matrix)
- # Displaying the dataframe
- another_dataframe
- ```
- - (Instruction 6's answer)
- We can see that all the columns are numeric. However, we haven't appended the `month` column yet.
- # Putting all together
- ```{r}
- library(httr)
- library(dplyr)
- the_key = "" #TODO Store your API key here
- # Creating the custom `nrel_api_json_get_df()` function inspiring from what we did in the previous missions
- ## The function has two parameters
- ### The `endpoint` parameter represents the endpoint we need
- ### The `queries` parameter represents the list of API request parameters.
- nrel_api_json_get_df <- function(endpoint, queries = list()) {
- ## Preparing the URL
- url <- modify_url("https://developer.nrel.gov", path = endpoint)
- ## Querying the API
- response <- GET(url, query = queries)
- ## Tracking errors
- if ( http_error(response) ){
- print(status_code(response))
- print(http_status(response))
- stop("Something went wrong.", call. = FALSE)
- }
- if (http_type(response) != "application/json") {
- stop("API did not return json", call. = FALSE)
- }
- ## Extracting content
- json_text <- content(response, "text")
- ## Converting content into Dataframe
- table_lst <- jsonlite::fromJSON(json_text)
- dataframe <- tibble::tibble("month" = month.abb,
- "avg_dni" = as.numeric(table_lst$outputs$avg_dni$monthly),
- "avg_ghi" = as.numeric(table_lst$outputs$avg_ghi$monthly),
- "avg_lat_tilt" = as.numeric(table_lst$outputs$avg_lat_tilt$monthly))
- ## Returning the dataframe
- dataframe
- }
- # Using the custom `nrel_api_json_get_df()` function to extract the solar resource as a dataframe
- ## Providing the `"api/solar/solar_resource/v1.json"` as the `endpoint` parameter
- ## Providing the `parameters_list` variable as `queries` parameter
- solar_resource_df <- nrel_api_json_get_df("api/solar/solar_resource/v1.json", parameters_list)
- # Printing the output dataframe
- solar_resource_df
- ```
- # Visualizing New York City Solar Resource Data
- ```{r}
- # Loading the `ggplot2` and `dplyr` packages
- library(ggplot2)
- library(dplyr)
- # Using the `ggplot()` function to plot the `avg_dni` value for each month
- ggplot(data = solar_resource_df,
- aes(x = month, y = avg_dni, group = 1)) +
- geom_line() +
- geom_point() +
- theme_bw()
- # Converting the `month` column into factor using the following command
- solar_resource_df <- solar_resource_df %>%
- mutate(month = factor(month, levels = month.abb))
- # Replotting the `avg_dni` value for each month
- ggplot(data = solar_resource_df,
- aes(x = month, y = avg_dni, group = 1)) +
- geom_line() +
- geom_point() +
- theme_bw()
- ```
- - (Instruction 5's answer)
- The first plot x-axis is ordered alphabetically, while the second is ordered chronologically from January to December.
- This operation allows ordering the labels in the plot as we wish.
|