{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"%%capture\n",
"%load_ext sql\n",
"%sql sqlite:///factbook.db"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Overview of the Data"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" * sqlite:///factbook.db\n",
"Done.\n"
]
},
{
"data": {
"text/html": [
"
\n",
" \n",
" id | \n",
" code | \n",
" name | \n",
" area | \n",
" area_land | \n",
" area_water | \n",
" population | \n",
" population_growth | \n",
" birth_rate | \n",
" death_rate | \n",
" migration_rate | \n",
"
\n",
" \n",
" 1 | \n",
" af | \n",
" Afghanistan | \n",
" 652230 | \n",
" 652230 | \n",
" 0 | \n",
" 32564342 | \n",
" 2.32 | \n",
" 38.57 | \n",
" 13.89 | \n",
" 1.51 | \n",
"
\n",
" \n",
" 2 | \n",
" al | \n",
" Albania | \n",
" 28748 | \n",
" 27398 | \n",
" 1350 | \n",
" 3029278 | \n",
" 0.3 | \n",
" 12.92 | \n",
" 6.58 | \n",
" 3.3 | \n",
"
\n",
" \n",
" 3 | \n",
" ag | \n",
" Algeria | \n",
" 2381741 | \n",
" 2381741 | \n",
" 0 | \n",
" 39542166 | \n",
" 1.84 | \n",
" 23.67 | \n",
" 4.31 | \n",
" 0.92 | \n",
"
\n",
" \n",
" 4 | \n",
" an | \n",
" Andorra | \n",
" 468 | \n",
" 468 | \n",
" 0 | \n",
" 85580 | \n",
" 0.12 | \n",
" 8.13 | \n",
" 6.96 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 5 | \n",
" ao | \n",
" Angola | \n",
" 1246700 | \n",
" 1246700 | \n",
" 0 | \n",
" 19625353 | \n",
" 2.78 | \n",
" 38.78 | \n",
" 11.49 | \n",
" 0.46 | \n",
"
\n",
"
"
],
"text/plain": [
"[(1, 'af', 'Afghanistan', 652230, 652230, 0, 32564342, 2.32, 38.57, 13.89, 1.51),\n",
" (2, 'al', 'Albania', 28748, 27398, 1350, 3029278, 0.3, 12.92, 6.58, 3.3),\n",
" (3, 'ag', 'Algeria', 2381741, 2381741, 0, 39542166, 1.84, 23.67, 4.31, 0.92),\n",
" (4, 'an', 'Andorra', 468, 468, 0, 85580, 0.12, 8.13, 6.96, 0.0),\n",
" (5, 'ao', 'Angola', 1246700, 1246700, 0, 19625353, 2.78, 38.78, 11.49, 0.46)]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%sql\n",
"SELECT * FROM facts limit 5;"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Summary Statistics"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" * sqlite:///factbook.db\n",
"Done.\n"
]
},
{
"data": {
"text/html": [
"\n",
" \n",
" min_pop | \n",
" max_pop | \n",
" min_pop_grwth | \n",
" max_pop_grwth | \n",
"
\n",
" \n",
" 0 | \n",
" 7256490011 | \n",
" 0.0 | \n",
" 4.02 | \n",
"
\n",
"
"
],
"text/plain": [
"[(0, 7256490011, 0.0, 4.02)]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%sql\n",
"SELECT\n",
" MIN(population) min_pop,\n",
" MAX(population) max_pop, \n",
" MIN(population_growth) min_pop_grwth,\n",
" MAX(population_growth) max_pop_grwth \n",
"FROM facts;"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exploring Outliers"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" * sqlite:///factbook.db\n",
"Done.\n"
]
},
{
"data": {
"text/html": [
"\n",
" \n",
" id | \n",
" code | \n",
" name | \n",
" area | \n",
" area_land | \n",
" area_water | \n",
" population | \n",
" population_growth | \n",
" birth_rate | \n",
" death_rate | \n",
" migration_rate | \n",
"
\n",
" \n",
" 261 | \n",
" xx | \n",
" World | \n",
" None | \n",
" None | \n",
" None | \n",
" 7256490011 | \n",
" 1.08 | \n",
" 18.6 | \n",
" 7.8 | \n",
" None | \n",
"
\n",
"
"
],
"text/plain": [
"[(261, 'xx', 'World', None, None, None, 7256490011, 1.08, 18.6, 7.8, None)]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%sql\n",
"SELECT * FROM facts\n",
"WHERE population == (\n",
" SELECT MAX(population) FROM facts\n",
");"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" * sqlite:///factbook.db\n",
"Done.\n"
]
},
{
"data": {
"text/html": [
"\n",
" \n",
" id | \n",
" code | \n",
" name | \n",
" area | \n",
" area_land | \n",
" area_water | \n",
" population | \n",
" population_growth | \n",
" birth_rate | \n",
" death_rate | \n",
" migration_rate | \n",
"
\n",
" \n",
" 250 | \n",
" ay | \n",
" Antarctica | \n",
" None | \n",
" 280000 | \n",
" None | \n",
" 0 | \n",
" None | \n",
" None | \n",
" None | \n",
" None | \n",
"
\n",
"
"
],
"text/plain": [
"[(250, 'ay', 'Antarctica', None, 280000, None, 0, None, None, None, None)]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%sql\n",
"SELECT * FROM facts\n",
"WHERE population == (\n",
" SELECT MIN(population) FROM facts\n",
");"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exploring Average Population and Area"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" * sqlite:///factbook.db\n",
"Done.\n"
]
},
{
"data": {
"text/html": [
"\n",
" \n",
" avg_population | \n",
" avg_area | \n",
"
\n",
" \n",
" 32242666.56846473 | \n",
" 555093.546184739 | \n",
"
\n",
"
"
],
"text/plain": [
"[(32242666.56846473, 555093.546184739)]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%sql\n",
"SELECT AVG(population) avg_population, AVG(area) avg_area\n",
" FROM facts\n",
" WHERE name <> 'World';"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Finding Densely Populated Countries"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" * sqlite:///factbook.db\n",
"Done.\n"
]
},
{
"data": {
"text/html": [
"\n",
" \n",
" id | \n",
" code | \n",
" name | \n",
" area | \n",
" area_land | \n",
" area_water | \n",
" population | \n",
" population_growth | \n",
" birth_rate | \n",
" death_rate | \n",
" migration_rate | \n",
"
\n",
" \n",
" 14 | \n",
" bg | \n",
" Bangladesh | \n",
" 148460 | \n",
" 130170 | \n",
" 18290 | \n",
" 168957745 | \n",
" 1.6 | \n",
" 21.14 | \n",
" 5.61 | \n",
" 0.46 | \n",
"
\n",
" \n",
" 65 | \n",
" gm | \n",
" Germany | \n",
" 357022 | \n",
" 348672 | \n",
" 8350 | \n",
" 80854408 | \n",
" 0.17 | \n",
" 8.47 | \n",
" 11.42 | \n",
" 1.24 | \n",
"
\n",
" \n",
" 85 | \n",
" ja | \n",
" Japan | \n",
" 377915 | \n",
" 364485 | \n",
" 13430 | \n",
" 126919659 | \n",
" 0.16 | \n",
" 7.93 | \n",
" 9.51 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 138 | \n",
" rp | \n",
" Philippines | \n",
" 300000 | \n",
" 298170 | \n",
" 1830 | \n",
" 100998376 | \n",
" 1.61 | \n",
" 24.27 | \n",
" 6.11 | \n",
" 2.09 | \n",
"
\n",
" \n",
" 173 | \n",
" th | \n",
" Thailand | \n",
" 513120 | \n",
" 510890 | \n",
" 2230 | \n",
" 67976405 | \n",
" 0.34 | \n",
" 11.19 | \n",
" 7.8 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 185 | \n",
" uk | \n",
" United Kingdom | \n",
" 243610 | \n",
" 241930 | \n",
" 1680 | \n",
" 64088222 | \n",
" 0.54 | \n",
" 12.17 | \n",
" 9.35 | \n",
" 2.54 | \n",
"
\n",
" \n",
" 192 | \n",
" vm | \n",
" Vietnam | \n",
" 331210 | \n",
" 310070 | \n",
" 21140 | \n",
" 94348835 | \n",
" 0.97 | \n",
" 15.96 | \n",
" 5.93 | \n",
" 0.3 | \n",
"
\n",
"
"
],
"text/plain": [
"[(14, 'bg', 'Bangladesh', 148460, 130170, 18290, 168957745, 1.6, 21.14, 5.61, 0.46),\n",
" (65, 'gm', 'Germany', 357022, 348672, 8350, 80854408, 0.17, 8.47, 11.42, 1.24),\n",
" (85, 'ja', 'Japan', 377915, 364485, 13430, 126919659, 0.16, 7.93, 9.51, 0.0),\n",
" (138, 'rp', 'Philippines', 300000, 298170, 1830, 100998376, 1.61, 24.27, 6.11, 2.09),\n",
" (173, 'th', 'Thailand', 513120, 510890, 2230, 67976405, 0.34, 11.19, 7.8, 0.0),\n",
" (185, 'uk', 'United Kingdom', 243610, 241930, 1680, 64088222, 0.54, 12.17, 9.35, 2.54),\n",
" (192, 'vm', 'Vietnam', 331210, 310070, 21140, 94348835, 0.97, 15.96, 5.93, 0.3)]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%sql\n",
"SELECT * FROM facts\n",
"WHERE population > (\n",
" SELECT AVG(population)\n",
" FROM facts\n",
")\n",
" AND area < (\n",
" SELECT AVG(area)\n",
" FROM facts\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}