{ "cells": [ { "cell_type": "markdown", "id": "6358e4f7", "metadata": {}, "source": [ "## Introduction" ] }, { "cell_type": "markdown", "id": "9951a94f", "metadata": {}, "source": [ "Let's start by loading *pandas*. To make sure that the data was successfully loaded, we will use the .head() function to visualize the headers and the first five observations.\n", "\n", "Don't worry about understanding what the different columns are telling us yet, because that's exactly what we will be doing in the following section." ] }, { "cell_type": "code", "execution_count": 1, "id": "d8e9c035", "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 2, "id": "89418f80", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datequarterdepartmentdayteamtargeted_productivitysmvwipover_timeincentiveidle_timeidle_menno_of_style_changeno_of_workersactual_productivity
01/1/2015Quarter1sweingThursday80.8026.161108.07080980.00059.00.940725
11/1/2015Quarter1finishingThursday10.753.94NaN96000.0008.00.886500
21/1/2015Quarter1sweingThursday110.8011.41968.03660500.00030.50.800570
31/1/2015Quarter1sweingThursday120.8011.41968.03660500.00030.50.800570
41/1/2015Quarter1sweingThursday60.8025.901170.01920500.00056.00.800382
\n", "
" ], "text/plain": [ " date quarter department day team targeted_productivity \\\n", "0 1/1/2015 Quarter1 sweing Thursday 8 0.80 \n", "1 1/1/2015 Quarter1 finishing Thursday 1 0.75 \n", "2 1/1/2015 Quarter1 sweing Thursday 11 0.80 \n", "3 1/1/2015 Quarter1 sweing Thursday 12 0.80 \n", "4 1/1/2015 Quarter1 sweing Thursday 6 0.80 \n", "\n", " smv wip over_time incentive idle_time idle_men \\\n", "0 26.16 1108.0 7080 98 0.0 0 \n", "1 3.94 NaN 960 0 0.0 0 \n", "2 11.41 968.0 3660 50 0.0 0 \n", "3 11.41 968.0 3660 50 0.0 0 \n", "4 25.90 1170.0 1920 50 0.0 0 \n", "\n", " no_of_style_change no_of_workers actual_productivity \n", "0 0 59.0 0.940725 \n", "1 0 8.0 0.886500 \n", "2 0 30.5 0.800570 \n", "3 0 30.5 0.800570 \n", "4 0 56.0 0.800382 " ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv(\"garments_worker_productivity.csv\")\n", "df.head()" ] }, { "cell_type": "markdown", "id": "9d943f47", "metadata": {}, "source": [ "## Dataset Exploration" ] }, { "cell_type": "markdown", "id": "f760c79b", "metadata": {}, "source": [ "In this section we will perform an Exploratory Data Analysis (EDA) on the dataset.\n", "\n", "We won't change anything yet, as it is important to first understand what the dataset is telling us, along with its structure and general characteristics.\n", "\n", "Let's start by getting the dataset's *shape*, where the first value indicates the number of observations and the second one the number of columns." ] }, { "cell_type": "code", "execution_count": 3, "id": "ed02aa0c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(1197, 15)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.shape" ] }, { "cell_type": "markdown", "id": "6c2cdc41", "metadata": {}, "source": [ "Now let's explore the column numbers, how many non-null observations each one has, and their respective data types (*dtypes*).\n", "\n", "In *pandas*, remember that an \"object\" dtype means the observations of that specific column are treated as strings/text." ] }, { "cell_type": "code", "execution_count": 4, "id": "1e0aa0e2", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 1197 entries, 0 to 1196\n", "Data columns (total 15 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 date 1197 non-null object \n", " 1 quarter 1197 non-null object \n", " 2 department 1197 non-null object \n", " 3 day 1197 non-null object \n", " 4 team 1197 non-null int64 \n", " 5 targeted_productivity 1197 non-null float64\n", " 6 smv 1197 non-null float64\n", " 7 wip 691 non-null float64\n", " 8 over_time 1197 non-null int64 \n", " 9 incentive 1197 non-null int64 \n", " 10 idle_time 1197 non-null float64\n", " 11 idle_men 1197 non-null int64 \n", " 12 no_of_style_change 1197 non-null int64 \n", " 13 no_of_workers 1197 non-null float64\n", " 14 actual_productivity 1197 non-null float64\n", "dtypes: float64(6), int64(5), object(4)\n", "memory usage: 140.4+ KB\n" ] } ], "source": [ "df.info()" ] }, { "cell_type": "markdown", "id": "e03a370d", "metadata": {}, "source": [ "We will now get general statistics about the numerical columns.\n", "\n", "Remember that *std* stands for Standard Deviation, and the percentages represent percentiles. *min* and *max* indicate the maximum values on every column, so these are particularly useful to detect outliers." ] }, { "cell_type": "code", "execution_count": 5, "id": "8c430179", "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
teamtargeted_productivitysmvwipover_timeincentiveidle_timeidle_menno_of_style_changeno_of_workersactual_productivity
count1197.0000001197.0000001197.000000691.0000001197.0000001197.0000001197.0000001197.0000001197.0000001197.0000001197.000000
mean6.4269010.72963215.0621721190.4659914567.46031738.2105260.7301590.3692560.15037634.6098580.735091
std3.4639630.09789110.9432191837.4550013348.823563160.18264312.7097573.2689870.42784822.1976870.174488
min1.0000000.0700002.9000007.0000000.0000000.0000000.0000000.0000000.0000002.0000000.233705
25%3.0000000.7000003.940000774.5000001440.0000000.0000000.0000000.0000000.0000009.0000000.650307
50%6.0000000.75000015.2600001039.0000003960.0000000.0000000.0000000.0000000.00000034.0000000.773333
75%9.0000000.80000024.2600001252.5000006960.00000050.0000000.0000000.0000000.00000057.0000000.850253
max12.0000000.80000054.56000023122.00000025920.0000003600.000000300.00000045.0000002.00000089.0000001.120437
\n", "
" ], "text/plain": [ " team targeted_productivity smv wip \\\n", "count 1197.000000 1197.000000 1197.000000 691.000000 \n", "mean 6.426901 0.729632 15.062172 1190.465991 \n", "std 3.463963 0.097891 10.943219 1837.455001 \n", "min 1.000000 0.070000 2.900000 7.000000 \n", "25% 3.000000 0.700000 3.940000 774.500000 \n", "50% 6.000000 0.750000 15.260000 1039.000000 \n", "75% 9.000000 0.800000 24.260000 1252.500000 \n", "max 12.000000 0.800000 54.560000 23122.000000 \n", "\n", " over_time incentive idle_time idle_men \\\n", "count 1197.000000 1197.000000 1197.000000 1197.000000 \n", "mean 4567.460317 38.210526 0.730159 0.369256 \n", "std 3348.823563 160.182643 12.709757 3.268987 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 1440.000000 0.000000 0.000000 0.000000 \n", "50% 3960.000000 0.000000 0.000000 0.000000 \n", "75% 6960.000000 50.000000 0.000000 0.000000 \n", "max 25920.000000 3600.000000 300.000000 45.000000 \n", "\n", " no_of_style_change no_of_workers actual_productivity \n", "count 1197.000000 1197.000000 1197.000000 \n", "mean 0.150376 34.609858 0.735091 \n", "std 0.427848 22.197687 0.174488 \n", "min 0.000000 2.000000 0.233705 \n", "25% 0.000000 9.000000 0.650307 \n", "50% 0.000000 34.000000 0.773333 \n", "75% 0.000000 57.000000 0.850253 \n", "max 2.000000 89.000000 1.120437 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.describe()" ] }, { "cell_type": "markdown", "id": "8cb84cb2", "metadata": {}, "source": [ "We can see, for instance, that the *actual_productivity* column actually surpasses the limit of 1 that was indicated on the dataset description!\n", "\n", "Also, the maximum *wip* (Work in Progress) value is 23122. This means there is an observation where the number of unfinished items for products is 23122!\n", "\n", "In addition, we can conclude that time management in this factory is pretty efficient, since we barely have idle time and idle men. It appears there was either a single or a reduced number of incidents where production was stopped.\n", "\n", "There are a lot of other interesting facts that you can discover by carefully examining the describe() table, and we encourage you to keep looking for them! It's always important to understand what the dataset is telling us to avoid confusions during subsequent steps in the process.\n", "\n", "- - -\n", "\n", "In the next subsections, we will explore every column individually. \n", "\n", "One important note: since exploration is an open-ended activity, consider all the following pieces of code as guidance. They aren't mandatory, and you're always free to write the ones you prefer. But still, we strongly recommend to use them, as we believe that they allow to not only discover important insights, but also to ensure that the data is coherent in the different columns." ] }, { "cell_type": "markdown", "id": "ea3fb9bd", "metadata": {}, "source": [ "### \"date\" column" ] }, { "cell_type": "markdown", "id": "60fbeb3a", "metadata": {}, "source": [ "We can also use the head() function on single columns to see the first five values..." ] }, { "cell_type": "code", "execution_count": 6, "id": "63c39f65", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 1/1/2015\n", "1 1/1/2015\n", "2 1/1/2015\n", "3 1/1/2015\n", "4 1/1/2015\n", "Name: date, dtype: object" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[\"date\"].head()" ] }, { "cell_type": "markdown", "id": "ac4dd4a7", "metadata": {}, "source": [ "... and tail() to see the last five ones." ] }, { "cell_type": "code", "execution_count": 7, "id": "5aee2775", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1192 3/11/2015\n", "1193 3/11/2015\n", "1194 3/11/2015\n", "1195 3/11/2015\n", "1196 3/11/2015\n", "Name: date, dtype: object" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[\"date\"].tail()" ] }, { "cell_type": "markdown", "id": "b33c6fde", "metadata": {}, "source": [ "Also, it's useful to select a number of random observations to get a general idea of the data in the column. In this case, we will choose 20, but you can use any number you prefer.\n", "\n", "One important clarification: although the sample() method returns random observations, in this case, to ensure reproducibility, we've set up the \"random_state\" parameter to always get the same observations, therefore when making your own explorations make sure to remove it." ] }, { "cell_type": "code", "execution_count": 8, "id": "bfeeb482", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "959 2/26/2015\n", "464 1/27/2015\n", "672 2/8/2015\n", "321 1/19/2015\n", "282 1/17/2015\n", "307 1/18/2015\n", "609 2/4/2015\n", "1123 3/8/2015\n", "877 2/22/2015\n", "950 2/26/2015\n", "692 2/10/2015\n", "51 1/4/2015\n", "505 1/29/2015\n", "554 2/1/2015\n", "801 2/16/2015\n", "1017 3/2/2015\n", "340 1/20/2015\n", "732 2/12/2015\n", "616 2/4/2015\n", "806 2/17/2015\n", "Name: date, dtype: object" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[\"date\"].sample(20, random_state = 14)" ] }, { "cell_type": "markdown", "id": "abb86a94", "metadata": {}, "source": [ "### \"quarter\" column\n", "\n", "This column's title is pretty peculiar, in the sense that when we say \"quarter\", we are usually referring to part of a year. But here, it's actually referring to part of a month.\n", "\n", "This teaches us a valuable lesson: never make assumptions about the data based purely on the title of a column! It's always a good idea to keep a dataset's description close at hand to refresh our memory if we need to.\n", "\n", "Let's use the value_counts() method to see how many observations per week we have:" ] }, { "cell_type": "code", "execution_count": 9, "id": "77625a06", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Quarter1 360\n", "Quarter2 335\n", "Quarter4 248\n", "Quarter3 210\n", "Quarter5 44\n", "Name: quarter, dtype: int64" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[\"quarter\"].value_counts()" ] }, { "cell_type": "markdown", "id": "2efa1f07", "metadata": {}, "source": [ "Interestingly, we see there are 44 observations with a \"Quarter 5\" classification. Let's specifically explore them by using a mask on our dataset:" ] }, { "cell_type": "code", "execution_count": 10, "id": "0704721b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datequarterdepartmentdayteamtargeted_productivitysmvwipover_timeincentiveidle_timeidle_menno_of_style_changeno_of_workersactual_productivity
4981/29/2015Quarter5sweingThursday20.8022.521416.068401130.00057.01.000230
4991/29/2015Quarter5finishingThursday40.804.30NaN120000.00010.00.989000
5001/29/2015Quarter5sweingThursday30.8022.521287.068401000.00057.00.950186
5011/29/2015Quarter5sweingThursday40.8022.521444.06900880.00057.50.900800
5021/29/2015Quarter5sweingThursday100.8022.521088.06720880.00056.00.900130
5031/29/2015Quarter5finishingThursday60.502.90NaN120000.00010.00.899000
5041/29/2015Quarter5finishingThursday80.654.15NaN96000.0008.00.877552
5051/29/2015Quarter5finishingThursday110.602.90NaN96000.0008.00.864583
5061/29/2015Quarter5finishingThursday100.803.94NaN120000.00010.00.856950
5071/29/2015Quarter5finishingThursday10.753.94NaN120000.00010.00.853667
5081/29/2015Quarter5sweingThursday10.7522.941579.06960810.00058.00.850362
5091/29/2015Quarter5sweingThursday90.7029.121170.06960530.00058.00.850170
5101/29/2015Quarter5sweingThursday50.6520.791015.07080810.00059.00.800474
5111/29/2015Quarter5finishingThursday20.803.94NaN120000.00010.00.773333
5121/29/2015Quarter5sweingThursday120.7515.261436.04200450.00035.00.750647
5131/29/2015Quarter5finishingThursday120.754.08NaN108000.0009.00.634667
5141/29/2015Quarter5sweingThursday110.6020.101601.04320460.00051.00.600598
5151/29/2015Quarter5sweingThursday60.5018.79717.03960230.00033.00.500118
5161/29/2015Quarter5finishingThursday30.803.94NaN96000.0008.00.492500
5171/29/2015Quarter5sweingThursday70.6523.54830.0660000.00055.00.487920
5181/31/2015Quarter5sweingSaturday30.8022.521136.069601130.00058.01.000457
5191/31/2015Quarter5sweingSaturday20.8022.521397.068401130.00057.01.000230
5201/31/2015Quarter5finishingSaturday20.803.94NaN120000.00010.00.971867
5211/31/2015Quarter5finishingSaturday30.803.94NaN96000.0008.00.971867
5221/31/2015Quarter5finishingSaturday40.803.94NaN120000.00010.00.971867
5231/31/2015Quarter5finishingSaturday100.803.94NaN120000.00010.00.971867
5241/31/2015Quarter5finishingSaturday10.753.94NaN180000.00015.00.971867
5251/31/2015Quarter5finishingSaturday90.753.94NaN24000.0002.00.971867
5261/31/2015Quarter5finishingSaturday120.754.08NaN108000.0009.00.971867
5271/31/2015Quarter5finishingSaturday50.703.94NaN24000.0002.00.971867
5281/31/2015Quarter5finishingSaturday70.703.94NaN120000.00010.00.971867
5291/31/2015Quarter5finishingSaturday80.653.94NaN96000.0008.00.971867
5301/31/2015Quarter5finishingSaturday110.653.94NaN60000.0005.00.971867
5311/31/2015Quarter5finishingSaturday60.603.94NaN120000.00010.00.971867
5321/31/2015Quarter5sweingSaturday100.8022.521116.06720930.00056.00.920237
5331/31/2015Quarter5sweingSaturday40.8022.521432.06660880.00057.50.900537
5341/31/2015Quarter5sweingSaturday90.7529.121082.06840810.00057.00.850611
5351/31/2015Quarter5sweingSaturday10.7522.941502.06960810.00058.00.850362
5361/31/2015Quarter5sweingSaturday120.7515.261209.04200450.00035.00.750647
5371/31/2015Quarter5sweingSaturday50.7050.89282.05880560.00059.00.656764
5381/31/2015Quarter5sweingSaturday110.6520.101417.06480490.00054.00.650148
5391/31/2015Quarter5sweingSaturday60.6018.79799.03960230.00033.00.600711
5401/31/2015Quarter5sweingSaturday70.7023.541109.0672000.00056.00.388830
5411/31/2015Quarter5sweingSaturday80.5023.541144.0648000.00054.00.286985
\n", "
" ], "text/plain": [ " date quarter department day team targeted_productivity \\\n", "498 1/29/2015 Quarter5 sweing Thursday 2 0.80 \n", "499 1/29/2015 Quarter5 finishing Thursday 4 0.80 \n", "500 1/29/2015 Quarter5 sweing Thursday 3 0.80 \n", "501 1/29/2015 Quarter5 sweing Thursday 4 0.80 \n", "502 1/29/2015 Quarter5 sweing Thursday 10 0.80 \n", "503 1/29/2015 Quarter5 finishing Thursday 6 0.50 \n", "504 1/29/2015 Quarter5 finishing Thursday 8 0.65 \n", "505 1/29/2015 Quarter5 finishing Thursday 11 0.60 \n", "506 1/29/2015 Quarter5 finishing Thursday 10 0.80 \n", "507 1/29/2015 Quarter5 finishing Thursday 1 0.75 \n", "508 1/29/2015 Quarter5 sweing Thursday 1 0.75 \n", "509 1/29/2015 Quarter5 sweing Thursday 9 0.70 \n", "510 1/29/2015 Quarter5 sweing Thursday 5 0.65 \n", "511 1/29/2015 Quarter5 finishing Thursday 2 0.80 \n", "512 1/29/2015 Quarter5 sweing Thursday 12 0.75 \n", "513 1/29/2015 Quarter5 finishing Thursday 12 0.75 \n", "514 1/29/2015 Quarter5 sweing Thursday 11 0.60 \n", "515 1/29/2015 Quarter5 sweing Thursday 6 0.50 \n", "516 1/29/2015 Quarter5 finishing Thursday 3 0.80 \n", "517 1/29/2015 Quarter5 sweing Thursday 7 0.65 \n", "518 1/31/2015 Quarter5 sweing Saturday 3 0.80 \n", "519 1/31/2015 Quarter5 sweing Saturday 2 0.80 \n", "520 1/31/2015 Quarter5 finishing Saturday 2 0.80 \n", "521 1/31/2015 Quarter5 finishing Saturday 3 0.80 \n", "522 1/31/2015 Quarter5 finishing Saturday 4 0.80 \n", "523 1/31/2015 Quarter5 finishing Saturday 10 0.80 \n", "524 1/31/2015 Quarter5 finishing Saturday 1 0.75 \n", "525 1/31/2015 Quarter5 finishing Saturday 9 0.75 \n", "526 1/31/2015 Quarter5 finishing Saturday 12 0.75 \n", "527 1/31/2015 Quarter5 finishing Saturday 5 0.70 \n", "528 1/31/2015 Quarter5 finishing Saturday 7 0.70 \n", "529 1/31/2015 Quarter5 finishing Saturday 8 0.65 \n", "530 1/31/2015 Quarter5 finishing Saturday 11 0.65 \n", "531 1/31/2015 Quarter5 finishing Saturday 6 0.60 \n", "532 1/31/2015 Quarter5 sweing Saturday 10 0.80 \n", "533 1/31/2015 Quarter5 sweing Saturday 4 0.80 \n", "534 1/31/2015 Quarter5 sweing Saturday 9 0.75 \n", "535 1/31/2015 Quarter5 sweing Saturday 1 0.75 \n", "536 1/31/2015 Quarter5 sweing Saturday 12 0.75 \n", "537 1/31/2015 Quarter5 sweing Saturday 5 0.70 \n", "538 1/31/2015 Quarter5 sweing Saturday 11 0.65 \n", "539 1/31/2015 Quarter5 sweing Saturday 6 0.60 \n", "540 1/31/2015 Quarter5 sweing Saturday 7 0.70 \n", "541 1/31/2015 Quarter5 sweing Saturday 8 0.50 \n", "\n", " smv wip over_time incentive idle_time idle_men \\\n", "498 22.52 1416.0 6840 113 0.0 0 \n", "499 4.30 NaN 1200 0 0.0 0 \n", "500 22.52 1287.0 6840 100 0.0 0 \n", "501 22.52 1444.0 6900 88 0.0 0 \n", "502 22.52 1088.0 6720 88 0.0 0 \n", "503 2.90 NaN 1200 0 0.0 0 \n", "504 4.15 NaN 960 0 0.0 0 \n", "505 2.90 NaN 960 0 0.0 0 \n", "506 3.94 NaN 1200 0 0.0 0 \n", "507 3.94 NaN 1200 0 0.0 0 \n", "508 22.94 1579.0 6960 81 0.0 0 \n", "509 29.12 1170.0 6960 53 0.0 0 \n", "510 20.79 1015.0 7080 81 0.0 0 \n", "511 3.94 NaN 1200 0 0.0 0 \n", "512 15.26 1436.0 4200 45 0.0 0 \n", "513 4.08 NaN 1080 0 0.0 0 \n", "514 20.10 1601.0 4320 46 0.0 0 \n", "515 18.79 717.0 3960 23 0.0 0 \n", "516 3.94 NaN 960 0 0.0 0 \n", "517 23.54 830.0 6600 0 0.0 0 \n", "518 22.52 1136.0 6960 113 0.0 0 \n", "519 22.52 1397.0 6840 113 0.0 0 \n", "520 3.94 NaN 1200 0 0.0 0 \n", "521 3.94 NaN 960 0 0.0 0 \n", "522 3.94 NaN 1200 0 0.0 0 \n", "523 3.94 NaN 1200 0 0.0 0 \n", "524 3.94 NaN 1800 0 0.0 0 \n", "525 3.94 NaN 240 0 0.0 0 \n", "526 4.08 NaN 1080 0 0.0 0 \n", "527 3.94 NaN 240 0 0.0 0 \n", "528 3.94 NaN 1200 0 0.0 0 \n", "529 3.94 NaN 960 0 0.0 0 \n", "530 3.94 NaN 600 0 0.0 0 \n", "531 3.94 NaN 1200 0 0.0 0 \n", "532 22.52 1116.0 6720 93 0.0 0 \n", "533 22.52 1432.0 6660 88 0.0 0 \n", "534 29.12 1082.0 6840 81 0.0 0 \n", "535 22.94 1502.0 6960 81 0.0 0 \n", "536 15.26 1209.0 4200 45 0.0 0 \n", "537 50.89 282.0 5880 56 0.0 0 \n", "538 20.10 1417.0 6480 49 0.0 0 \n", "539 18.79 799.0 3960 23 0.0 0 \n", "540 23.54 1109.0 6720 0 0.0 0 \n", "541 23.54 1144.0 6480 0 0.0 0 \n", "\n", " no_of_style_change no_of_workers actual_productivity \n", "498 0 57.0 1.000230 \n", "499 0 10.0 0.989000 \n", "500 0 57.0 0.950186 \n", "501 0 57.5 0.900800 \n", "502 0 56.0 0.900130 \n", "503 0 10.0 0.899000 \n", "504 0 8.0 0.877552 \n", "505 0 8.0 0.864583 \n", "506 0 10.0 0.856950 \n", "507 0 10.0 0.853667 \n", "508 0 58.0 0.850362 \n", "509 0 58.0 0.850170 \n", "510 0 59.0 0.800474 \n", "511 0 10.0 0.773333 \n", "512 0 35.0 0.750647 \n", "513 0 9.0 0.634667 \n", "514 0 51.0 0.600598 \n", "515 0 33.0 0.500118 \n", "516 0 8.0 0.492500 \n", "517 0 55.0 0.487920 \n", "518 0 58.0 1.000457 \n", "519 0 57.0 1.000230 \n", "520 0 10.0 0.971867 \n", "521 0 8.0 0.971867 \n", "522 0 10.0 0.971867 \n", "523 0 10.0 0.971867 \n", "524 0 15.0 0.971867 \n", "525 0 2.0 0.971867 \n", "526 0 9.0 0.971867 \n", "527 0 2.0 0.971867 \n", "528 0 10.0 0.971867 \n", "529 0 8.0 0.971867 \n", "530 0 5.0 0.971867 \n", "531 0 10.0 0.971867 \n", "532 0 56.0 0.920237 \n", "533 0 57.5 0.900537 \n", "534 0 57.0 0.850611 \n", "535 0 58.0 0.850362 \n", "536 0 35.0 0.750647 \n", "537 0 59.0 0.656764 \n", "538 0 54.0 0.650148 \n", "539 0 33.0 0.600711 \n", "540 0 56.0 0.388830 \n", "541 0 54.0 0.286985 " ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df[\"quarter\"] == \"Quarter5\"]" ] }, { "cell_type": "markdown", "id": "7c84edfa", "metadata": {}, "source": [ "If we check the \"dates\" column, we can see that \"Quarter 5\" always comprises observations where the date is either 29th or 31st." ] }, { "cell_type": "markdown", "id": "4bd610cc", "metadata": {}, "source": [ "### \"department\" column" ] }, { "cell_type": "code", "execution_count": 11, "id": "99031f7e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "sweing 691\n", "finishing 257\n", "finishing 249\n", "Name: department, dtype: int64" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[\"department\"].value_counts()" ] }, { "cell_type": "markdown", "id": "87695e4f", "metadata": {}, "source": [ "We can see there is a problem with this column: we have two distinct \"finishing\" values. Cases like this one usually happen when there is a \"hidden\" space in the content of the observations. There is a practical way to explore this, by getting the unique() values on a single column:" ] }, { "cell_type": "code", "execution_count": 12, "id": "02e394e0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array(['sweing', 'finishing ', 'finishing'], dtype=object)" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[\"department\"].unique()" ] }, { "cell_type": "markdown", "id": "ec462458", "metadata": {}, "source": [ "Indeed, we see that we have 'finishing ' (with a trailing space) and 'finishing' (without a space), so we will need to fix this problem later, during the Data Cleaning step." ] }, { "cell_type": "markdown", "id": "010e0ece", "metadata": {}, "source": [ "### \"day\" column" ] }, { "cell_type": "code", "execution_count": 13, "id": "cd18facd", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Wednesday 208\n", "Sunday 203\n", "Tuesday 201\n", "Thursday 199\n", "Monday 199\n", "Saturday 187\n", "Name: day, dtype: int64" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[\"day\"].value_counts()" ] }, { "cell_type": "markdown", "id": "111dc4d3", "metadata": {}, "source": [ "Interestingly, there are no Friday observations. This doesn't necessarily mean that we have missing information; for instance, it could simply mean that the factory is closed on Fridays. \n", "\n", "But definitely it's excellent that we're now aware of this fact, and you can always write down these kind of discoveries to always keep them in mind for future steps." ] }, { "cell_type": "markdown", "id": "c580aa2d", "metadata": {}, "source": [ "### \"team\" column" ] }, { "cell_type": "markdown", "id": "fa49a8e8", "metadata": {}, "source": [ "Since it's possible to concatenate methods or functions, for this column we will organize the value counts by sorting the team numbers in ascending order.\n", "\n", "Therefore, the left column of numbers represents the team number, and the right column the number of observations associated with it." ] }, { "cell_type": "code", "execution_count": 14, "id": "156110ba", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1 105\n", "2 109\n", "3 95\n", "4 105\n", "5 93\n", "6 94\n", "7 96\n", "8 109\n", "9 104\n", "10 100\n", "11 88\n", "12 99\n", "Name: team, dtype: int64" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[\"team\"].value_counts().sort_index()" ] }, { "cell_type": "markdown", "id": "42a731c1", "metadata": {}, "source": [ "### \"targeted_productivity\" & \"actual_productivity\" columns" ] }, { "cell_type": "markdown", "id": "ebe8a414", "metadata": {}, "source": [ "A good approach in this case could be to check these two columns together.\n", "\n", "For instance, let's check the observations where the productivity was higher than expected." ] }, { "cell_type": "code", "execution_count": 15, "id": "c0209fdd", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datequarterdepartmentdayteamtargeted_productivitysmvwipover_timeincentiveidle_timeidle_menno_of_style_changeno_of_workersactual_productivity
01/1/2015Quarter1sweingThursday80.8026.161108.07080980.00059.00.940725
11/1/2015Quarter1finishingThursday10.753.94NaN96000.0008.00.886500
21/1/2015Quarter1sweingThursday110.8011.41968.03660500.00030.50.800570
31/1/2015Quarter1sweingThursday120.8011.41968.03660500.00030.50.800570
41/1/2015Quarter1sweingThursday60.8025.901170.01920500.00056.00.800382
................................................
11873/11/2015Quarter2sweingWednesday40.7526.821054.07080450.00059.00.750051
11883/11/2015Quarter2sweingWednesday50.7026.82992.06960300.00158.00.700557
11893/11/2015Quarter2sweingWednesday80.7030.48914.06840300.00157.00.700505
11903/11/2015Quarter2sweingWednesday60.7023.411128.04560400.00138.00.700246
11913/11/2015Quarter2sweingWednesday70.6530.48935.06840260.00157.00.650596
\n", "

869 rows × 15 columns

\n", "
" ], "text/plain": [ " date quarter department day team targeted_productivity \\\n", "0 1/1/2015 Quarter1 sweing Thursday 8 0.80 \n", "1 1/1/2015 Quarter1 finishing Thursday 1 0.75 \n", "2 1/1/2015 Quarter1 sweing Thursday 11 0.80 \n", "3 1/1/2015 Quarter1 sweing Thursday 12 0.80 \n", "4 1/1/2015 Quarter1 sweing Thursday 6 0.80 \n", "... ... ... ... ... ... ... \n", "1187 3/11/2015 Quarter2 sweing Wednesday 4 0.75 \n", "1188 3/11/2015 Quarter2 sweing Wednesday 5 0.70 \n", "1189 3/11/2015 Quarter2 sweing Wednesday 8 0.70 \n", "1190 3/11/2015 Quarter2 sweing Wednesday 6 0.70 \n", "1191 3/11/2015 Quarter2 sweing Wednesday 7 0.65 \n", "\n", " smv wip over_time incentive idle_time idle_men \\\n", "0 26.16 1108.0 7080 98 0.0 0 \n", "1 3.94 NaN 960 0 0.0 0 \n", "2 11.41 968.0 3660 50 0.0 0 \n", "3 11.41 968.0 3660 50 0.0 0 \n", "4 25.90 1170.0 1920 50 0.0 0 \n", "... ... ... ... ... ... ... \n", "1187 26.82 1054.0 7080 45 0.0 0 \n", "1188 26.82 992.0 6960 30 0.0 0 \n", "1189 30.48 914.0 6840 30 0.0 0 \n", "1190 23.41 1128.0 4560 40 0.0 0 \n", "1191 30.48 935.0 6840 26 0.0 0 \n", "\n", " no_of_style_change no_of_workers actual_productivity \n", "0 0 59.0 0.940725 \n", "1 0 8.0 0.886500 \n", "2 0 30.5 0.800570 \n", "3 0 30.5 0.800570 \n", "4 0 56.0 0.800382 \n", "... ... ... ... \n", "1187 0 59.0 0.750051 \n", "1188 1 58.0 0.700557 \n", "1189 1 57.0 0.700505 \n", "1190 1 38.0 0.700246 \n", "1191 1 57.0 0.650596 \n", "\n", "[869 rows x 15 columns]" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df[\"actual_productivity\"] > df[\"targeted_productivity\"]]" ] }, { "cell_type": "markdown", "id": "be3215cc", "metadata": {}, "source": [ "We can see that in ~75% of all observations, workers were productive and managed to surpass the target productivity threshold.\n", "\n", "And now, what about the observations where the actual productivity was exactly equal to the target productivity?" ] }, { "cell_type": "code", "execution_count": 16, "id": "38cc7a92", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datequarterdepartmentdayteamtargeted_productivitysmvwipover_timeincentiveidle_timeidle_menno_of_style_changeno_of_workersactual_productivity
1631/10/2015Quarter2sweingSaturday100.828.081082.010530630.00058.50.8
1821/11/2015Quarter2sweingSunday20.828.08805.010530630.00058.50.8
1831/11/2015Quarter2sweingSunday100.828.08762.010530380.00058.50.8
2071/12/2015Quarter2sweingMonday20.828.08737.010530630.00058.50.8
2291/13/2015Quarter2sweingTuesday20.828.08723.010530500.00058.50.8
8552/19/2015Quarter3sweingThursday80.729.401116.0624000.00257.00.7
\n", "
" ], "text/plain": [ " date quarter department day team targeted_productivity \\\n", "163 1/10/2015 Quarter2 sweing Saturday 10 0.8 \n", "182 1/11/2015 Quarter2 sweing Sunday 2 0.8 \n", "183 1/11/2015 Quarter2 sweing Sunday 10 0.8 \n", "207 1/12/2015 Quarter2 sweing Monday 2 0.8 \n", "229 1/13/2015 Quarter2 sweing Tuesday 2 0.8 \n", "855 2/19/2015 Quarter3 sweing Thursday 8 0.7 \n", "\n", " smv wip over_time incentive idle_time idle_men \\\n", "163 28.08 1082.0 10530 63 0.0 0 \n", "182 28.08 805.0 10530 63 0.0 0 \n", "183 28.08 762.0 10530 38 0.0 0 \n", "207 28.08 737.0 10530 63 0.0 0 \n", "229 28.08 723.0 10530 50 0.0 0 \n", "855 29.40 1116.0 6240 0 0.0 0 \n", "\n", " no_of_style_change no_of_workers actual_productivity \n", "163 0 58.5 0.8 \n", "182 0 58.5 0.8 \n", "183 0 58.5 0.8 \n", "207 0 58.5 0.8 \n", "229 0 58.5 0.8 \n", "855 2 57.0 0.7 " ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df[\"targeted_productivity\"] == df[\"actual_productivity\"]]" ] }, { "cell_type": "markdown", "id": "08aa1655", "metadata": {}, "source": [ "Only six observations. As expected, they were going to be very few, as it's hard to find an exact match between the targeted productivity values and the actual ones.\n", "\n", "And finally, we should check the observations where the actual productivity failed to meet the target." ] }, { "cell_type": "code", "execution_count": 17, "id": "19516cd4", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datequarterdepartmentdayteamtargeted_productivitysmvwipover_timeincentiveidle_timeidle_menno_of_style_changeno_of_workersactual_productivity
111/1/2015Quarter1sweingThursday100.7519.31578.06480450.00054.00.712205
121/1/2015Quarter1sweingThursday50.8011.41668.03660500.00030.50.707046
141/1/2015Quarter1finishingThursday80.752.90NaN96000.0008.00.676667
151/1/2015Quarter1finishingThursday40.753.94NaN216000.00018.00.593056
161/1/2015Quarter1finishingThursday70.802.90NaN96000.0008.00.540729
................................................
11923/11/2015Quarter2finishingWednesday100.752.90NaN96000.0008.00.628333
11933/11/2015Quarter2finishingWednesday80.703.90NaN96000.0008.00.625625
11943/11/2015Quarter2finishingWednesday70.653.90NaN96000.0008.00.625625
11953/11/2015Quarter2finishingWednesday90.752.90NaN180000.00015.00.505889
11963/11/2015Quarter2finishingWednesday60.702.90NaN72000.0006.00.394722
\n", "

322 rows × 15 columns

\n", "
" ], "text/plain": [ " date quarter department day team targeted_productivity \\\n", "11 1/1/2015 Quarter1 sweing Thursday 10 0.75 \n", "12 1/1/2015 Quarter1 sweing Thursday 5 0.80 \n", "14 1/1/2015 Quarter1 finishing Thursday 8 0.75 \n", "15 1/1/2015 Quarter1 finishing Thursday 4 0.75 \n", "16 1/1/2015 Quarter1 finishing Thursday 7 0.80 \n", "... ... ... ... ... ... ... \n", "1192 3/11/2015 Quarter2 finishing Wednesday 10 0.75 \n", "1193 3/11/2015 Quarter2 finishing Wednesday 8 0.70 \n", "1194 3/11/2015 Quarter2 finishing Wednesday 7 0.65 \n", "1195 3/11/2015 Quarter2 finishing Wednesday 9 0.75 \n", "1196 3/11/2015 Quarter2 finishing Wednesday 6 0.70 \n", "\n", " smv wip over_time incentive idle_time idle_men \\\n", "11 19.31 578.0 6480 45 0.0 0 \n", "12 11.41 668.0 3660 50 0.0 0 \n", "14 2.90 NaN 960 0 0.0 0 \n", "15 3.94 NaN 2160 0 0.0 0 \n", "16 2.90 NaN 960 0 0.0 0 \n", "... ... ... ... ... ... ... \n", "1192 2.90 NaN 960 0 0.0 0 \n", "1193 3.90 NaN 960 0 0.0 0 \n", "1194 3.90 NaN 960 0 0.0 0 \n", "1195 2.90 NaN 1800 0 0.0 0 \n", "1196 2.90 NaN 720 0 0.0 0 \n", "\n", " no_of_style_change no_of_workers actual_productivity \n", "11 0 54.0 0.712205 \n", "12 0 30.5 0.707046 \n", "14 0 8.0 0.676667 \n", "15 0 18.0 0.593056 \n", "16 0 8.0 0.540729 \n", "... ... ... ... \n", "1192 0 8.0 0.628333 \n", "1193 0 8.0 0.625625 \n", "1194 0 8.0 0.625625 \n", "1195 0 15.0 0.505889 \n", "1196 0 6.0 0.394722 \n", "\n", "[322 rows x 15 columns]" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df[\"targeted_productivity\"] > df[\"actual_productivity\"]]" ] }, { "cell_type": "markdown", "id": "19171069", "metadata": {}, "source": [ "Although far fewer than the number of productive days, there are still a lot of observations where productivity targets weren't met. Around ~25% of the total number of observations, actually.\n", "\n", "And now, we should focus exclusively on the \"actual_productivity\" column to check all the observations where the range was higher than 1, despite the description indicating that 1 was the maximum possible value." ] }, { "cell_type": "code", "execution_count": 18, "id": "618e39fa", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datequarterdepartmentdayteamtargeted_productivitysmvwipover_timeincentiveidle_timeidle_menno_of_style_changeno_of_workersactual_productivity
3371/20/2015Quarter3finishingTuesday50.704.15NaN144000.0008.01.033570
4371/26/2015Quarter4finishingMonday30.753.94NaN180000.00010.01.059621
4561/27/2015Quarter4sweingTuesday20.7522.521635.068401190.00057.01.000230
4571/27/2015Quarter4sweingTuesday30.7522.521299.068401190.00057.01.000230
4771/28/2015Quarter4sweingWednesday20.8022.521559.06840900.00057.01.000230
4781/28/2015Quarter4sweingWednesday30.8022.521350.068401130.00057.01.000230
4981/29/2015Quarter5sweingThursday20.8022.521416.068401130.00057.01.000230
5181/31/2015Quarter5sweingSaturday30.8022.521136.069601130.00058.01.000457
5191/31/2015Quarter5sweingSaturday20.8022.521397.068401130.00057.01.000230
5422/1/2015Quarter1finishingSunday80.654.15NaN96000.0008.01.011562
5432/1/2015Quarter1sweingSunday20.8022.521396.069001130.00057.51.000671
5442/1/2015Quarter1sweingSunday10.8022.941582.030601130.00058.51.000402
5612/2/2015Quarter1sweingMonday10.8022.9416882.070201130.00058.51.000602
5802/3/2015Quarter1finishingTuesday20.803.94NaN240000.00020.01.001417
5812/3/2015Quarter1sweingTuesday10.8022.521500.069001130.00057.51.000019
5992/4/2015Quarter1sweingWednesday20.8022.521263.069001000.00057.51.050281
6002/4/2015Quarter1sweingWednesday30.8022.52968.068401130.00057.01.000230
6182/5/2015Quarter1sweingThursday20.8022.521300.067801130.00056.51.000446
6192/5/2015Quarter1sweingThursday10.8022.521485.069001130.00057.51.000019
6362/7/2015Quarter1finishingSaturday20.803.94NaN300000.00025.01.050667
6372/7/2015Quarter1sweingSaturday20.8022.521186.069001130.00058.01.000019
6552/8/2015Quarter2sweingSunday20.8022.521233.069001130.00057.51.000019
6742/9/2015Quarter2finishingMonday20.803.94NaN216000.00018.01.057963
6922/10/2015Quarter2finishingTuesday120.804.08NaN108000.0009.01.004889
7112/11/2015Quarter2finishingWednesday40.704.15NaN180000.00015.01.033156
7122/11/2015Quarter2finishingWednesday120.804.08NaN108000.0009.01.020000
7132/11/2015Quarter2sweingWednesday20.8022.521557.00900.00057.51.000345
7142/11/2015Quarter2sweingWednesday10.8022.521498.001130.00057.01.000066
7302/12/2015Quarter2sweingThursday10.8022.521397.001380.00057.01.100484
7312/12/2015Quarter2finishingThursday40.704.15NaN180000.00015.01.096633
7322/12/2015Quarter2sweingThursday20.8022.521327.001130.00057.51.000345
7492/14/2015Quarter2sweingSaturday10.8022.521416.068401130.00057.01.000230
7662/15/2015Quarter3finishingSunday10.803.94NaN96000.0008.01.120437
7672/15/2015Quarter3finishingSunday20.803.94NaN96000.0008.01.108125
7682/15/2015Quarter3sweingSunday10.8022.521420.068401130.00057.01.000230
7852/16/2015Quarter3sweingMonday10.8022.521422.068401130.00057.01.000230
8032/17/2015Quarter3sweingTuesday10.8022.521445.068401130.00057.01.000230
\n", "
" ], "text/plain": [ " date quarter department day team targeted_productivity \\\n", "337 1/20/2015 Quarter3 finishing Tuesday 5 0.70 \n", "437 1/26/2015 Quarter4 finishing Monday 3 0.75 \n", "456 1/27/2015 Quarter4 sweing Tuesday 2 0.75 \n", "457 1/27/2015 Quarter4 sweing Tuesday 3 0.75 \n", "477 1/28/2015 Quarter4 sweing Wednesday 2 0.80 \n", "478 1/28/2015 Quarter4 sweing Wednesday 3 0.80 \n", "498 1/29/2015 Quarter5 sweing Thursday 2 0.80 \n", "518 1/31/2015 Quarter5 sweing Saturday 3 0.80 \n", "519 1/31/2015 Quarter5 sweing Saturday 2 0.80 \n", "542 2/1/2015 Quarter1 finishing Sunday 8 0.65 \n", "543 2/1/2015 Quarter1 sweing Sunday 2 0.80 \n", "544 2/1/2015 Quarter1 sweing Sunday 1 0.80 \n", "561 2/2/2015 Quarter1 sweing Monday 1 0.80 \n", "580 2/3/2015 Quarter1 finishing Tuesday 2 0.80 \n", "581 2/3/2015 Quarter1 sweing Tuesday 1 0.80 \n", "599 2/4/2015 Quarter1 sweing Wednesday 2 0.80 \n", "600 2/4/2015 Quarter1 sweing Wednesday 3 0.80 \n", "618 2/5/2015 Quarter1 sweing Thursday 2 0.80 \n", "619 2/5/2015 Quarter1 sweing Thursday 1 0.80 \n", "636 2/7/2015 Quarter1 finishing Saturday 2 0.80 \n", "637 2/7/2015 Quarter1 sweing Saturday 2 0.80 \n", "655 2/8/2015 Quarter2 sweing Sunday 2 0.80 \n", "674 2/9/2015 Quarter2 finishing Monday 2 0.80 \n", "692 2/10/2015 Quarter2 finishing Tuesday 12 0.80 \n", "711 2/11/2015 Quarter2 finishing Wednesday 4 0.70 \n", "712 2/11/2015 Quarter2 finishing Wednesday 12 0.80 \n", "713 2/11/2015 Quarter2 sweing Wednesday 2 0.80 \n", "714 2/11/2015 Quarter2 sweing Wednesday 1 0.80 \n", "730 2/12/2015 Quarter2 sweing Thursday 1 0.80 \n", "731 2/12/2015 Quarter2 finishing Thursday 4 0.70 \n", "732 2/12/2015 Quarter2 sweing Thursday 2 0.80 \n", "749 2/14/2015 Quarter2 sweing Saturday 1 0.80 \n", "766 2/15/2015 Quarter3 finishing Sunday 1 0.80 \n", "767 2/15/2015 Quarter3 finishing Sunday 2 0.80 \n", "768 2/15/2015 Quarter3 sweing Sunday 1 0.80 \n", "785 2/16/2015 Quarter3 sweing Monday 1 0.80 \n", "803 2/17/2015 Quarter3 sweing Tuesday 1 0.80 \n", "\n", " smv wip over_time incentive idle_time idle_men \\\n", "337 4.15 NaN 1440 0 0.0 0 \n", "437 3.94 NaN 1800 0 0.0 0 \n", "456 22.52 1635.0 6840 119 0.0 0 \n", "457 22.52 1299.0 6840 119 0.0 0 \n", "477 22.52 1559.0 6840 90 0.0 0 \n", "478 22.52 1350.0 6840 113 0.0 0 \n", "498 22.52 1416.0 6840 113 0.0 0 \n", "518 22.52 1136.0 6960 113 0.0 0 \n", "519 22.52 1397.0 6840 113 0.0 0 \n", "542 4.15 NaN 960 0 0.0 0 \n", "543 22.52 1396.0 6900 113 0.0 0 \n", "544 22.94 1582.0 3060 113 0.0 0 \n", "561 22.94 16882.0 7020 113 0.0 0 \n", "580 3.94 NaN 2400 0 0.0 0 \n", "581 22.52 1500.0 6900 113 0.0 0 \n", "599 22.52 1263.0 6900 100 0.0 0 \n", "600 22.52 968.0 6840 113 0.0 0 \n", "618 22.52 1300.0 6780 113 0.0 0 \n", "619 22.52 1485.0 6900 113 0.0 0 \n", "636 3.94 NaN 3000 0 0.0 0 \n", "637 22.52 1186.0 6900 113 0.0 0 \n", "655 22.52 1233.0 6900 113 0.0 0 \n", "674 3.94 NaN 2160 0 0.0 0 \n", "692 4.08 NaN 1080 0 0.0 0 \n", "711 4.15 NaN 1800 0 0.0 0 \n", "712 4.08 NaN 1080 0 0.0 0 \n", "713 22.52 1557.0 0 90 0.0 0 \n", "714 22.52 1498.0 0 113 0.0 0 \n", "730 22.52 1397.0 0 138 0.0 0 \n", "731 4.15 NaN 1800 0 0.0 0 \n", "732 22.52 1327.0 0 113 0.0 0 \n", "749 22.52 1416.0 6840 113 0.0 0 \n", "766 3.94 NaN 960 0 0.0 0 \n", "767 3.94 NaN 960 0 0.0 0 \n", "768 22.52 1420.0 6840 113 0.0 0 \n", "785 22.52 1422.0 6840 113 0.0 0 \n", "803 22.52 1445.0 6840 113 0.0 0 \n", "\n", " no_of_style_change no_of_workers actual_productivity \n", "337 0 8.0 1.033570 \n", "437 0 10.0 1.059621 \n", "456 0 57.0 1.000230 \n", "457 0 57.0 1.000230 \n", "477 0 57.0 1.000230 \n", "478 0 57.0 1.000230 \n", "498 0 57.0 1.000230 \n", "518 0 58.0 1.000457 \n", "519 0 57.0 1.000230 \n", "542 0 8.0 1.011562 \n", "543 0 57.5 1.000671 \n", "544 0 58.5 1.000402 \n", "561 0 58.5 1.000602 \n", "580 0 20.0 1.001417 \n", "581 0 57.5 1.000019 \n", "599 0 57.5 1.050281 \n", "600 0 57.0 1.000230 \n", "618 0 56.5 1.000446 \n", "619 0 57.5 1.000019 \n", "636 0 25.0 1.050667 \n", "637 0 58.0 1.000019 \n", "655 0 57.5 1.000019 \n", "674 0 18.0 1.057963 \n", "692 0 9.0 1.004889 \n", "711 0 15.0 1.033156 \n", "712 0 9.0 1.020000 \n", "713 0 57.5 1.000345 \n", "714 0 57.0 1.000066 \n", "730 0 57.0 1.100484 \n", "731 0 15.0 1.096633 \n", "732 0 57.5 1.000345 \n", "749 0 57.0 1.000230 \n", "766 0 8.0 1.120437 \n", "767 0 8.0 1.108125 \n", "768 0 57.0 1.000230 \n", "785 0 57.0 1.000230 \n", "803 0 57.0 1.000230 " ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df[\"actual_productivity\"] > 1]" ] }, { "cell_type": "markdown", "id": "1727c5d2", "metadata": {}, "source": [ "### \"wip\" column\n", "\n", "This column records the number of unfinished items for products.\n", "\n", "It's also the only column with missing observations, so if we want to check the observations that do contain information, we can filter them with the notnull() method:" ] }, { "cell_type": "code", "execution_count": 19, "id": "06d42764", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datequarterdepartmentdayteamtargeted_productivitysmvwipover_timeincentiveidle_timeidle_menno_of_style_changeno_of_workersactual_productivity
01/1/2015Quarter1sweingThursday80.8026.161108.07080980.00059.00.940725
21/1/2015Quarter1sweingThursday110.8011.41968.03660500.00030.50.800570
31/1/2015Quarter1sweingThursday120.8011.41968.03660500.00030.50.800570
41/1/2015Quarter1sweingThursday60.8025.901170.01920500.00056.00.800382
51/1/2015Quarter1sweingThursday70.8025.90984.06720380.00056.00.800125
................................................
11873/11/2015Quarter2sweingWednesday40.7526.821054.07080450.00059.00.750051
11883/11/2015Quarter2sweingWednesday50.7026.82992.06960300.00158.00.700557
11893/11/2015Quarter2sweingWednesday80.7030.48914.06840300.00157.00.700505
11903/11/2015Quarter2sweingWednesday60.7023.411128.04560400.00138.00.700246
11913/11/2015Quarter2sweingWednesday70.6530.48935.06840260.00157.00.650596
\n", "

691 rows × 15 columns

\n", "
" ], "text/plain": [ " date quarter department day team targeted_productivity \\\n", "0 1/1/2015 Quarter1 sweing Thursday 8 0.80 \n", "2 1/1/2015 Quarter1 sweing Thursday 11 0.80 \n", "3 1/1/2015 Quarter1 sweing Thursday 12 0.80 \n", "4 1/1/2015 Quarter1 sweing Thursday 6 0.80 \n", "5 1/1/2015 Quarter1 sweing Thursday 7 0.80 \n", "... ... ... ... ... ... ... \n", "1187 3/11/2015 Quarter2 sweing Wednesday 4 0.75 \n", "1188 3/11/2015 Quarter2 sweing Wednesday 5 0.70 \n", "1189 3/11/2015 Quarter2 sweing Wednesday 8 0.70 \n", "1190 3/11/2015 Quarter2 sweing Wednesday 6 0.70 \n", "1191 3/11/2015 Quarter2 sweing Wednesday 7 0.65 \n", "\n", " smv wip over_time incentive idle_time idle_men \\\n", "0 26.16 1108.0 7080 98 0.0 0 \n", "2 11.41 968.0 3660 50 0.0 0 \n", "3 11.41 968.0 3660 50 0.0 0 \n", "4 25.90 1170.0 1920 50 0.0 0 \n", "5 25.90 984.0 6720 38 0.0 0 \n", "... ... ... ... ... ... ... \n", "1187 26.82 1054.0 7080 45 0.0 0 \n", "1188 26.82 992.0 6960 30 0.0 0 \n", "1189 30.48 914.0 6840 30 0.0 0 \n", "1190 23.41 1128.0 4560 40 0.0 0 \n", "1191 30.48 935.0 6840 26 0.0 0 \n", "\n", " no_of_style_change no_of_workers actual_productivity \n", "0 0 59.0 0.940725 \n", "2 0 30.5 0.800570 \n", "3 0 30.5 0.800570 \n", "4 0 56.0 0.800382 \n", "5 0 56.0 0.800125 \n", "... ... ... ... \n", "1187 0 59.0 0.750051 \n", "1188 1 58.0 0.700557 \n", "1189 1 57.0 0.700505 \n", "1190 1 38.0 0.700246 \n", "1191 1 57.0 0.650596 \n", "\n", "[691 rows x 15 columns]" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df[\"wip\"].notnull()]" ] }, { "cell_type": "markdown", "id": "ca2ea4ce", "metadata": {}, "source": [ "Alternatively: if we want to see the null/missing values, we would use the isnull() method instead." ] }, { "cell_type": "markdown", "id": "365fd3bd", "metadata": {}, "source": [ "### \"over_time\" column\n", "\n", "This column records the amount of overtime by each team in minutes. It has a wide range of values, as we already confirmed with the describe() method.\n", "\n", "You might notice that we will be invoking the describe() method more frequently. We do this so that you don't have to scroll up all the time to see the original table at the beginning of this Notebook." ] }, { "cell_type": "code", "execution_count": 20, "id": "3b0f4434", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "count 1197.000000\n", "mean 4567.460317\n", "std 3348.823563\n", "min 0.000000\n", "25% 1440.000000\n", "50% 3960.000000\n", "75% 6960.000000\n", "max 25920.000000\n", "Name: over_time, dtype: float64" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[\"over_time\"].describe()" ] }, { "cell_type": "markdown", "id": "9692947d", "metadata": {}, "source": [ "Considering these results, it might be interesting to check the observations where the overtime surpasses a certain threshold. As always, you're free to set the number you consider most convenient, but as an example, here we will use the value of the 50% percentile:" ] }, { "cell_type": "code", "execution_count": 21, "id": "121aceb0", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datequarterdepartmentdayteamtargeted_productivitysmvwipover_timeincentiveidle_timeidle_menno_of_style_changeno_of_workersactual_productivity
01/1/2015Quarter1sweingThursday80.8026.161108.07080980.00059.00.940725
51/1/2015Quarter1sweingThursday70.8025.90984.06720380.00056.00.800125
71/1/2015Quarter1sweingThursday30.7528.08795.06900450.00057.50.753683
81/1/2015Quarter1sweingThursday20.7519.87733.06000340.00055.00.753098
91/1/2015Quarter1sweingThursday10.7528.08681.06900450.00057.50.750428
................................................
11873/11/2015Quarter2sweingWednesday40.7526.821054.07080450.00059.00.750051
11883/11/2015Quarter2sweingWednesday50.7026.82992.06960300.00158.00.700557
11893/11/2015Quarter2sweingWednesday80.7030.48914.06840300.00157.00.700505
11903/11/2015Quarter2sweingWednesday60.7023.411128.04560400.00138.00.700246
11913/11/2015Quarter2sweingWednesday70.6530.48935.06840260.00157.00.650596
\n", "

597 rows × 15 columns

\n", "
" ], "text/plain": [ " date quarter department day team targeted_productivity \\\n", "0 1/1/2015 Quarter1 sweing Thursday 8 0.80 \n", "5 1/1/2015 Quarter1 sweing Thursday 7 0.80 \n", "7 1/1/2015 Quarter1 sweing Thursday 3 0.75 \n", "8 1/1/2015 Quarter1 sweing Thursday 2 0.75 \n", "9 1/1/2015 Quarter1 sweing Thursday 1 0.75 \n", "... ... ... ... ... ... ... \n", "1187 3/11/2015 Quarter2 sweing Wednesday 4 0.75 \n", "1188 3/11/2015 Quarter2 sweing Wednesday 5 0.70 \n", "1189 3/11/2015 Quarter2 sweing Wednesday 8 0.70 \n", "1190 3/11/2015 Quarter2 sweing Wednesday 6 0.70 \n", "1191 3/11/2015 Quarter2 sweing Wednesday 7 0.65 \n", "\n", " smv wip over_time incentive idle_time idle_men \\\n", "0 26.16 1108.0 7080 98 0.0 0 \n", "5 25.90 984.0 6720 38 0.0 0 \n", "7 28.08 795.0 6900 45 0.0 0 \n", "8 19.87 733.0 6000 34 0.0 0 \n", "9 28.08 681.0 6900 45 0.0 0 \n", "... ... ... ... ... ... ... \n", "1187 26.82 1054.0 7080 45 0.0 0 \n", "1188 26.82 992.0 6960 30 0.0 0 \n", "1189 30.48 914.0 6840 30 0.0 0 \n", "1190 23.41 1128.0 4560 40 0.0 0 \n", "1191 30.48 935.0 6840 26 0.0 0 \n", "\n", " no_of_style_change no_of_workers actual_productivity \n", "0 0 59.0 0.940725 \n", "5 0 56.0 0.800125 \n", "7 0 57.5 0.753683 \n", "8 0 55.0 0.753098 \n", "9 0 57.5 0.750428 \n", "... ... ... ... \n", "1187 0 59.0 0.750051 \n", "1188 1 58.0 0.700557 \n", "1189 1 57.0 0.700505 \n", "1190 1 38.0 0.700246 \n", "1191 1 57.0 0.650596 \n", "\n", "[597 rows x 15 columns]" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df[\"over_time\"] > 3960]" ] }, { "cell_type": "markdown", "id": "83ac56aa", "metadata": {}, "source": [ "As expected, almost half of the observations in the dataset feature a significant overtime among teams.\n", "\n", "Let's explore the columns without overtime." ] }, { "cell_type": "code", "execution_count": 22, "id": "4f53dcdd", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datequarterdepartmentdayteamtargeted_productivitysmvwipover_timeincentiveidle_timeidle_menno_of_style_changeno_of_workersactual_productivity
6842/9/2015Quarter2sweingMonday110.7510.05103.00450.00054.00.750648
6942/10/2015Quarter2sweingTuesday100.8022.521268.00880.00056.00.900632
6952/10/2015Quarter2sweingTuesday10.8022.521546.00880.00057.00.900471
6962/10/2015Quarter2sweingTuesday30.8022.52813.00880.00057.00.900471
6972/10/2015Quarter2sweingTuesday20.8022.521512.00880.00057.00.899984
7132/11/2015Quarter2sweingWednesday20.8022.521557.00900.00057.51.000345
7142/11/2015Quarter2sweingWednesday10.8022.521498.001130.00057.01.000066
7182/11/2015Quarter2sweingWednesday100.8022.52598.00750.00056.00.850365
7302/12/2015Quarter2sweingThursday10.8022.521397.001380.00057.01.100484
7322/12/2015Quarter2sweingThursday20.8022.521327.001130.00057.51.000345
7902/16/2015Quarter3sweingMonday50.8030.10461.0000.00059.00.800980
8182/17/2015Quarter3sweingTuesday80.6029.40179.00235.030258.00.600983
8222/17/2015Quarter3sweingTuesday100.6518.22741.0008.035149.00.302117
8282/18/2015Quarter3sweingWednesday50.8030.10511.0000.00059.00.800980
8342/18/2015Quarter3sweingWednesday30.7030.101057.00400.00158.00.700603
8602/19/2015Quarter3sweingThursday70.7530.10444.0005.020159.00.611141
9662/28/2015Quarter4sweingSaturday110.8011.61954.00500.00258.00.800779
9963/1/2015Quarter1sweingSunday110.8011.61347.00504.020057.00.682433
10113/2/2015Quarter1sweingMonday110.8011.61632.00500.00057.00.800309
10273/3/2015Quarter1sweingTuesday110.8011.41601.00500.00056.00.800702
10533/4/2015Quarter1sweingWednesday110.8011.41433.00380.00056.00.800702
11283/9/2015Quarter2finishingMonday110.802.90NaN09600.0008.00.960625
11293/9/2015Quarter2finishingMonday120.804.60NaN010800.0009.00.902963
11303/9/2015Quarter2finishingMonday50.603.94NaN028800.00012.00.864343
11333/9/2015Quarter2finishingMonday90.752.90NaN036000.00015.00.841000
11373/9/2015Quarter2finishingMonday30.804.60NaN014400.00012.00.795417
11383/9/2015Quarter2finishingMonday40.753.94NaN09600.0008.00.795388
11393/9/2015Quarter2finishingMonday10.753.94NaN09600.0008.00.794567
11433/9/2015Quarter2finishingMonday20.703.90NaN012000.00010.00.682500
11483/9/2015Quarter2finishingMonday100.702.90NaN09600.0008.00.477292
11493/9/2015Quarter2finishingMonday80.653.90NaN09600.0008.00.264062
\n", "
" ], "text/plain": [ " date quarter department day team targeted_productivity \\\n", "684 2/9/2015 Quarter2 sweing Monday 11 0.75 \n", "694 2/10/2015 Quarter2 sweing Tuesday 10 0.80 \n", "695 2/10/2015 Quarter2 sweing Tuesday 1 0.80 \n", "696 2/10/2015 Quarter2 sweing Tuesday 3 0.80 \n", "697 2/10/2015 Quarter2 sweing Tuesday 2 0.80 \n", "713 2/11/2015 Quarter2 sweing Wednesday 2 0.80 \n", "714 2/11/2015 Quarter2 sweing Wednesday 1 0.80 \n", "718 2/11/2015 Quarter2 sweing Wednesday 10 0.80 \n", "730 2/12/2015 Quarter2 sweing Thursday 1 0.80 \n", "732 2/12/2015 Quarter2 sweing Thursday 2 0.80 \n", "790 2/16/2015 Quarter3 sweing Monday 5 0.80 \n", "818 2/17/2015 Quarter3 sweing Tuesday 8 0.60 \n", "822 2/17/2015 Quarter3 sweing Tuesday 10 0.65 \n", "828 2/18/2015 Quarter3 sweing Wednesday 5 0.80 \n", "834 2/18/2015 Quarter3 sweing Wednesday 3 0.70 \n", "860 2/19/2015 Quarter3 sweing Thursday 7 0.75 \n", "966 2/28/2015 Quarter4 sweing Saturday 11 0.80 \n", "996 3/1/2015 Quarter1 sweing Sunday 11 0.80 \n", "1011 3/2/2015 Quarter1 sweing Monday 11 0.80 \n", "1027 3/3/2015 Quarter1 sweing Tuesday 11 0.80 \n", "1053 3/4/2015 Quarter1 sweing Wednesday 11 0.80 \n", "1128 3/9/2015 Quarter2 finishing Monday 11 0.80 \n", "1129 3/9/2015 Quarter2 finishing Monday 12 0.80 \n", "1130 3/9/2015 Quarter2 finishing Monday 5 0.60 \n", "1133 3/9/2015 Quarter2 finishing Monday 9 0.75 \n", "1137 3/9/2015 Quarter2 finishing Monday 3 0.80 \n", "1138 3/9/2015 Quarter2 finishing Monday 4 0.75 \n", "1139 3/9/2015 Quarter2 finishing Monday 1 0.75 \n", "1143 3/9/2015 Quarter2 finishing Monday 2 0.70 \n", "1148 3/9/2015 Quarter2 finishing Monday 10 0.70 \n", "1149 3/9/2015 Quarter2 finishing Monday 8 0.65 \n", "\n", " smv wip over_time incentive idle_time idle_men \\\n", "684 10.05 103.0 0 45 0.0 0 \n", "694 22.52 1268.0 0 88 0.0 0 \n", "695 22.52 1546.0 0 88 0.0 0 \n", "696 22.52 813.0 0 88 0.0 0 \n", "697 22.52 1512.0 0 88 0.0 0 \n", "713 22.52 1557.0 0 90 0.0 0 \n", "714 22.52 1498.0 0 113 0.0 0 \n", "718 22.52 598.0 0 75 0.0 0 \n", "730 22.52 1397.0 0 138 0.0 0 \n", "732 22.52 1327.0 0 113 0.0 0 \n", "790 30.10 461.0 0 0 0.0 0 \n", "818 29.40 179.0 0 23 5.0 30 \n", "822 18.22 741.0 0 0 8.0 35 \n", "828 30.10 511.0 0 0 0.0 0 \n", "834 30.10 1057.0 0 40 0.0 0 \n", "860 30.10 444.0 0 0 5.0 20 \n", "966 11.61 954.0 0 50 0.0 0 \n", "996 11.61 347.0 0 50 4.0 20 \n", "1011 11.61 632.0 0 50 0.0 0 \n", "1027 11.41 601.0 0 50 0.0 0 \n", "1053 11.41 433.0 0 38 0.0 0 \n", "1128 2.90 NaN 0 960 0.0 0 \n", "1129 4.60 NaN 0 1080 0.0 0 \n", "1130 3.94 NaN 0 2880 0.0 0 \n", "1133 2.90 NaN 0 3600 0.0 0 \n", "1137 4.60 NaN 0 1440 0.0 0 \n", "1138 3.94 NaN 0 960 0.0 0 \n", "1139 3.94 NaN 0 960 0.0 0 \n", "1143 3.90 NaN 0 1200 0.0 0 \n", "1148 2.90 NaN 0 960 0.0 0 \n", "1149 3.90 NaN 0 960 0.0 0 \n", "\n", " no_of_style_change no_of_workers actual_productivity \n", "684 0 54.0 0.750648 \n", "694 0 56.0 0.900632 \n", "695 0 57.0 0.900471 \n", "696 0 57.0 0.900471 \n", "697 0 57.0 0.899984 \n", "713 0 57.5 1.000345 \n", "714 0 57.0 1.000066 \n", "718 0 56.0 0.850365 \n", "730 0 57.0 1.100484 \n", "732 0 57.5 1.000345 \n", "790 0 59.0 0.800980 \n", "818 2 58.0 0.600983 \n", "822 1 49.0 0.302117 \n", "828 0 59.0 0.800980 \n", "834 1 58.0 0.700603 \n", "860 1 59.0 0.611141 \n", "966 2 58.0 0.800779 \n", "996 0 57.0 0.682433 \n", "1011 0 57.0 0.800309 \n", "1027 0 56.0 0.800702 \n", "1053 0 56.0 0.800702 \n", "1128 0 8.0 0.960625 \n", "1129 0 9.0 0.902963 \n", "1130 0 12.0 0.864343 \n", "1133 0 15.0 0.841000 \n", "1137 0 12.0 0.795417 \n", "1138 0 8.0 0.795388 \n", "1139 0 8.0 0.794567 \n", "1143 0 10.0 0.682500 \n", "1148 0 8.0 0.477292 \n", "1149 0 8.0 0.264062 " ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df[\"over_time\"] == 0]" ] }, { "cell_type": "code", "execution_count": 23, "id": "cdcf7ae3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "31" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(df[df[\"over_time\"] == 0])" ] }, { "cell_type": "markdown", "id": "e230e2f9", "metadata": {}, "source": [ "We have only 31 total observations without overtime!\n", "\n", "What happens if we contrast the \"over_time\" column with the ones related to productivity. For instance, how many observations we have where the productivity standards were met without overtime?" ] }, { "cell_type": "code", "execution_count": 24, "id": "bea196e9", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datequarterdepartmentdayteamtargeted_productivitysmvwipover_timeincentiveidle_timeidle_menno_of_style_changeno_of_workersactual_productivity
6842/9/2015Quarter2sweingMonday110.7510.05103.00450.00054.00.750648
6942/10/2015Quarter2sweingTuesday100.8022.521268.00880.00056.00.900632
6952/10/2015Quarter2sweingTuesday10.8022.521546.00880.00057.00.900471
6962/10/2015Quarter2sweingTuesday30.8022.52813.00880.00057.00.900471
6972/10/2015Quarter2sweingTuesday20.8022.521512.00880.00057.00.899984
7132/11/2015Quarter2sweingWednesday20.8022.521557.00900.00057.51.000345
7142/11/2015Quarter2sweingWednesday10.8022.521498.001130.00057.01.000066
7182/11/2015Quarter2sweingWednesday100.8022.52598.00750.00056.00.850365
7302/12/2015Quarter2sweingThursday10.8022.521397.001380.00057.01.100484
7322/12/2015Quarter2sweingThursday20.8022.521327.001130.00057.51.000345
7902/16/2015Quarter3sweingMonday50.8030.10461.0000.00059.00.800980
8182/17/2015Quarter3sweingTuesday80.6029.40179.00235.030258.00.600983
8282/18/2015Quarter3sweingWednesday50.8030.10511.0000.00059.00.800980
8342/18/2015Quarter3sweingWednesday30.7030.101057.00400.00158.00.700603
9662/28/2015Quarter4sweingSaturday110.8011.61954.00500.00258.00.800779
10113/2/2015Quarter1sweingMonday110.8011.61632.00500.00057.00.800309
10273/3/2015Quarter1sweingTuesday110.8011.41601.00500.00056.00.800702
10533/4/2015Quarter1sweingWednesday110.8011.41433.00380.00056.00.800702
11283/9/2015Quarter2finishingMonday110.802.90NaN09600.0008.00.960625
11293/9/2015Quarter2finishingMonday120.804.60NaN010800.0009.00.902963
11303/9/2015Quarter2finishingMonday50.603.94NaN028800.00012.00.864343
11333/9/2015Quarter2finishingMonday90.752.90NaN036000.00015.00.841000
11383/9/2015Quarter2finishingMonday40.753.94NaN09600.0008.00.795388
11393/9/2015Quarter2finishingMonday10.753.94NaN09600.0008.00.794567
\n", "
" ], "text/plain": [ " date quarter department day team targeted_productivity \\\n", "684 2/9/2015 Quarter2 sweing Monday 11 0.75 \n", "694 2/10/2015 Quarter2 sweing Tuesday 10 0.80 \n", "695 2/10/2015 Quarter2 sweing Tuesday 1 0.80 \n", "696 2/10/2015 Quarter2 sweing Tuesday 3 0.80 \n", "697 2/10/2015 Quarter2 sweing Tuesday 2 0.80 \n", "713 2/11/2015 Quarter2 sweing Wednesday 2 0.80 \n", "714 2/11/2015 Quarter2 sweing Wednesday 1 0.80 \n", "718 2/11/2015 Quarter2 sweing Wednesday 10 0.80 \n", "730 2/12/2015 Quarter2 sweing Thursday 1 0.80 \n", "732 2/12/2015 Quarter2 sweing Thursday 2 0.80 \n", "790 2/16/2015 Quarter3 sweing Monday 5 0.80 \n", "818 2/17/2015 Quarter3 sweing Tuesday 8 0.60 \n", "828 2/18/2015 Quarter3 sweing Wednesday 5 0.80 \n", "834 2/18/2015 Quarter3 sweing Wednesday 3 0.70 \n", "966 2/28/2015 Quarter4 sweing Saturday 11 0.80 \n", "1011 3/2/2015 Quarter1 sweing Monday 11 0.80 \n", "1027 3/3/2015 Quarter1 sweing Tuesday 11 0.80 \n", "1053 3/4/2015 Quarter1 sweing Wednesday 11 0.80 \n", "1128 3/9/2015 Quarter2 finishing Monday 11 0.80 \n", "1129 3/9/2015 Quarter2 finishing Monday 12 0.80 \n", "1130 3/9/2015 Quarter2 finishing Monday 5 0.60 \n", "1133 3/9/2015 Quarter2 finishing Monday 9 0.75 \n", "1138 3/9/2015 Quarter2 finishing Monday 4 0.75 \n", "1139 3/9/2015 Quarter2 finishing Monday 1 0.75 \n", "\n", " smv wip over_time incentive idle_time idle_men \\\n", "684 10.05 103.0 0 45 0.0 0 \n", "694 22.52 1268.0 0 88 0.0 0 \n", "695 22.52 1546.0 0 88 0.0 0 \n", "696 22.52 813.0 0 88 0.0 0 \n", "697 22.52 1512.0 0 88 0.0 0 \n", "713 22.52 1557.0 0 90 0.0 0 \n", "714 22.52 1498.0 0 113 0.0 0 \n", "718 22.52 598.0 0 75 0.0 0 \n", "730 22.52 1397.0 0 138 0.0 0 \n", "732 22.52 1327.0 0 113 0.0 0 \n", "790 30.10 461.0 0 0 0.0 0 \n", "818 29.40 179.0 0 23 5.0 30 \n", "828 30.10 511.0 0 0 0.0 0 \n", "834 30.10 1057.0 0 40 0.0 0 \n", "966 11.61 954.0 0 50 0.0 0 \n", "1011 11.61 632.0 0 50 0.0 0 \n", "1027 11.41 601.0 0 50 0.0 0 \n", "1053 11.41 433.0 0 38 0.0 0 \n", "1128 2.90 NaN 0 960 0.0 0 \n", "1129 4.60 NaN 0 1080 0.0 0 \n", "1130 3.94 NaN 0 2880 0.0 0 \n", "1133 2.90 NaN 0 3600 0.0 0 \n", "1138 3.94 NaN 0 960 0.0 0 \n", "1139 3.94 NaN 0 960 0.0 0 \n", "\n", " no_of_style_change no_of_workers actual_productivity \n", "684 0 54.0 0.750648 \n", "694 0 56.0 0.900632 \n", "695 0 57.0 0.900471 \n", "696 0 57.0 0.900471 \n", "697 0 57.0 0.899984 \n", "713 0 57.5 1.000345 \n", "714 0 57.0 1.000066 \n", "718 0 56.0 0.850365 \n", "730 0 57.0 1.100484 \n", "732 0 57.5 1.000345 \n", "790 0 59.0 0.800980 \n", "818 2 58.0 0.600983 \n", "828 0 59.0 0.800980 \n", "834 1 58.0 0.700603 \n", "966 2 58.0 0.800779 \n", "1011 0 57.0 0.800309 \n", "1027 0 56.0 0.800702 \n", "1053 0 56.0 0.800702 \n", "1128 0 8.0 0.960625 \n", "1129 0 9.0 0.902963 \n", "1130 0 12.0 0.864343 \n", "1133 0 15.0 0.841000 \n", "1138 0 8.0 0.795388 \n", "1139 0 8.0 0.794567 " ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[(df[\"over_time\"] == 0) & (df[\"actual_productivity\"] > df[\"targeted_productivity\"])]" ] }, { "cell_type": "markdown", "id": "f1bc1362", "metadata": {}, "source": [ "It's clear now that it's a rare event to meet targets without putting in overtime!" ] }, { "cell_type": "markdown", "id": "fd515c99", "metadata": {}, "source": [ "### \"incentive\" column\n", "\n", "This column is about the financial incentives that motivate a particular course of action. The information we got by using the describe() method was the following:" ] }, { "cell_type": "code", "execution_count": 25, "id": "3f5885c6", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "count 1197.000000\n", "mean 38.210526\n", "std 160.182643\n", "min 0.000000\n", "25% 0.000000\n", "50% 0.000000\n", "75% 50.000000\n", "max 3600.000000\n", "Name: incentive, dtype: float64" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[\"incentive\"].describe()" ] }, { "cell_type": "markdown", "id": "30fae2a8", "metadata": {}, "source": [ "We can see that workers barely have incentives. How many observations don't feature any kind of incentive?" ] }, { "cell_type": "code", "execution_count": 26, "id": "c7de2e6d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "604" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(df[df[\"incentive\"] == 0])" ] }, { "cell_type": "markdown", "id": "55fc46cf", "metadata": {}, "source": [ "That's more than half of the entire dataset!\n", "\n", "And since incentives only appear for the 75% percentile (which isn't the same to say that they appear exactly on this percentile, by the way), let's see how many observations include incentives greater than 50:" ] }, { "cell_type": "code", "execution_count": 27, "id": "ab8c0cae", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datequarterdepartmentdayteamtargeted_productivitysmvwipover_timeincentiveidle_timeidle_menno_of_style_changeno_of_workersactual_productivity
01/1/2015Quarter1sweingThursday80.8026.161108.07080980.00059.00.940725
271/3/2015Quarter1sweingSaturday120.8026.16844.07080630.00059.00.800319
321/3/2015Quarter1sweingSaturday100.7519.31610.06480560.00054.00.787300
451/4/2015Quarter1sweingSunday90.8026.161278.07080600.00059.00.850569
461/4/2015Quarter1sweingSunday70.8025.901227.07020600.00056.50.850436
................................................
11563/10/2015Quarter2sweingTuesday40.7526.821104.05880650.00059.00.850084
11583/10/2015Quarter2sweingTuesday120.8015.261069.04080630.00034.00.800402
11593/10/2015Quarter2sweingTuesday30.8030.10756.06960630.00158.00.800072
11783/11/2015Quarter2sweingWednesday120.8015.26470.04080630.00034.00.800402
11793/11/2015Quarter2sweingWednesday30.8030.10735.06960630.00158.00.800072
\n", "

231 rows × 15 columns

\n", "
" ], "text/plain": [ " date quarter department day team targeted_productivity \\\n", "0 1/1/2015 Quarter1 sweing Thursday 8 0.80 \n", "27 1/3/2015 Quarter1 sweing Saturday 12 0.80 \n", "32 1/3/2015 Quarter1 sweing Saturday 10 0.75 \n", "45 1/4/2015 Quarter1 sweing Sunday 9 0.80 \n", "46 1/4/2015 Quarter1 sweing Sunday 7 0.80 \n", "... ... ... ... ... ... ... \n", "1156 3/10/2015 Quarter2 sweing Tuesday 4 0.75 \n", "1158 3/10/2015 Quarter2 sweing Tuesday 12 0.80 \n", "1159 3/10/2015 Quarter2 sweing Tuesday 3 0.80 \n", "1178 3/11/2015 Quarter2 sweing Wednesday 12 0.80 \n", "1179 3/11/2015 Quarter2 sweing Wednesday 3 0.80 \n", "\n", " smv wip over_time incentive idle_time idle_men \\\n", "0 26.16 1108.0 7080 98 0.0 0 \n", "27 26.16 844.0 7080 63 0.0 0 \n", "32 19.31 610.0 6480 56 0.0 0 \n", "45 26.16 1278.0 7080 60 0.0 0 \n", "46 25.90 1227.0 7020 60 0.0 0 \n", "... ... ... ... ... ... ... \n", "1156 26.82 1104.0 5880 65 0.0 0 \n", "1158 15.26 1069.0 4080 63 0.0 0 \n", "1159 30.10 756.0 6960 63 0.0 0 \n", "1178 15.26 470.0 4080 63 0.0 0 \n", "1179 30.10 735.0 6960 63 0.0 0 \n", "\n", " no_of_style_change no_of_workers actual_productivity \n", "0 0 59.0 0.940725 \n", "27 0 59.0 0.800319 \n", "32 0 54.0 0.787300 \n", "45 0 59.0 0.850569 \n", "46 0 56.5 0.850436 \n", "... ... ... ... \n", "1156 0 59.0 0.850084 \n", "1158 0 34.0 0.800402 \n", "1159 1 58.0 0.800072 \n", "1178 0 34.0 0.800402 \n", "1179 1 58.0 0.800072 \n", "\n", "[231 rows x 15 columns]" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df[\"incentive\"] > 50]" ] }, { "cell_type": "markdown", "id": "b0a94356", "metadata": {}, "source": [ "The number is pretty small, only a third with respect to the number of observations without incentives. What happens if we only include observations with an incentive higher than 100?" ] }, { "cell_type": "code", "execution_count": 28, "id": "d1f7e3cb", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datequarterdepartmentdayteamtargeted_productivitysmvwipover_timeincentiveidle_timeidle_menno_of_style_changeno_of_workersactual_productivity
4561/27/2015Quarter4sweingTuesday20.7522.521635.068401190.00057.01.000230
4571/27/2015Quarter4sweingTuesday30.7522.521299.068401190.00057.01.000230
4781/28/2015Quarter4sweingWednesday30.8022.521350.068401130.00057.01.000230
4981/29/2015Quarter5sweingThursday20.8022.521416.068401130.00057.01.000230
5181/31/2015Quarter5sweingSaturday30.8022.521136.069601130.00058.01.000457
5191/31/2015Quarter5sweingSaturday20.8022.521397.068401130.00057.01.000230
5432/1/2015Quarter1sweingSunday20.8022.521396.069001130.00057.51.000671
5442/1/2015Quarter1sweingSunday10.8022.941582.030601130.00058.51.000402
5612/2/2015Quarter1sweingMonday10.8022.9416882.070201130.00058.51.000602
5812/3/2015Quarter1sweingTuesday10.8022.521500.069001130.00057.51.000019
6002/4/2015Quarter1sweingWednesday30.8022.52968.068401130.00057.01.000230
6012/4/2015Quarter1sweingWednesday100.8022.521108.067201130.00056.00.999995
6182/5/2015Quarter1sweingThursday20.8022.521300.067801130.00056.51.000446
6192/5/2015Quarter1sweingThursday10.8022.521485.069001130.00057.51.000019
6202/5/2015Quarter1sweingThursday100.8022.521039.067201130.00056.00.999995
6372/7/2015Quarter1sweingSaturday20.8022.521186.069001130.00058.01.000019
6552/8/2015Quarter2sweingSunday20.8022.521233.069001130.00057.51.000019
7142/11/2015Quarter2sweingWednesday10.8022.521498.001130.00057.01.000066
7302/12/2015Quarter2sweingThursday10.8022.521397.001380.00057.01.100484
7322/12/2015Quarter2sweingThursday20.8022.521327.001130.00057.51.000345
7492/14/2015Quarter2sweingSaturday10.8022.521416.068401130.00057.01.000230
7682/15/2015Quarter3sweingSunday10.8022.521420.068401130.00057.01.000230
7852/16/2015Quarter3sweingMonday10.8022.521422.068401130.00057.01.000230
8032/17/2015Quarter3sweingTuesday10.8022.521445.068401130.00057.01.000230
11283/9/2015Quarter2finishingMonday110.802.90NaN09600.0008.00.960625
11293/9/2015Quarter2finishingMonday120.804.60NaN010800.0009.00.902963
11303/9/2015Quarter2finishingMonday50.603.94NaN028800.00012.00.864343
11333/9/2015Quarter2finishingMonday90.752.90NaN036000.00015.00.841000
11373/9/2015Quarter2finishingMonday30.804.60NaN014400.00012.00.795417
11383/9/2015Quarter2finishingMonday40.753.94NaN09600.0008.00.795388
11393/9/2015Quarter2finishingMonday10.753.94NaN09600.0008.00.794567
11433/9/2015Quarter2finishingMonday20.703.90NaN012000.00010.00.682500
11483/9/2015Quarter2finishingMonday100.702.90NaN09600.0008.00.477292
11493/9/2015Quarter2finishingMonday80.653.90NaN09600.0008.00.264062
\n", "
" ], "text/plain": [ " date quarter department day team targeted_productivity \\\n", "456 1/27/2015 Quarter4 sweing Tuesday 2 0.75 \n", "457 1/27/2015 Quarter4 sweing Tuesday 3 0.75 \n", "478 1/28/2015 Quarter4 sweing Wednesday 3 0.80 \n", "498 1/29/2015 Quarter5 sweing Thursday 2 0.80 \n", "518 1/31/2015 Quarter5 sweing Saturday 3 0.80 \n", "519 1/31/2015 Quarter5 sweing Saturday 2 0.80 \n", "543 2/1/2015 Quarter1 sweing Sunday 2 0.80 \n", "544 2/1/2015 Quarter1 sweing Sunday 1 0.80 \n", "561 2/2/2015 Quarter1 sweing Monday 1 0.80 \n", "581 2/3/2015 Quarter1 sweing Tuesday 1 0.80 \n", "600 2/4/2015 Quarter1 sweing Wednesday 3 0.80 \n", "601 2/4/2015 Quarter1 sweing Wednesday 10 0.80 \n", "618 2/5/2015 Quarter1 sweing Thursday 2 0.80 \n", "619 2/5/2015 Quarter1 sweing Thursday 1 0.80 \n", "620 2/5/2015 Quarter1 sweing Thursday 10 0.80 \n", "637 2/7/2015 Quarter1 sweing Saturday 2 0.80 \n", "655 2/8/2015 Quarter2 sweing Sunday 2 0.80 \n", "714 2/11/2015 Quarter2 sweing Wednesday 1 0.80 \n", "730 2/12/2015 Quarter2 sweing Thursday 1 0.80 \n", "732 2/12/2015 Quarter2 sweing Thursday 2 0.80 \n", "749 2/14/2015 Quarter2 sweing Saturday 1 0.80 \n", "768 2/15/2015 Quarter3 sweing Sunday 1 0.80 \n", "785 2/16/2015 Quarter3 sweing Monday 1 0.80 \n", "803 2/17/2015 Quarter3 sweing Tuesday 1 0.80 \n", "1128 3/9/2015 Quarter2 finishing Monday 11 0.80 \n", "1129 3/9/2015 Quarter2 finishing Monday 12 0.80 \n", "1130 3/9/2015 Quarter2 finishing Monday 5 0.60 \n", "1133 3/9/2015 Quarter2 finishing Monday 9 0.75 \n", "1137 3/9/2015 Quarter2 finishing Monday 3 0.80 \n", "1138 3/9/2015 Quarter2 finishing Monday 4 0.75 \n", "1139 3/9/2015 Quarter2 finishing Monday 1 0.75 \n", "1143 3/9/2015 Quarter2 finishing Monday 2 0.70 \n", "1148 3/9/2015 Quarter2 finishing Monday 10 0.70 \n", "1149 3/9/2015 Quarter2 finishing Monday 8 0.65 \n", "\n", " smv wip over_time incentive idle_time idle_men \\\n", "456 22.52 1635.0 6840 119 0.0 0 \n", "457 22.52 1299.0 6840 119 0.0 0 \n", "478 22.52 1350.0 6840 113 0.0 0 \n", "498 22.52 1416.0 6840 113 0.0 0 \n", "518 22.52 1136.0 6960 113 0.0 0 \n", "519 22.52 1397.0 6840 113 0.0 0 \n", "543 22.52 1396.0 6900 113 0.0 0 \n", "544 22.94 1582.0 3060 113 0.0 0 \n", "561 22.94 16882.0 7020 113 0.0 0 \n", "581 22.52 1500.0 6900 113 0.0 0 \n", "600 22.52 968.0 6840 113 0.0 0 \n", "601 22.52 1108.0 6720 113 0.0 0 \n", "618 22.52 1300.0 6780 113 0.0 0 \n", "619 22.52 1485.0 6900 113 0.0 0 \n", "620 22.52 1039.0 6720 113 0.0 0 \n", "637 22.52 1186.0 6900 113 0.0 0 \n", "655 22.52 1233.0 6900 113 0.0 0 \n", "714 22.52 1498.0 0 113 0.0 0 \n", "730 22.52 1397.0 0 138 0.0 0 \n", "732 22.52 1327.0 0 113 0.0 0 \n", "749 22.52 1416.0 6840 113 0.0 0 \n", "768 22.52 1420.0 6840 113 0.0 0 \n", "785 22.52 1422.0 6840 113 0.0 0 \n", "803 22.52 1445.0 6840 113 0.0 0 \n", "1128 2.90 NaN 0 960 0.0 0 \n", "1129 4.60 NaN 0 1080 0.0 0 \n", "1130 3.94 NaN 0 2880 0.0 0 \n", "1133 2.90 NaN 0 3600 0.0 0 \n", "1137 4.60 NaN 0 1440 0.0 0 \n", "1138 3.94 NaN 0 960 0.0 0 \n", "1139 3.94 NaN 0 960 0.0 0 \n", "1143 3.90 NaN 0 1200 0.0 0 \n", "1148 2.90 NaN 0 960 0.0 0 \n", "1149 3.90 NaN 0 960 0.0 0 \n", "\n", " no_of_style_change no_of_workers actual_productivity \n", "456 0 57.0 1.000230 \n", "457 0 57.0 1.000230 \n", "478 0 57.0 1.000230 \n", "498 0 57.0 1.000230 \n", "518 0 58.0 1.000457 \n", "519 0 57.0 1.000230 \n", "543 0 57.5 1.000671 \n", "544 0 58.5 1.000402 \n", "561 0 58.5 1.000602 \n", "581 0 57.5 1.000019 \n", "600 0 57.0 1.000230 \n", "601 0 56.0 0.999995 \n", "618 0 56.5 1.000446 \n", "619 0 57.5 1.000019 \n", "620 0 56.0 0.999995 \n", "637 0 58.0 1.000019 \n", "655 0 57.5 1.000019 \n", "714 0 57.0 1.000066 \n", "730 0 57.0 1.100484 \n", "732 0 57.5 1.000345 \n", "749 0 57.0 1.000230 \n", "768 0 57.0 1.000230 \n", "785 0 57.0 1.000230 \n", "803 0 57.0 1.000230 \n", "1128 0 8.0 0.960625 \n", "1129 0 9.0 0.902963 \n", "1130 0 12.0 0.864343 \n", "1133 0 15.0 0.841000 \n", "1137 0 12.0 0.795417 \n", "1138 0 8.0 0.795388 \n", "1139 0 8.0 0.794567 \n", "1143 0 10.0 0.682500 \n", "1148 0 8.0 0.477292 \n", "1149 0 8.0 0.264062 " ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df[\"incentive\"] > 100]" ] }, { "cell_type": "code", "execution_count": 29, "id": "0f36bf3c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "34" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(df[df[\"incentive\"] > 100])" ] }, { "cell_type": "markdown", "id": "2618c546", "metadata": {}, "source": [ "We only have 34 observations that meet this criteria." ] }, { "cell_type": "markdown", "id": "ae3d77c9", "metadata": {}, "source": [ "## \"idle_time\" & \"idle_men\" column\n", "\n", "It would be nice to check all the observations where there were interruptions in the production process." ] }, { "cell_type": "code", "execution_count": 30, "id": "00ee2880", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datequarterdepartmentdayteamtargeted_productivitysmvwipover_timeincentiveidle_timeidle_menno_of_style_changeno_of_workersactual_productivity
6152/4/2015Quarter1sweingWednesday50.6530.10326.05820090.010058.50.650835
6172/4/2015Quarter1sweingWednesday40.3530.10287.0606023150.015055.50.350706
6502/7/2015Quarter1sweingSaturday70.7024.26658.069600270.045058.00.662270
6542/7/2015Quarter1sweingSaturday80.7024.26652.068400300.037057.00.365319
7752/15/2015Quarter3sweingSunday80.7030.10507.05880402.010159.00.700573
7982/16/2015Quarter3sweingMonday80.7030.107.07080272.010259.00.621972
8182/17/2015Quarter3sweingTuesday80.6029.40179.00235.030258.00.600983
8222/17/2015Quarter3sweingTuesday100.6518.22741.0008.035149.00.302117
8412/18/2015Quarter3sweingWednesday100.7019.681119.0564008.035147.00.303574
8432/18/2015Quarter3sweingWednesday80.6529.40962.0456004.530257.00.251399
8482/19/2015Quarter3sweingThursday50.8030.10276.0600633.515059.50.799983
8602/19/2015Quarter3sweingThursday70.7530.10444.0005.020159.00.611141
8802/22/2015Quarter4sweingSunday70.7530.10627.0696003.520158.00.393549
8822/22/2015Quarter4sweingSunday50.8030.10450.0570004.525060.00.307501
9963/1/2015Quarter1sweingSunday110.8011.61347.00504.020057.00.682433
10013/1/2015Quarter1sweingSunday70.8030.10934.0696003.515058.00.579511
10463/3/2015Quarter1sweingTuesday20.4015.28157.0540006.530145.00.302770
10853/5/2015Quarter1sweingThursday70.8030.10834.0120004.040059.00.366054
\n", "
" ], "text/plain": [ " date quarter department day team targeted_productivity \\\n", "615 2/4/2015 Quarter1 sweing Wednesday 5 0.65 \n", "617 2/4/2015 Quarter1 sweing Wednesday 4 0.35 \n", "650 2/7/2015 Quarter1 sweing Saturday 7 0.70 \n", "654 2/7/2015 Quarter1 sweing Saturday 8 0.70 \n", "775 2/15/2015 Quarter3 sweing Sunday 8 0.70 \n", "798 2/16/2015 Quarter3 sweing Monday 8 0.70 \n", "818 2/17/2015 Quarter3 sweing Tuesday 8 0.60 \n", "822 2/17/2015 Quarter3 sweing Tuesday 10 0.65 \n", "841 2/18/2015 Quarter3 sweing Wednesday 10 0.70 \n", "843 2/18/2015 Quarter3 sweing Wednesday 8 0.65 \n", "848 2/19/2015 Quarter3 sweing Thursday 5 0.80 \n", "860 2/19/2015 Quarter3 sweing Thursday 7 0.75 \n", "880 2/22/2015 Quarter4 sweing Sunday 7 0.75 \n", "882 2/22/2015 Quarter4 sweing Sunday 5 0.80 \n", "996 3/1/2015 Quarter1 sweing Sunday 11 0.80 \n", "1001 3/1/2015 Quarter1 sweing Sunday 7 0.80 \n", "1046 3/3/2015 Quarter1 sweing Tuesday 2 0.40 \n", "1085 3/5/2015 Quarter1 sweing Thursday 7 0.80 \n", "\n", " smv wip over_time incentive idle_time idle_men \\\n", "615 30.10 326.0 5820 0 90.0 10 \n", "617 30.10 287.0 6060 23 150.0 15 \n", "650 24.26 658.0 6960 0 270.0 45 \n", "654 24.26 652.0 6840 0 300.0 37 \n", "775 30.10 507.0 5880 40 2.0 10 \n", "798 30.10 7.0 7080 27 2.0 10 \n", "818 29.40 179.0 0 23 5.0 30 \n", "822 18.22 741.0 0 0 8.0 35 \n", "841 19.68 1119.0 5640 0 8.0 35 \n", "843 29.40 962.0 4560 0 4.5 30 \n", "848 30.10 276.0 600 63 3.5 15 \n", "860 30.10 444.0 0 0 5.0 20 \n", "880 30.10 627.0 6960 0 3.5 20 \n", "882 30.10 450.0 5700 0 4.5 25 \n", "996 11.61 347.0 0 50 4.0 20 \n", "1001 30.10 934.0 6960 0 3.5 15 \n", "1046 15.28 157.0 5400 0 6.5 30 \n", "1085 30.10 834.0 1200 0 4.0 40 \n", "\n", " no_of_style_change no_of_workers actual_productivity \n", "615 0 58.5 0.650835 \n", "617 0 55.5 0.350706 \n", "650 0 58.0 0.662270 \n", "654 0 57.0 0.365319 \n", "775 1 59.0 0.700573 \n", "798 2 59.0 0.621972 \n", "818 2 58.0 0.600983 \n", "822 1 49.0 0.302117 \n", "841 1 47.0 0.303574 \n", "843 2 57.0 0.251399 \n", "848 0 59.5 0.799983 \n", "860 1 59.0 0.611141 \n", "880 1 58.0 0.393549 \n", "882 0 60.0 0.307501 \n", "996 0 57.0 0.682433 \n", "1001 0 58.0 0.579511 \n", "1046 1 45.0 0.302770 \n", "1085 0 59.0 0.366054 " ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df[\"idle_time\"] > 0]" ] }, { "cell_type": "markdown", "id": "527371b2", "metadata": {}, "source": [ "We see that the factory rarely suffers from interruptions, with only 18 observations where something like this happened." ] }, { "cell_type": "code", "execution_count": 31, "id": "73fcc86b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "18" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(df[(df[\"idle_time\"] > 0)])" ] }, { "cell_type": "markdown", "id": "80532782", "metadata": {}, "source": [ "And now, just as a \"sanity check\", let's see if we have observations where there was idle time but without idle men, which would be incoherent:" ] }, { "cell_type": "code", "execution_count": 32, "id": "1054cd1b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datequarterdepartmentdayteamtargeted_productivitysmvwipover_timeincentiveidle_timeidle_menno_of_style_changeno_of_workersactual_productivity
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [date, quarter, department, day, team, targeted_productivity, smv, wip, over_time, incentive, idle_time, idle_men, no_of_style_change, no_of_workers, actual_productivity]\n", "Index: []" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[(df[\"idle_time\"] > 0) & (df[\"idle_men\"] == 0)]" ] }, { "cell_type": "markdown", "id": "77472015", "metadata": {}, "source": [ "Luckily we don't have incorrect observations in this sense.\n", "\n", "Another \"sanity check\" is to see if the number of observations with idle men is similar to the number of observations with idle time." ] }, { "cell_type": "code", "execution_count": 33, "id": "4cfe8320", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "18" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(df[(df[\"idle_men\"] > 0)])" ] }, { "cell_type": "markdown", "id": "b06f556c", "metadata": {}, "source": [ "Both columns match, so we don't have anything to worry about here. We can confirm that by re-checking the above table." ] }, { "cell_type": "markdown", "id": "565ec2e0", "metadata": {}, "source": [ "## \"no_of_style_change\" column" ] }, { "cell_type": "code", "execution_count": 34, "id": "bbf396d7", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "count 1197.000000\n", "mean 0.150376\n", "std 0.427848\n", "min 0.000000\n", "25% 0.000000\n", "50% 0.000000\n", "75% 0.000000\n", "max 2.000000\n", "Name: no_of_style_change, dtype: float64" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[\"no_of_style_change\"].describe()" ] }, { "cell_type": "markdown", "id": "6221d36e", "metadata": {}, "source": [ "We have another pretty uniform column here. Since the number of changes in the style of a particular product was pretty much 0 in most cases, it would be nice to have an idea of how many observations did feature these changes:" ] }, { "cell_type": "code", "execution_count": 35, "id": "8c5a02b6", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datequarterdepartmentdayteamtargeted_productivitysmvwipover_timeincentiveidle_timeidle_menno_of_style_changeno_of_workersactual_productivity
6342/5/2015Quarter1sweingThursday40.5030.10417.06360230.00153.00.500720
6512/7/2015Quarter1sweingSaturday40.6030.10486.06780300.00157.00.600224
6712/8/2015Quarter2sweingSunday40.6530.10712.06780440.00156.50.568260
6832/9/2015Quarter2sweingMonday40.7030.10767.03300500.00157.00.790003
6892/9/2015Quarter2sweingMonday70.3530.10842.0696000.00158.00.350302
................................................
11853/11/2015Quarter2sweingWednesday20.7516.10971.05400450.00145.00.750141
11883/11/2015Quarter2sweingWednesday50.7026.82992.06960300.00158.00.700557
11893/11/2015Quarter2sweingWednesday80.7030.48914.06840300.00157.00.700505
11903/11/2015Quarter2sweingWednesday60.7023.411128.04560400.00138.00.700246
11913/11/2015Quarter2sweingWednesday70.6530.48935.06840260.00157.00.650596
\n", "

114 rows × 15 columns

\n", "
" ], "text/plain": [ " date quarter department day team targeted_productivity \\\n", "634 2/5/2015 Quarter1 sweing Thursday 4 0.50 \n", "651 2/7/2015 Quarter1 sweing Saturday 4 0.60 \n", "671 2/8/2015 Quarter2 sweing Sunday 4 0.65 \n", "683 2/9/2015 Quarter2 sweing Monday 4 0.70 \n", "689 2/9/2015 Quarter2 sweing Monday 7 0.35 \n", "... ... ... ... ... ... ... \n", "1185 3/11/2015 Quarter2 sweing Wednesday 2 0.75 \n", "1188 3/11/2015 Quarter2 sweing Wednesday 5 0.70 \n", "1189 3/11/2015 Quarter2 sweing Wednesday 8 0.70 \n", "1190 3/11/2015 Quarter2 sweing Wednesday 6 0.70 \n", "1191 3/11/2015 Quarter2 sweing Wednesday 7 0.65 \n", "\n", " smv wip over_time incentive idle_time idle_men \\\n", "634 30.10 417.0 6360 23 0.0 0 \n", "651 30.10 486.0 6780 30 0.0 0 \n", "671 30.10 712.0 6780 44 0.0 0 \n", "683 30.10 767.0 3300 50 0.0 0 \n", "689 30.10 842.0 6960 0 0.0 0 \n", "... ... ... ... ... ... ... \n", "1185 16.10 971.0 5400 45 0.0 0 \n", "1188 26.82 992.0 6960 30 0.0 0 \n", "1189 30.48 914.0 6840 30 0.0 0 \n", "1190 23.41 1128.0 4560 40 0.0 0 \n", "1191 30.48 935.0 6840 26 0.0 0 \n", "\n", " no_of_style_change no_of_workers actual_productivity \n", "634 1 53.0 0.500720 \n", "651 1 57.0 0.600224 \n", "671 1 56.5 0.568260 \n", "683 1 57.0 0.790003 \n", "689 1 58.0 0.350302 \n", "... ... ... ... \n", "1185 1 45.0 0.750141 \n", "1188 1 58.0 0.700557 \n", "1189 1 57.0 0.700505 \n", "1190 1 38.0 0.700246 \n", "1191 1 57.0 0.650596 \n", "\n", "[114 rows x 15 columns]" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df[\"no_of_style_change\"] == 1]" ] }, { "cell_type": "markdown", "id": "059ac397", "metadata": {}, "source": [ "And also, considering the maximum value was 2, let's get the observations with this criteria as well:" ] }, { "cell_type": "code", "execution_count": 36, "id": "946e09cb", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datequarterdepartmentdayteamtargeted_productivitysmvwipover_timeincentiveidle_timeidle_menno_of_style_changeno_of_workersactual_productivity
7442/12/2015Quarter2sweingThursday110.5011.411039.0228000.00255.00.500123
7612/14/2015Quarter2sweingSaturday110.6011.411039.02280230.00255.00.600448
7772/15/2015Quarter3sweingSunday110.6511.41700.02640230.00253.00.650224
7982/16/2015Quarter3sweingMonday80.7030.107.07080272.010259.00.621972
7992/16/2015Quarter3sweingMonday110.7011.41680.02160300.00254.00.565972
8132/17/2015Quarter3sweingTuesday110.7011.411054.03420300.00256.00.700614
8182/17/2015Quarter3sweingTuesday80.6029.40179.00235.030258.00.600983
8262/18/2015Quarter3sweingWednesday110.7011.41685.03360300.00256.00.821113
8432/18/2015Quarter3sweingWednesday80.6529.40962.0456004.530257.00.251399
8542/19/2015Quarter3sweingThursday110.7011.41653.03480300.00258.00.700540
8552/19/2015Quarter3sweingThursday80.7029.401116.0624000.00257.00.700000
8742/22/2015Quarter4sweingSunday80.7029.401146.06840400.00257.00.700614
8762/22/2015Quarter4sweingSunday110.7511.41834.0348000.00258.00.672141
8782/22/2015Quarter4sweingSunday30.7030.101041.08160330.00258.00.626578
8932/23/2015Quarter4sweingMonday110.7511.41826.0282000.00258.00.750294
8952/23/2015Quarter4sweingMonday80.7029.401094.06840400.00257.00.700614
8962/23/2015Quarter4sweingMonday30.7029.401228.06960300.00258.00.700362
9112/24/2015Quarter4sweingTuesday110.7511.61698.03360340.00257.00.750437
9122/24/2015Quarter4sweingTuesday30.7529.401172.05340450.00260.00.750177
9162/24/2015Quarter4sweingTuesday80.7029.401079.04560400.00258.00.700519
9292/25/2015Quarter4sweingWednesday70.8030.10786.07080500.00259.00.800116
9322/25/2015Quarter4sweingWednesday30.7529.401283.06960450.00258.00.750207
9352/25/2015Quarter4sweingWednesday100.7021.821653.0624000.00252.00.700058
9462/26/2015Quarter4sweingThursday110.8011.61816.02820500.00257.00.800517
9502/26/2015Quarter4sweingThursday30.7529.401244.06840450.00257.00.750474
9522/26/2015Quarter4sweingThursday80.7529.40916.06960560.00258.00.750207
9572/26/2015Quarter4sweingThursday40.8030.10437.07080320.00259.00.495618
9612/26/2015Quarter4sweingThursday10.3526.661164.06600230.00255.00.378895
9662/28/2015Quarter4sweingSaturday110.8011.61954.00500.00258.00.800779
9702/28/2015Quarter4sweingSaturday30.7529.401144.04440450.00257.00.750717
9722/28/2015Quarter4sweingSaturday80.7529.40792.04560560.00258.00.750426
9792/28/2015Quarter4sweingSaturday10.5026.661448.06840300.00257.00.550350
9802/28/2015Quarter4sweingSaturday40.5026.66556.06960230.00258.00.500258
\n", "
" ], "text/plain": [ " date quarter department day team targeted_productivity \\\n", "744 2/12/2015 Quarter2 sweing Thursday 11 0.50 \n", "761 2/14/2015 Quarter2 sweing Saturday 11 0.60 \n", "777 2/15/2015 Quarter3 sweing Sunday 11 0.65 \n", "798 2/16/2015 Quarter3 sweing Monday 8 0.70 \n", "799 2/16/2015 Quarter3 sweing Monday 11 0.70 \n", "813 2/17/2015 Quarter3 sweing Tuesday 11 0.70 \n", "818 2/17/2015 Quarter3 sweing Tuesday 8 0.60 \n", "826 2/18/2015 Quarter3 sweing Wednesday 11 0.70 \n", "843 2/18/2015 Quarter3 sweing Wednesday 8 0.65 \n", "854 2/19/2015 Quarter3 sweing Thursday 11 0.70 \n", "855 2/19/2015 Quarter3 sweing Thursday 8 0.70 \n", "874 2/22/2015 Quarter4 sweing Sunday 8 0.70 \n", "876 2/22/2015 Quarter4 sweing Sunday 11 0.75 \n", "878 2/22/2015 Quarter4 sweing Sunday 3 0.70 \n", "893 2/23/2015 Quarter4 sweing Monday 11 0.75 \n", "895 2/23/2015 Quarter4 sweing Monday 8 0.70 \n", "896 2/23/2015 Quarter4 sweing Monday 3 0.70 \n", "911 2/24/2015 Quarter4 sweing Tuesday 11 0.75 \n", "912 2/24/2015 Quarter4 sweing Tuesday 3 0.75 \n", "916 2/24/2015 Quarter4 sweing Tuesday 8 0.70 \n", "929 2/25/2015 Quarter4 sweing Wednesday 7 0.80 \n", "932 2/25/2015 Quarter4 sweing Wednesday 3 0.75 \n", "935 2/25/2015 Quarter4 sweing Wednesday 10 0.70 \n", "946 2/26/2015 Quarter4 sweing Thursday 11 0.80 \n", "950 2/26/2015 Quarter4 sweing Thursday 3 0.75 \n", "952 2/26/2015 Quarter4 sweing Thursday 8 0.75 \n", "957 2/26/2015 Quarter4 sweing Thursday 4 0.80 \n", "961 2/26/2015 Quarter4 sweing Thursday 1 0.35 \n", "966 2/28/2015 Quarter4 sweing Saturday 11 0.80 \n", "970 2/28/2015 Quarter4 sweing Saturday 3 0.75 \n", "972 2/28/2015 Quarter4 sweing Saturday 8 0.75 \n", "979 2/28/2015 Quarter4 sweing Saturday 1 0.50 \n", "980 2/28/2015 Quarter4 sweing Saturday 4 0.50 \n", "\n", " smv wip over_time incentive idle_time idle_men \\\n", "744 11.41 1039.0 2280 0 0.0 0 \n", "761 11.41 1039.0 2280 23 0.0 0 \n", "777 11.41 700.0 2640 23 0.0 0 \n", "798 30.10 7.0 7080 27 2.0 10 \n", "799 11.41 680.0 2160 30 0.0 0 \n", "813 11.41 1054.0 3420 30 0.0 0 \n", "818 29.40 179.0 0 23 5.0 30 \n", "826 11.41 685.0 3360 30 0.0 0 \n", "843 29.40 962.0 4560 0 4.5 30 \n", "854 11.41 653.0 3480 30 0.0 0 \n", "855 29.40 1116.0 6240 0 0.0 0 \n", "874 29.40 1146.0 6840 40 0.0 0 \n", "876 11.41 834.0 3480 0 0.0 0 \n", "878 30.10 1041.0 8160 33 0.0 0 \n", "893 11.41 826.0 2820 0 0.0 0 \n", "895 29.40 1094.0 6840 40 0.0 0 \n", "896 29.40 1228.0 6960 30 0.0 0 \n", "911 11.61 698.0 3360 34 0.0 0 \n", "912 29.40 1172.0 5340 45 0.0 0 \n", "916 29.40 1079.0 4560 40 0.0 0 \n", "929 30.10 786.0 7080 50 0.0 0 \n", "932 29.40 1283.0 6960 45 0.0 0 \n", "935 21.82 1653.0 6240 0 0.0 0 \n", "946 11.61 816.0 2820 50 0.0 0 \n", "950 29.40 1244.0 6840 45 0.0 0 \n", "952 29.40 916.0 6960 56 0.0 0 \n", "957 30.10 437.0 7080 32 0.0 0 \n", "961 26.66 1164.0 6600 23 0.0 0 \n", "966 11.61 954.0 0 50 0.0 0 \n", "970 29.40 1144.0 4440 45 0.0 0 \n", "972 29.40 792.0 4560 56 0.0 0 \n", "979 26.66 1448.0 6840 30 0.0 0 \n", "980 26.66 556.0 6960 23 0.0 0 \n", "\n", " no_of_style_change no_of_workers actual_productivity \n", "744 2 55.0 0.500123 \n", "761 2 55.0 0.600448 \n", "777 2 53.0 0.650224 \n", "798 2 59.0 0.621972 \n", "799 2 54.0 0.565972 \n", "813 2 56.0 0.700614 \n", "818 2 58.0 0.600983 \n", "826 2 56.0 0.821113 \n", "843 2 57.0 0.251399 \n", "854 2 58.0 0.700540 \n", "855 2 57.0 0.700000 \n", "874 2 57.0 0.700614 \n", "876 2 58.0 0.672141 \n", "878 2 58.0 0.626578 \n", "893 2 58.0 0.750294 \n", "895 2 57.0 0.700614 \n", "896 2 58.0 0.700362 \n", "911 2 57.0 0.750437 \n", "912 2 60.0 0.750177 \n", "916 2 58.0 0.700519 \n", "929 2 59.0 0.800116 \n", "932 2 58.0 0.750207 \n", "935 2 52.0 0.700058 \n", "946 2 57.0 0.800517 \n", "950 2 57.0 0.750474 \n", "952 2 58.0 0.750207 \n", "957 2 59.0 0.495618 \n", "961 2 55.0 0.378895 \n", "966 2 58.0 0.800779 \n", "970 2 57.0 0.750717 \n", "972 2 58.0 0.750426 \n", "979 2 57.0 0.550350 \n", "980 2 58.0 0.500258 " ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df[\"no_of_style_change\"] == 2]" ] }, { "cell_type": "code", "execution_count": 37, "id": "9912a033", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "33" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(df[df[\"no_of_style_change\"] == 2])" ] }, { "cell_type": "markdown", "id": "d123450c", "metadata": {}, "source": [ "Only 33 observations in the whole dataset included two changes of style." ] }, { "cell_type": "markdown", "id": "d473159a", "metadata": {}, "source": [ "## \"no_of_workers\" column\n", "\n", "For this column, an interesting option could be to explore different observations that surpass a certain number of workers in each team. An alternative could be to inspect the observations where teams are very small.\n", "\n", "Let's use the 75% percentile (57) as a threshold." ] }, { "cell_type": "code", "execution_count": 38, "id": "5571ae76", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datequarterdepartmentdayteamtargeted_productivitysmvwipover_timeincentiveidle_timeidle_menno_of_style_changeno_of_workersactual_productivity
01/1/2015Quarter1sweingThursday80.8026.161108.07080980.00059.00.940725
71/1/2015Quarter1sweingThursday30.7528.08795.06900450.00057.50.753683
91/1/2015Quarter1sweingThursday10.7528.08681.06900450.00057.50.750428
101/1/2015Quarter1sweingThursday90.7028.08872.06900440.00057.50.721127
171/1/2015Quarter1sweingThursday40.6523.69861.0720000.00060.00.521180
................................................
11793/11/2015Quarter2sweingWednesday30.8030.10735.06960630.00158.00.800072
11803/11/2015Quarter2sweingWednesday110.8011.41560.03420500.00058.00.800035
11863/11/2015Quarter2sweingWednesday10.7526.821322.07080450.00059.00.750051
11873/11/2015Quarter2sweingWednesday40.7526.821054.07080450.00059.00.750051
11883/11/2015Quarter2sweingWednesday50.7026.82992.06960300.00158.00.700557
\n", "

248 rows × 15 columns

\n", "
" ], "text/plain": [ " date quarter department day team targeted_productivity \\\n", "0 1/1/2015 Quarter1 sweing Thursday 8 0.80 \n", "7 1/1/2015 Quarter1 sweing Thursday 3 0.75 \n", "9 1/1/2015 Quarter1 sweing Thursday 1 0.75 \n", "10 1/1/2015 Quarter1 sweing Thursday 9 0.70 \n", "17 1/1/2015 Quarter1 sweing Thursday 4 0.65 \n", "... ... ... ... ... ... ... \n", "1179 3/11/2015 Quarter2 sweing Wednesday 3 0.80 \n", "1180 3/11/2015 Quarter2 sweing Wednesday 11 0.80 \n", "1186 3/11/2015 Quarter2 sweing Wednesday 1 0.75 \n", "1187 3/11/2015 Quarter2 sweing Wednesday 4 0.75 \n", "1188 3/11/2015 Quarter2 sweing Wednesday 5 0.70 \n", "\n", " smv wip over_time incentive idle_time idle_men \\\n", "0 26.16 1108.0 7080 98 0.0 0 \n", "7 28.08 795.0 6900 45 0.0 0 \n", "9 28.08 681.0 6900 45 0.0 0 \n", "10 28.08 872.0 6900 44 0.0 0 \n", "17 23.69 861.0 7200 0 0.0 0 \n", "... ... ... ... ... ... ... \n", "1179 30.10 735.0 6960 63 0.0 0 \n", "1180 11.41 560.0 3420 50 0.0 0 \n", "1186 26.82 1322.0 7080 45 0.0 0 \n", "1187 26.82 1054.0 7080 45 0.0 0 \n", "1188 26.82 992.0 6960 30 0.0 0 \n", "\n", " no_of_style_change no_of_workers actual_productivity \n", "0 0 59.0 0.940725 \n", "7 0 57.5 0.753683 \n", "9 0 57.5 0.750428 \n", "10 0 57.5 0.721127 \n", "17 0 60.0 0.521180 \n", "... ... ... ... \n", "1179 1 58.0 0.800072 \n", "1180 0 58.0 0.800035 \n", "1186 0 59.0 0.750051 \n", "1187 0 59.0 0.750051 \n", "1188 1 58.0 0.700557 \n", "\n", "[248 rows x 15 columns]" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df[\"no_of_workers\"] > 57]" ] }, { "cell_type": "markdown", "id": "8359954c", "metadata": {}, "source": [ "Also, as a \"sanity check\", we can verify if there are incorrect observations with teams of 0 people." ] }, { "cell_type": "code", "execution_count": 39, "id": "04e4a5b7", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datequarterdepartmentdayteamtargeted_productivitysmvwipover_timeincentiveidle_timeidle_menno_of_style_changeno_of_workersactual_productivity
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [date, quarter, department, day, team, targeted_productivity, smv, wip, over_time, incentive, idle_time, idle_men, no_of_style_change, no_of_workers, actual_productivity]\n", "Index: []" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df[\"no_of_workers\"] == 0]" ] }, { "cell_type": "markdown", "id": "f5a3b8e2", "metadata": {}, "source": [ "## Dataset Cleaning (I)" ] }, { "cell_type": "markdown", "id": "23630dab", "metadata": {}, "source": [ "After properly exploring all the columns, we're now finally able to start cleaning and preparing the data for our Decision Tree model!\n", "\n", "Let's start with the \"department\" column where we found a trailing space that generated two different \"finishing\" values." ] }, { "cell_type": "code", "execution_count": 40, "id": "129e68d7", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array(['sweing', 'finishing ', 'finishing'], dtype=object)" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[\"department\"].unique()" ] }, { "cell_type": "markdown", "id": "240ca8d9", "metadata": {}, "source": [ "With the following code, we'll select the observations where \"finishing\" has a trailing space at the end, and then we'll remove it by replacing it with the correctly formatted word. \n", "\n", "Therefore, the values will be merged and now we will also get the correct value counts." ] }, { "cell_type": "code", "execution_count": 41, "id": "a4266dad", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "sweing 691\n", "finishing 506\n", "Name: department, dtype: int64" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[df[\"department\"] == \"finishing \", \"department\"] = \"finishing\"\n", "df[\"department\"].value_counts()" ] }, { "cell_type": "markdown", "id": "574e93be", "metadata": {}, "source": [ "- - -\n", "\n", "Regarding the \"date\" column, while it provides useful information (that observations take place in a three month period, from January 1, 2015 to March 11, 2015), it would've been better if the column included observations for the twelve months in a year. In this way it would have potentially offered more predictive power; for instance, by detecting seasonal tendencies (i.e. by revealing that workers tend to decrease productivity during winter).\n", "\n", "It's possible that you might want to still keep the column, despite the short period it covers, and in that case you're welcome to explore that possibility!" ] }, { "cell_type": "code", "execution_count": 42, "id": "3c4085f9", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
quarterdepartmentdayteamtargeted_productivitysmvwipover_timeincentiveidle_timeidle_menno_of_style_changeno_of_workersactual_productivity
0Quarter1sweingThursday80.8026.161108.07080980.00059.00.940725
1Quarter1finishingThursday10.753.94NaN96000.0008.00.886500
\n", "
" ], "text/plain": [ " quarter department day team targeted_productivity smv wip \\\n", "0 Quarter1 sweing Thursday 8 0.80 26.16 1108.0 \n", "1 Quarter1 finishing Thursday 1 0.75 3.94 NaN \n", "\n", " over_time incentive idle_time idle_men no_of_style_change \\\n", "0 7080 98 0.0 0 0 \n", "1 960 0 0.0 0 0 \n", "\n", " no_of_workers actual_productivity \n", "0 59.0 0.940725 \n", "1 8.0 0.886500 " ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = df.drop(\"date\", axis = 1)\n", "df.head(2)" ] }, { "cell_type": "markdown", "id": "5b0d5fec", "metadata": {}, "source": [ "- - -\n", "\n", "The same applies to the \"quarter\" column, in the sense that this isn't something set in stone: for this one, we decided to merge the \"quarter5\" values into the \"quarter4\" ones. This is because we will be creating \"dummies\" for the \"quarter\" column, and since \"quarter5\" only features 44 observations and covers two days (January 29th and 31st), it may be a bit unnecessary to generate a whole column for such a small amount of observations.\n", "\n", "However, if you want to keep the \"quarter5\" classification and see what's the outcome during the Machine Learning phase, feel free to try it!" ] }, { "cell_type": "code", "execution_count": 43, "id": "ccb30109", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Quarter1 360\n", "Quarter2 335\n", "Quarter4 292\n", "Quarter3 210\n", "Name: quarter, dtype: int64" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[df[\"quarter\"] == \"Quarter5\", \"quarter\"] = \"Quarter4\"\n", "df[\"quarter\"].value_counts()" ] }, { "cell_type": "markdown", "id": "8c61071d", "metadata": {}, "source": [ "In addition, it's unnecessary to feature the words \"quarter\" for every value, when we can simply use integers." ] }, { "cell_type": "code", "execution_count": 44, "id": "4b0882e3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1 360\n", "2 335\n", "4 292\n", "3 210\n", "Name: quarter, dtype: int64" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[df[\"quarter\"] == \"Quarter1\", \"quarter\"] = 1\n", "df.loc[df[\"quarter\"] == \"Quarter2\", \"quarter\"] = 2\n", "df.loc[df[\"quarter\"] == \"Quarter3\", \"quarter\"] = 3\n", "df.loc[df[\"quarter\"] == \"Quarter4\", \"quarter\"] = 4\n", "df[\"quarter\"].value_counts()" ] }, { "cell_type": "code", "execution_count": 45, "id": "d96f4c0e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 1197 entries, 0 to 1196\n", "Data columns (total 1 columns):\n", " # Column Non-Null Count Dtype\n", "--- ------ -------------- -----\n", " 0 quarter 1197 non-null int64\n", "dtypes: int64(1)\n", "memory usage: 9.5 KB\n" ] } ], "source": [ "df[\"quarter\"] = df[\"quarter\"].astype(\"int\")\n", "df[[\"quarter\"]].info()" ] }, { "cell_type": "markdown", "id": "e6c53f32", "metadata": {}, "source": [ "- - -\n", "\n", "We will get rid of the \"idle_time\" & \"idle_men\" columns, as there are only 18 observations with non-zero values. Therefore they are pretty uniform columns and they barely add any information." ] }, { "cell_type": "code", "execution_count": 46, "id": "4d680928", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
quarterdepartmentdayteamtargeted_productivitysmvwipover_timeincentiveno_of_style_changeno_of_workersactual_productivity
01sweingThursday80.8026.161108.0708098059.00.940725
11finishingThursday10.753.94NaN960008.00.886500
\n", "
" ], "text/plain": [ " quarter department day team targeted_productivity smv wip \\\n", "0 1 sweing Thursday 8 0.80 26.16 1108.0 \n", "1 1 finishing Thursday 1 0.75 3.94 NaN \n", "\n", " over_time incentive no_of_style_change no_of_workers \\\n", "0 7080 98 0 59.0 \n", "1 960 0 0 8.0 \n", "\n", " actual_productivity \n", "0 0.940725 \n", "1 0.886500 " ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = df.drop([\"idle_time\", \"idle_men\"], axis = 1)\n", "df.head(2)" ] }, { "cell_type": "markdown", "id": "b17ee055", "metadata": {}, "source": [ "We will also delete the \"wip\" column. It has too many empty observations, and we can't tell if an empty\n", "cell is equal to zero unfinished products or if it's simply missing information. Due to this uncertainty, the column should be removed." ] }, { "cell_type": "code", "execution_count": 47, "id": "ac0d964c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
quarterdepartmentdayteamtargeted_productivitysmvover_timeincentiveno_of_style_changeno_of_workersactual_productivity
01sweingThursday80.8026.16708098059.00.940725
11finishingThursday10.753.94960008.00.886500
\n", "
" ], "text/plain": [ " quarter department day team targeted_productivity smv \\\n", "0 1 sweing Thursday 8 0.80 26.16 \n", "1 1 finishing Thursday 1 0.75 3.94 \n", "\n", " over_time incentive no_of_style_change no_of_workers \\\n", "0 7080 98 0 59.0 \n", "1 960 0 0 8.0 \n", "\n", " actual_productivity \n", "0 0.940725 \n", "1 0.886500 " ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = df.drop(\"wip\", axis = 1)\n", "df.head(2)" ] }, { "cell_type": "markdown", "id": "c02abcf1", "metadata": {}, "source": [ "Finally, we will remove the \"no_of_style_change\" column, due to only 147 observations where there are changes. Also, they were only one or two style changes." ] }, { "cell_type": "code", "execution_count": 48, "id": "5a26478f", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
quarterdepartmentdayteamtargeted_productivitysmvover_timeincentiveno_of_workersactual_productivity
01sweingThursday80.8026.1670809859.00.940725
11finishingThursday10.753.9496008.00.886500
\n", "
" ], "text/plain": [ " quarter department day team targeted_productivity smv \\\n", "0 1 sweing Thursday 8 0.80 26.16 \n", "1 1 finishing Thursday 1 0.75 3.94 \n", "\n", " over_time incentive no_of_workers actual_productivity \n", "0 7080 98 59.0 0.940725 \n", "1 960 0 8.0 0.886500 " ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = df.drop(\"no_of_style_change\", axis = 1)\n", "df.head(2)" ] }, { "cell_type": "markdown", "id": "61ab2213", "metadata": {}, "source": [ "- - -\n", "\n", "After finishing with all the column deletions, let's focus on the \"no_of_workers\" column, which features floats instead of integers. We should fix this because we can't have 1.25 workers; it's either 1 or 2." ] }, { "cell_type": "code", "execution_count": 49, "id": "e9a42b65", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
quarterdepartmentdayteamtargeted_productivitysmvover_timeincentiveno_of_workersactual_productivity
01sweingThursday80.8026.16708098590.940725
11finishingThursday10.753.94960080.886500
\n", "
" ], "text/plain": [ " quarter department day team targeted_productivity smv \\\n", "0 1 sweing Thursday 8 0.80 26.16 \n", "1 1 finishing Thursday 1 0.75 3.94 \n", "\n", " over_time incentive no_of_workers actual_productivity \n", "0 7080 98 59 0.940725 \n", "1 960 0 8 0.886500 " ] }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[\"no_of_workers\"] = df[\"no_of_workers\"].astype(\"int\")\n", "df.head(2)" ] }, { "cell_type": "markdown", "id": "cfe5dba8", "metadata": {}, "source": [ "- - -\n", "\n", "Also, \"actual_productivity\" should feature two decimals, just like \"targeted_productivity\"." ] }, { "cell_type": "code", "execution_count": 50, "id": "b3d5cdec", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
quarterdepartmentdayteamtargeted_productivitysmvover_timeincentiveno_of_workersactual_productivity
01sweingThursday80.8026.16708098590.94
11finishingThursday10.753.94960080.89
\n", "
" ], "text/plain": [ " quarter department day team targeted_productivity smv \\\n", "0 1 sweing Thursday 8 0.80 26.16 \n", "1 1 finishing Thursday 1 0.75 3.94 \n", "\n", " over_time incentive no_of_workers actual_productivity \n", "0 7080 98 59 0.94 \n", "1 960 0 8 0.89 " ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[\"actual_productivity\"] = df[\"actual_productivity\"].round(2)\n", "df.head(2)" ] }, { "cell_type": "markdown", "id": "0b4e8d6d", "metadata": {}, "source": [ "- - -\n", "\n", "The following step is crucial: since we are building a Classification Tree and not a Regression Tree, our target column \"actual_productivity\" must be categorical, not numerical.\n", "\n", "To accomplish this, we will create a new column called \"productive\". It will feature boolean values indicating if the productivity targets were achieved for each observation in the dataset." ] }, { "cell_type": "code", "execution_count": 51, "id": "d49793cf", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
quarterdepartmentdayteamtargeted_productivitysmvover_timeincentiveno_of_workersactual_productivityproductive
9594finishingThursday100.702.903360080.41False
4644finishingTuesday80.653.94960080.85True
6722sweingSunday70.7024.2669600580.36False
3213sweingMonday60.8011.41438050310.80True
2823finishingSaturday90.803.9418000100.83True
3073sweingSunday100.7022.521008040560.70True
6091finishingWednesday90.753.94960080.76True
11232sweingSunday80.6030.4867200560.60True
8774sweingSunday90.7018.79324030570.63False
9504sweingThursday30.7529.40684045570.75True
\n", "
" ], "text/plain": [ " quarter department day team targeted_productivity smv \\\n", "959 4 finishing Thursday 10 0.70 2.90 \n", "464 4 finishing Tuesday 8 0.65 3.94 \n", "672 2 sweing Sunday 7 0.70 24.26 \n", "321 3 sweing Monday 6 0.80 11.41 \n", "282 3 finishing Saturday 9 0.80 3.94 \n", "307 3 sweing Sunday 10 0.70 22.52 \n", "609 1 finishing Wednesday 9 0.75 3.94 \n", "1123 2 sweing Sunday 8 0.60 30.48 \n", "877 4 sweing Sunday 9 0.70 18.79 \n", "950 4 sweing Thursday 3 0.75 29.40 \n", "\n", " over_time incentive no_of_workers actual_productivity productive \n", "959 3360 0 8 0.41 False \n", "464 960 0 8 0.85 True \n", "672 6960 0 58 0.36 False \n", "321 4380 50 31 0.80 True \n", "282 1800 0 10 0.83 True \n", "307 10080 40 56 0.70 True \n", "609 960 0 8 0.76 True \n", "1123 6720 0 56 0.60 True \n", "877 3240 30 57 0.63 False \n", "950 6840 45 57 0.75 True " ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[\"productive\"] = df[\"actual_productivity\"] >= df[\"targeted_productivity\"]\n", "df.sample(10, random_state = 14)" ] }, { "cell_type": "markdown", "id": "47ef8e93", "metadata": {}, "source": [ "- - -\n", "\n", "We have removed a number of columns by this point. Let's see which ones still remain." ] }, { "cell_type": "code", "execution_count": 52, "id": "47db8f79", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['quarter', 'department', 'day', 'team', 'targeted_productivity', 'smv',\n", " 'over_time', 'incentive', 'no_of_workers', 'actual_productivity',\n", " 'productive'],\n", " dtype='object')" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.columns" ] }, { "cell_type": "markdown", "id": "87a53552", "metadata": {}, "source": [ "To finish with this part of the data cleaning process, we will reorder the columns to make the dataset easier to read." ] }, { "cell_type": "code", "execution_count": 53, "id": "e25eedc5", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
quarterdaydepartmentteamno_of_workerstargeted_productivityactual_productivityproductiveover_timesmvincentive
01Thursdaysweing8590.800.94True708026.1698
11Thursdayfinishing180.750.89True9603.940
21Thursdaysweing11300.800.80True366011.4150
31Thursdaysweing12300.800.80True366011.4150
41Thursdaysweing6560.800.80True192025.9050
\n", "
" ], "text/plain": [ " quarter day department team no_of_workers targeted_productivity \\\n", "0 1 Thursday sweing 8 59 0.80 \n", "1 1 Thursday finishing 1 8 0.75 \n", "2 1 Thursday sweing 11 30 0.80 \n", "3 1 Thursday sweing 12 30 0.80 \n", "4 1 Thursday sweing 6 56 0.80 \n", "\n", " actual_productivity productive over_time smv incentive \n", "0 0.94 True 7080 26.16 98 \n", "1 0.89 True 960 3.94 0 \n", "2 0.80 True 3660 11.41 50 \n", "3 0.80 True 3660 11.41 50 \n", "4 0.80 True 1920 25.90 50 " ] }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = df[[\"quarter\", \"day\", \"department\", \"team\", \"no_of_workers\", \"targeted_productivity\", \n", " \"actual_productivity\", \"productive\", \"over_time\", \"smv\", \"incentive\"]]\n", "df.head()" ] }, { "cell_type": "markdown", "id": "030680e3", "metadata": {}, "source": [ "## Dataset Cleaning (II)" ] }, { "cell_type": "markdown", "id": "0bb2f88c", "metadata": {}, "source": [ "We will now apply categorical encoding to the \"department\" column, which includes binary values. We'll transform them into booleans:" ] }, { "cell_type": "code", "execution_count": 54, "id": "69e1340a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
quarterdaydept_sweingteamno_of_workerstargeted_productivityactual_productivityproductiveover_timesmvincentive
01Thursday18590.800.94True708026.1698
11Thursday0180.750.89True9603.940
21Thursday111300.800.80True366011.4150
31Thursday112300.800.80True366011.4150
41Thursday16560.800.80True192025.9050
51Thursday17560.800.80True672025.9038
61Thursday0280.750.76True9603.940
71Thursday13570.750.75True690028.0845
81Thursday12550.750.75True600019.8734
91Thursday11570.750.75True690028.0845
\n", "
" ], "text/plain": [ " quarter day dept_sweing team no_of_workers targeted_productivity \\\n", "0 1 Thursday 1 8 59 0.80 \n", "1 1 Thursday 0 1 8 0.75 \n", "2 1 Thursday 1 11 30 0.80 \n", "3 1 Thursday 1 12 30 0.80 \n", "4 1 Thursday 1 6 56 0.80 \n", "5 1 Thursday 1 7 56 0.80 \n", "6 1 Thursday 0 2 8 0.75 \n", "7 1 Thursday 1 3 57 0.75 \n", "8 1 Thursday 1 2 55 0.75 \n", "9 1 Thursday 1 1 57 0.75 \n", "\n", " actual_productivity productive over_time smv incentive \n", "0 0.94 True 7080 26.16 98 \n", "1 0.89 True 960 3.94 0 \n", "2 0.80 True 3660 11.41 50 \n", "3 0.80 True 3660 11.41 50 \n", "4 0.80 True 1920 25.90 50 \n", "5 0.80 True 6720 25.90 38 \n", "6 0.76 True 960 3.94 0 \n", "7 0.75 True 6900 28.08 45 \n", "8 0.75 True 6000 19.87 34 \n", "9 0.75 True 6900 28.08 45 " ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[\"department\"].replace({\"finishing\": 0, \"sweing\": 1}, inplace = True)\n", "df.rename(columns = {\"department\": \"dept_sweing\"}, inplace = True) # Also changing column's name here\n", "df.head(10)" ] }, { "cell_type": "markdown", "id": "a29ba179", "metadata": {}, "source": [ "The \"department\" column is now called \"dept_sweing\" and its values have to be interpreted in boolean terms: if it's 1 (or \"True\"), it means the observation belongs to the \"sweing\" department; if it's 0 (\"False\"), then it belongs to the \"finishing\" department." ] }, { "cell_type": "markdown", "id": "5bb6f9db", "metadata": {}, "source": [ "- - -\n", "\n", "For the \"quarter\" column, we will use \"dummies\", because if we leave the numbers as they currently are, the Decision Tree would believe that quarter 4 is greater than quarter 1, for example. \n", "\n", "In other words, since they are categories instead of ordinal values, every category must have its own column, and the boolean process that we described for the previous column applies here. In case this isn't clear, we will be examining an example after performing the necessary data transformations.\n", "\n", "The following code creates the dummies and also removes the original \"quarter\" column. The prefix parameter adds a \"q_\" prefix to all columns, so we can easily identify which ones are the dummies. Hence, the result will be to add four new columns to our dataset: \"q_1\", \"q_2\", \"q_3\" and \"q_4\"." ] }, { "cell_type": "code", "execution_count": 55, "id": "a2b31edc", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
daydept_sweingteamno_of_workerstargeted_productivityactual_productivityproductiveover_timesmvincentiveq_1q_2q_3q_4
959Thursday01080.700.41False33602.9000001
464Tuesday0880.650.85True9603.9400001
672Sunday17580.700.36False696024.2600100
321Monday16310.800.80True438011.41500010
282Saturday09100.800.83True18003.9400010
307Sunday110560.700.70True1008022.52400010
609Wednesday0980.750.76True9603.9401000
1123Sunday18560.600.60True672030.4800100
877Sunday19570.700.63False324018.79300001
950Thursday13570.750.75True684029.40450001
\n", "
" ], "text/plain": [ " day dept_sweing team no_of_workers targeted_productivity \\\n", "959 Thursday 0 10 8 0.70 \n", "464 Tuesday 0 8 8 0.65 \n", "672 Sunday 1 7 58 0.70 \n", "321 Monday 1 6 31 0.80 \n", "282 Saturday 0 9 10 0.80 \n", "307 Sunday 1 10 56 0.70 \n", "609 Wednesday 0 9 8 0.75 \n", "1123 Sunday 1 8 56 0.60 \n", "877 Sunday 1 9 57 0.70 \n", "950 Thursday 1 3 57 0.75 \n", "\n", " actual_productivity productive over_time smv incentive q_1 q_2 \\\n", "959 0.41 False 3360 2.90 0 0 0 \n", "464 0.85 True 960 3.94 0 0 0 \n", "672 0.36 False 6960 24.26 0 0 1 \n", "321 0.80 True 4380 11.41 50 0 0 \n", "282 0.83 True 1800 3.94 0 0 0 \n", "307 0.70 True 10080 22.52 40 0 0 \n", "609 0.76 True 960 3.94 0 1 0 \n", "1123 0.60 True 6720 30.48 0 0 1 \n", "877 0.63 False 3240 18.79 30 0 0 \n", "950 0.75 True 6840 29.40 45 0 0 \n", "\n", " q_3 q_4 \n", "959 0 1 \n", "464 0 1 \n", "672 0 0 \n", "321 1 0 \n", "282 1 0 \n", "307 1 0 \n", "609 0 0 \n", "1123 0 0 \n", "877 0 1 \n", "950 0 1 " ] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.concat([df, pd.get_dummies(df[\"quarter\"], prefix = \"q\")], axis = 1) \\\n", " .drop([\"quarter\"], axis = 1)\n", "df.sample(10, random_state = 14)" ] }, { "cell_type": "markdown", "id": "3af1b6e7", "metadata": {}, "source": [ "The best way to interpret these new columns is by looking at an example. Let's focus on the first observation (959): we see that it has a \"1\" in the \"q_4\" column and \"0\" in all the others. This means the observation belongs to the fourth quarter.\n", "\n", "We can see that dummies will always have a \"1\" in a column to designate the category to which the observation belongs, and the rest of the columns will only contain \"0\" values.\n", "\n", "Let's now repeat this process for the \"day\" column. Remember that for this one there are no \"Friday\" observations." ] }, { "cell_type": "code", "execution_count": 56, "id": "e215bd49", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
dept_sweingteamno_of_workerstargeted_productivityactual_productivityproductiveover_timesmvincentiveq_1q_2q_3q_4MondaySaturdaySundayThursdayTuesdayWednesday
95901080.700.41False33602.9000001000100
4640880.650.85True9603.9400001000010
67217580.700.36False696024.2600100001000
32116310.800.80True438011.41500010100000
28209100.800.83True18003.9400010010000
307110560.700.70True1008022.52400010001000
6090980.750.76True9603.9401000000001
112318560.600.60True672030.4800100001000
87719570.700.63False324018.79300001001000
95013570.750.75True684029.40450001000100
\n", "
" ], "text/plain": [ " dept_sweing team no_of_workers targeted_productivity \\\n", "959 0 10 8 0.70 \n", "464 0 8 8 0.65 \n", "672 1 7 58 0.70 \n", "321 1 6 31 0.80 \n", "282 0 9 10 0.80 \n", "307 1 10 56 0.70 \n", "609 0 9 8 0.75 \n", "1123 1 8 56 0.60 \n", "877 1 9 57 0.70 \n", "950 1 3 57 0.75 \n", "\n", " actual_productivity productive over_time smv incentive q_1 q_2 \\\n", "959 0.41 False 3360 2.90 0 0 0 \n", "464 0.85 True 960 3.94 0 0 0 \n", "672 0.36 False 6960 24.26 0 0 1 \n", "321 0.80 True 4380 11.41 50 0 0 \n", "282 0.83 True 1800 3.94 0 0 0 \n", "307 0.70 True 10080 22.52 40 0 0 \n", "609 0.76 True 960 3.94 0 1 0 \n", "1123 0.60 True 6720 30.48 0 0 1 \n", "877 0.63 False 3240 18.79 30 0 0 \n", "950 0.75 True 6840 29.40 45 0 0 \n", "\n", " q_3 q_4 Monday Saturday Sunday Thursday Tuesday Wednesday \n", "959 0 1 0 0 0 1 0 0 \n", "464 0 1 0 0 0 0 1 0 \n", "672 0 0 0 0 1 0 0 0 \n", "321 1 0 1 0 0 0 0 0 \n", "282 1 0 0 1 0 0 0 0 \n", "307 1 0 0 0 1 0 0 0 \n", "609 0 0 0 0 0 0 0 1 \n", "1123 0 0 0 0 1 0 0 0 \n", "877 0 1 0 0 1 0 0 0 \n", "950 0 1 0 0 0 1 0 0 " ] }, "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.concat([df, pd.get_dummies(df[\"day\"], prefix= None)], axis=1) \\\n", " .drop([\"day\"], axis=1)\n", "df.sample(10, random_state = 14)" ] }, { "cell_type": "markdown", "id": "6de14598", "metadata": {}, "source": [ "The \"team\" column will also receive the same treatment. Given that there are 12 teams, these dummies will constitute the group with the highest number of added columns. In other words, we will be adding 12 columns to our dataset because of this transformation process in particular." ] }, { "cell_type": "code", "execution_count": 57, "id": "cf81887b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
dept_sweingno_of_workerstargeted_productivityactual_productivityproductiveover_timesmvincentiveq_1q_2...team_3team_4team_5team_6team_7team_8team_9team_10team_11team_12
959080.700.41False33602.90000...0000000100
464080.650.85True9603.94000...0000010000
6721580.700.36False696024.26001...0000100000
3211310.800.80True438011.415000...0001000000
2820100.800.83True18003.94000...0000001000
3071560.700.70True1008022.524000...0000000100
609080.750.76True9603.94010...0000001000
11231560.600.60True672030.48001...0000010000
8771570.700.63False324018.793000...0000001000
9501570.750.75True684029.404500...1000000000
\n", "

10 rows × 30 columns

\n", "
" ], "text/plain": [ " dept_sweing no_of_workers targeted_productivity actual_productivity \\\n", "959 0 8 0.70 0.41 \n", "464 0 8 0.65 0.85 \n", "672 1 58 0.70 0.36 \n", "321 1 31 0.80 0.80 \n", "282 0 10 0.80 0.83 \n", "307 1 56 0.70 0.70 \n", "609 0 8 0.75 0.76 \n", "1123 1 56 0.60 0.60 \n", "877 1 57 0.70 0.63 \n", "950 1 57 0.75 0.75 \n", "\n", " productive over_time smv incentive q_1 q_2 ... team_3 team_4 \\\n", "959 False 3360 2.90 0 0 0 ... 0 0 \n", "464 True 960 3.94 0 0 0 ... 0 0 \n", "672 False 6960 24.26 0 0 1 ... 0 0 \n", "321 True 4380 11.41 50 0 0 ... 0 0 \n", "282 True 1800 3.94 0 0 0 ... 0 0 \n", "307 True 10080 22.52 40 0 0 ... 0 0 \n", "609 True 960 3.94 0 1 0 ... 0 0 \n", "1123 True 6720 30.48 0 0 1 ... 0 0 \n", "877 False 3240 18.79 30 0 0 ... 0 0 \n", "950 True 6840 29.40 45 0 0 ... 1 0 \n", "\n", " team_5 team_6 team_7 team_8 team_9 team_10 team_11 team_12 \n", "959 0 0 0 0 0 1 0 0 \n", "464 0 0 0 1 0 0 0 0 \n", "672 0 0 1 0 0 0 0 0 \n", "321 0 1 0 0 0 0 0 0 \n", "282 0 0 0 0 1 0 0 0 \n", "307 0 0 0 0 0 1 0 0 \n", "609 0 0 0 0 1 0 0 0 \n", "1123 0 0 0 1 0 0 0 0 \n", "877 0 0 0 0 1 0 0 0 \n", "950 0 0 0 0 0 0 0 0 \n", "\n", "[10 rows x 30 columns]" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.concat([df, pd.get_dummies(df[\"team\"], prefix= \"team\")], axis=1) \\\n", " .drop([\"team\"], axis=1)\n", "df.sample(10, random_state = 14)" ] }, { "cell_type": "markdown", "id": "98a3b166", "metadata": {}, "source": [ "Congratulations, we have finished the Data Cleaning phase! As expected, this was the most time-consuming section. Now let's build our tree." ] }, { "cell_type": "markdown", "id": "7e61ab44", "metadata": {}, "source": [ "- - -\n", "\n", "## Building the Tree" ] }, { "cell_type": "code", "execution_count": 58, "id": "ba589aa2", "metadata": {}, "outputs": [], "source": [ "# Importing required libraries\n", "\n", "from sklearn.model_selection import train_test_split\n", "\n", "from sklearn.tree import DecisionTreeClassifier\n", "\n", "import matplotlib.pyplot as plt\n", "from sklearn.tree import plot_tree" ] }, { "cell_type": "code", "execution_count": 59, "id": "7fb4ca1a", "metadata": {}, "outputs": [], "source": [ "# Feature and target columns\n", "\n", "X = df.drop([\"actual_productivity\", \"productive\"], axis = 1)\n", "y = df[\"productive\"]" ] }, { "cell_type": "markdown", "id": "b57ed476", "metadata": {}, "source": [ "For the X variable, we removed the column \"actual_productivity\", because it would've been the target column for a Regression Tree. As for \"productive\", it's the target column we will use here, so we took it out from \"X\" and it became \"y\"." ] }, { "cell_type": "code", "execution_count": 60, "id": "1b8a5081", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
dept_sweingno_of_workerstargeted_productivityover_timesmvincentiveq_1q_2q_3q_4...team_3team_4team_5team_6team_7team_8team_9team_10team_11team_12
01590.80708026.16981000...0000010000
1080.759603.9401000...0000000000
\n", "

2 rows × 28 columns

\n", "
" ], "text/plain": [ " dept_sweing no_of_workers targeted_productivity over_time smv \\\n", "0 1 59 0.80 7080 26.16 \n", "1 0 8 0.75 960 3.94 \n", "\n", " incentive q_1 q_2 q_3 q_4 ... team_3 team_4 team_5 team_6 team_7 \\\n", "0 98 1 0 0 0 ... 0 0 0 0 0 \n", "1 0 1 0 0 0 ... 0 0 0 0 0 \n", "\n", " team_8 team_9 team_10 team_11 team_12 \n", "0 1 0 0 0 0 \n", "1 0 0 0 0 0 \n", "\n", "[2 rows x 28 columns]" ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Sanity check: first two observations of \"X\"\n", "\n", "X[:2]" ] }, { "cell_type": "code", "execution_count": 61, "id": "9d9aea03", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 True\n", "1 True\n", "Name: productive, dtype: bool" ] }, "execution_count": 61, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Sanity check: first two observations of \"y\"\n", "\n", "y[:2]" ] }, { "cell_type": "code", "execution_count": 62, "id": "6c024ea2", "metadata": {}, "outputs": [], "source": [ "# Dividing in training and test sets with train_test_split\n", "\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, shuffle = True, random_state = 24)" ] }, { "cell_type": "markdown", "id": "996af800", "metadata": {}, "source": [ "The previous step is critical when working with *scikit-learn*: we divide the dataset into a Training Subset to fit it to our algorithm, and a Test Subset to predict its target labels and later calculate how predictive it is." ] }, { "cell_type": "code", "execution_count": 63, "id": "2fcba5fa", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
DecisionTreeClassifier(max_depth=3, random_state=24)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "DecisionTreeClassifier(max_depth=3, random_state=24)" ] }, "execution_count": 63, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Instantiating and fitting the Decision Tree Classifier\n", "\n", "tree = DecisionTreeClassifier(max_depth = 3, random_state = 24)\n", "\n", "tree.fit(X_train, y_train)" ] }, { "cell_type": "markdown", "id": "1e0db47f", "metadata": {}, "source": [ "To ensure that the visualization of our Tree is legible and to avoid overfitting, we set a \"max_depth\" of 3 so that the Tree only has 3 levels.\n", "\n", "Now we will make the predictions on the test set. They will be stored in a variable that we will then use to determine the algorithm's accuracy." ] }, { "cell_type": "code", "execution_count": 64, "id": "db7b35b3", "metadata": {}, "outputs": [], "source": [ "y_pred = tree.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 65, "id": "011a110d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy: 0.85\n" ] } ], "source": [ "from sklearn.metrics import accuracy_score\n", "\n", "print(\"Accuracy:\", round(accuracy_score(y_test,y_pred), 2))" ] }, { "cell_type": "markdown", "id": "853c95c0", "metadata": {}, "source": [ "Consider that we rounded the accuracy to only feature two decimals, otherwise it's the norm to get values with several decimals.\n", "\n", "- - -\n", "\n", "## Visualizing and Evaluating the Tree\n", "\n", "We will use [plot_tree](https://scikit-learn.org/stable/modules/generated/sklearn.tree.plot_tree.html) to generate this visualization.\n", "\n", "Note that we used the \"filled\" parameter to assign a color to each predicted class in order to make it easier to see them." ] }, { "cell_type": "code", "execution_count": 66, "id": "eae72542", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([False, True])" ] }, "execution_count": 66, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tree.classes_ # We'll transform them to [\"Unproductive\", \"Productive\"]" ] }, { "cell_type": "code", "execution_count": 67, "id": "a2266d16", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGoAAAHBCAYAAAAxVF2MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3RURRvH8e+kF0IJEFrovffeexEUQUAUFBEUERAsKKgoKKgoKtIEVBCkS5EiRXpHioD03gIESAik1/v+sbwLmNADm8Dvcw7n5O7Mnfvc1WxmnzvFWJaFiIiIiIiIiIg4npOjAxARERERERERERslakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUggXRwcgIiIiD8bV3fN8XExUFkfHISmHi5tHYGx0ZFZHxyEiIiL3zliW5egYRERE5AEYY6yPVgY7OgxJQT6v54tlWcbRcYiIiMi909QnEREREREREZEUQokaEREREREREZEUQmvUiIiICOO71qLTyKW4uns+0utu+X0MJeo/h3eGzABsnz+BuOhIKrfp/kjjuFfrJn/N3pVzcHJ2wcnZhbpdPiJ/xfp3LPuvQxuXsGLsJyTEx5GtUGla9B2Jq4fXo7wVERERSWG0Ro2IiEgql5rXqBnRvjTthkzDL2+xR3pdy7KICg3BM22G+zr/6NYV5CpZFVcPLwKP7mFS7+b0/n0/ru6ety27UUxkGKM6VODl4Yvw9c/Pwm96kdbPn1ov9X3g+9MaNSIiIqmXpj6JiIgIn9fzJSYyDLAlT1ZPGMKEHo0Y0b40W+eOt9e7dPIgU95rxbguNRj7anV2LZ0GQGjQeX7/9GV+eaMBY1+tzvop39rPuVV7638bRmjQeWZ/+grju9bi4okDrJn4JcvHfAzAqI4VCDy6x97O1jnjmP/VmwAEnTrMtA/a8PMb9RnXpSY7F0+5q/u8eHw/K3/6jNEvVWTfmj/u+/3KX7G+feSLX77igEXk1eA7lt3oyJblZCtcBl///ACUa/EK+1bNve+YRERE5PGgqU8iIiKSSFxUJK+MXEbI+VOM7Vyd0k3a4+LmwcyPO1Cn84cUq9MSgIgrtgTE/C/foEaH98hduhrxsTH89m5LshcuS74KdW/ZXo0O7/DPokm0/nRCkiNqSjVqx+6l02jYfTAAu679nBAfx9zBr9Hyw7FkylWI6IhQfu5WH//iFcmUq1Cidq5eDGDvitnsXTkHV08vitdrTacRS/BOnwmAiycOMG/wa0m+D3nL16FBt0G3fa92L5tOhmx5SZs5xz2VXb1whnRZctqP0/n5c/ViwG2vJSIiIo8/JWpEREQkkWL1WgGQPmsuPHzScfXiWaz4eBLi4+xJGgCvdL7ERIZzcucGIkKC7K9HR4Rx6dQhe6ImqfaSSqrcqFSj9kx4syH1Xx/IpVOHiA6/Sq5SVbl08iCXTh1i7mdd7HXjY6O5dPJQojYPrF3A7wM7UbJBW9p8/hvp/PwTXSdzniJ0Hb/23t6ga07u2sCaCUN4ceiceyoTERERuRUlakRERCQRFzd3+89OTs4kxMfdsq5lJYAxdB6zAmcX1wdu7//SZfEnU+7CHNmynJO71lOq8fMYY8Cy8Erne1fJlbzla/PU29+xZ8VsZvRvT7G6z1K8bisyZM9jr3O/I2rO7P2beUNep+1nU8iYq+Bdl/1fWj9/Tuxcbz++cuFMkiNvRERE5MmiRI2IiIjclUy5CuHk7MK+1fNumvrklc6XXCWrsnHa99Ts+B5gSzo4u7iSxjfLbdt09/YhOvzqLctLNW7Pzj8nc/bgP7wychkAGXMVxNXdi93LZlCqUTsALp06hE/GrLh7p/1P+2kp+9RLlH3qJa5ePMvelbOZ/WknnF1dqfPqR+QtV/u+RtScPbCDOZ+9ynOfTiRbodJ3XXaj/JXqs3TE+wSfOYqvf352LJhw02glEREReTIpUSMiIiJ3xcnZhbaf/caSH95n3eSvMcaJKm17UKpRO1p+OJZloz5k7KvVAXD3TEPzviPumKip+OxrLBjaE1d3T1p+OC5RedFaLVg6oi/ZCpcjXRZ/exztBk9l2aj+bJ45goT4eLwz+NH6k19ue620mbNTtV1PqrbryaWTB4mOCLvPdwIWD3+PuOgo/vz2bftrz/T7Eb98xW5btn3+BEKDzlHnlf64e/nQ7O3vmN6/PVZCPFkLlKTKm1/cd0wiIiLyeND23CIiIqlcat6eWx4Obc8tIiKSeml7bhERERERERGRFEKJGhERERERERGRFEKJGhERERERERGRFEKLCYuIiMhDNb5rLTqNXIqru+dt6037oC2Ne36Fb468yXLddZO/ZteSaQCUbtLeviPVjayEBCb2akJsVCQAaTJmoVmfb0mfNRen92xhyfDr54SHXCJNBj+6jFsNwM7FU/h79hgS4uPJkC0PT38wGs+0GZIldhEREXlyaTFhERGRVE6LCSd2ctdGlo7oyyuj/gJgwpsNadxzKLlLV0tUNyrsKh5pbNt6/z37R07u2kibQZMS1Zv5cQdylqhs3zVqyrut6DJ+Dd7pM7Fu8jeEXjpLsz7fPtwbu0taTFhERCT10tQnEREReWD7185nzMuVGf9abdZP+ZbP6/kSE2nb/vrGn0e0L83qCUOY0KMRI9qXZuvc8fY2RrQvzYXj+5Ilnn2r51KyYTtc3T1xdfekZMN27Fs9N8m6/0/SAERHhGKcEuc3wi9f5Ni2VZRs2A6AC8f3k6VACbzTZwKgQOWG7Fn+e7LELiIiIk82TX0SERGRBxJ++SJ/ftuHV0Yuw9c/P1tmjb5t/bioSF4ZuYyQ86cY27k6pZu0x80zzS3rR4VdYXKfFkmWZcpThGc/HJfo9auBZ8hdurr9OF0Wf07t3nTLa0z7oC3nD+/GK50vLwydnah897Lp5KtQlzS+fgBkyV+Cc4d2cvncSdJnzcXeFb8TExlG5NXLmv4kIiIiD0SJGhEREXkgAfu2kbVgKXz98wNQumkH/hrz0S3rF6vXCoD0WXPh4ZOOqxfPkilXoVvW90iTjq7j1yZv0P/R/suZWAkJbJj6Het/G0bT3t/cVL5ryVTqdRlgP86YswCN3hzC3EGvgoHCNZ4CwMnZ+aHGKSIiIo8/JWpERETkgVhYwN0vh+Li5m7/2cnJmYT4uNvWv58RNWmz+HMl8LT9+ErgGdL65bjtdYyTE2WadWB0x4o3JWrO7NtK5NXLFKjS8Kb6xeu1pni91gAE7N+OT6ZsuHunRURERORBKFEjIiIiDyRH0Qos/LonwQHH8M2Rj91LpyZr+/czoqZo7WdYNvIDKrTsAsC/f82gcc+vEtULD7mEMU54pfMFYP/qP/DLW/SmOrsWT6FUo3Y4Od/cbQoLDiSNbxbiYqJY++uXVGnb455iFBEREUmKEjUiIiLyQNL4+tG09zCm93ser3S+FKzaBCcXV1zdvRwWU54yNShcozljO1cHLEo2bGdfs+bQhsUc2rSY5u/+QHjwBeZ/9SYJ8bFYlkX6rLl5pv9Yezux0ZHsWz2PV0YuTXSNBUN7cCXwNPGxsRSr24pKrV5/VLcnIiIijzFtzy0iIpLKpYTtuaMjQnH38gFg5+Ip7Fz8G51+WOzQmJ5k2p5bREQk9dKIGhEREXlgW+eMY/+aP0iIj8PDJwPN3/ne0SGJiIiIpEoaUSMiIpLKpYQRNZKyaESNiIhI6uXk6ABERERERERERMRGiRoRERF55Cb1acHhTYkX6H1U/v1rJuO61GBwg8xsnTv+prLYqAjmDOrMqA7lGfNy5ZvivF3Zf+1Y+CujOpRn5IvlWDK8L1ZCAgBnD/7D+K61+PGVKuxaOs1ef9eSqaz/bVgy36mIiIikNkrUiIiIyBMnS4ESPPvRT5So/1yisk0zR+LmlYY3f9tOu8FTWfjNW8REht2x7EaXz51k3aShdBq5lDcnbyM44Cj/Lp8JwMZp39Oox5d0Hr2CdZOGAhBxJZidi6dQtV3Ph3jXIiIikhpoMWEREZEnVGxUBPO/7M7FkwdwcnYlY84CtP5kAmHBgcz9vCvR4aHExURRsEoj6r8+EIA1E78k6PRhosNDCT5zlGyFSlOtfW/+GvMxVwJPU6Rmcxp0GwTYRs1kzV+C80f3EHrxLEXrtKRel48TxREdfpW/xnzEhaP7iIuNIneZGjR8YzBOzs6s/fUr9q6cg4ubOxhDx2/n45Em3QPfu1/eYgAYp8TPrPatmsvTH4wGwNc/P9kKl+HIluUUq9PytmU3OrDmDwpXfwrv9JkAKPvUS+xaMpVSjZ7HydmVuOgI4mKiMU7OAKwYO4A6nT/E2dXtge9NREREUjclakRERJ5QR7euJDLsCt0mbAYgMjQEAI806Wg3eCpunmmIj4tlat/nOPr3cvJXagDAuUO7eHXMStw8vfnp9TqsHD+Q9l/OJCE+jpEvlqVc85fx9c8PwMWTB+nwzVziYqKY0KMxOYtXomDVxjfF8deYj8hVqjrN3/0BKyGBuYNfY+fi3yha+xk2zxxFnzkHcXX3JDoiFFd3z0T3cWz7alb8OCDJeyzV6Hkqt+l+T+/L1QsBpMuS036czs+fqxcD7lh2oysXAkiXxd9+nPaGejU7vsuf371DbFQEDV4fyMldGzBOTuQuXe2e4hQREZHHkxI1IiIiT6gs+UsQdOoQi4e/R+7S1SlYpREACfHxLP/xE87s/RuwCAu+wPkje+yJmvwV6uGRJi0AfvmKkyV/cduIF9zJmLMAl88etydqSjVuj5OzC26eaShetxUn/lmbKFFzaOMSzh7YwZZZowCIjY4kbebsuHv5kDFnAf4Y8jr5KtanYNXGuHv5JLqPfOXrkG/82of0LiW/zHmK8PLwRQDEx8bw27vP0vaz39jy+xjO7NmCdwY/Gnb/XKNrREREnlBK1IiIiDyhMmTPQ7eJmzmxYy1H/l7Oqp8/5/Wf17Pl99FEhYXQefRfuLh5sGhYb+Jiouzn2ZIyNk7Ozri4ediPjZMzCfHxSV7PsiwwSewYbVm0GfQbGbLnSVT0yqhlnN6zhRP/rOXnbvVo/+UssuQvflOd5B5Rk9YvB1cCT9unLV25cIbcZWrcsexG6fxycCXwjP346oUzpM2cI1G9DdO+p+xTHYkMDeHQxsV0/HY+ayZ+wb/LZ1Gm6Yv3FLeIiIg8HrSYsIiIyBPq6sUAnJycKVzjKRp1H0xEyCUir14mKuwKaXyz4OLmwdWLZzm0cfF9X+Pfv2aQEB9HTGQ4+9f8QZ4yNRPVKVitCRunfW9P8ERcCeLyuZNER4QSHnKJ3KWrU7tTPzLnKcLFE/sTnZ+vfB26jl+b5L97TdIAFK39DDsWTAQg+MxRzh38h/yV6t+x7EZFaj3NwQ2LCA+5hJWQwD+LJlH0P+vYBJ85SsC+bZRq9DyxURGALYlljBOxkeH3HLeIiIg8HjSiRkRE5Al14dg+Vo63LfxrJcRT/YU++GTKRsVnX2fOwFcY/1pt0mbOQZ6yte77GlkLlua3d58l9NI5itZ+JtG0J4BGbw5hxdhPGd+1JhiDi6s7Dd8cgrOLC79/8jJxMVFYCQlkLViaIjWb33csN9qzYjYrxg4gKuwKhzb8ycZp3/PC0NlkzlOEqu16suCrNxnVoTzGyZlmb39nn3J1u7LVE4bgkzEb5Z9+hQzZ81Cj43tMeNM2nSxfhbqUbND2phiWjf6QRm8OASBL/uJkyJ6bsZ2r4ZkuI20GTU6W+xQREZHUx1iW5egYRERE5AEYY6yPVgY7OoxEJvVpQdW2PZJMzsjD9Xk9XyzLSmKemYiIiKR0mvokIiIiIiIiIpJCaOqTiIiIPBQvfbfA0SGIiIiIpDoaUSMiIiIiIiIikkJoRI2IiIgAKWNNmflfvcnx7aspUrMFjXt+CcChjUtYMfYTEuLjyFaoNC36jsTVw+um86yEBGYP7MSF4wdwcXPHO0Mmmvb+Ft8ceQHbvV29cMa+8G/FVq8n2v5619JpLPjqTdoNnnZX70FY8AX++KIbVwJP4+LmwVPvfEeOohUS1Vs5biBHt66wH186dZj6r39KpVav218LD7nEuFerk7NkFZ779Ff768d3rGXluE+JjY4E4NmPxpMlfwn2r/mDNRO/IPzyJd6Zd+SOsYqIiEjqoUSNiIiIpCjV2vem4rNdAYiJDGPRsN68PHwRvv75WfhNLzbNHEmtl/omOq9Uo/YUrNoY4+TE1rnj+fPbPnQYNs9e3rjHl7dMwFy9GMA/CyaSo1jiRMutrPppELlKVaNmx3c59e9m5g1+ne6Tt2HMzWv41nvtE+q99glgS8iMaF+aYv/ZqnvJ9++Sv1IDYiLDbojpLAu/6cULX84iY66CxEZHkhAXC9i2Cc9WuCw/d6t31/GKiIhI6qCpTyIiIo+ZdZO/Ztmo/vbjiCvBDGuZn5jIcI7vWMOEHo0Y/1ptxr5anb0rZyfZxqQ+LTi8aWmSx6FB5/n905f55Y0GjH21OuunfPvQ7uXIluVkK1wGX//8AJRr8Qr7Vs1NVM84OVGoelOMk61r41+8IlcCT9/1dRYN60PDNwfj7Op+1+fsW/0H5Z9+BYBcJavg4ubOuYP/3Pacf/+aQd5ytUnjm+X6a8tn4Z3Bj9ylq99Ud/v8XyjZsC0ZcxUEwNXdE3fvtHcdn4iIiKROGlEjIiLymCnVqD0T3mxIg26DcHJ2Ye+K3ylUrSlunt5kLVial4cvxsnZmbDgC/zcrS75KtbH0yf9Xbc//8s3qNHhPXKXrkZ8bAy/vduS7IXLkq9C3ZvqXTxxgHmDX0uyjbzl69Cg26A7XuvqhTOky5LTfpzOz5+rFwPueN7WueMpVK3JTa8tHzuAlT8NIkv+EtTr+glpM2cHYPsfv5A5T5Ekpy3dSsSVYMDCK11G+2tp/fy5eiGA7EXK3fK8XUumUueV60m00Evn2DJrNC99v4D9a+bfVPfSiYOky5qTyW8/Q1RYCHnK1KBulwG4uN19MklERERSHyVqREREHjPpsviTKXdhjmz+i0LVm7Jr6TQavTkEgIiQSywc2pPggKM4ObsQGRpC0OnD+BereFdtx0SGc3LnBiJCguyvRUeEcenUoUSJmsx5itB1/Nrku7G7tGn6DwSdOkSHYX/YX3um3xjS+fmTEB/PhqnfMeezV+n0w2IunzvJP4sm8fKIxQ89roD924kIuUSBKo3sry0a1pv6r3+Km2eaRPUT4uM4s+dvXvh6Dq7uHswd3JWN04cnOe1LREREHh9K1IiIiDyGSjVuz+5l00ifPTfR4VfJVaoqAIu/f5dC1Zrw3KBJGGMY/VJF4mKiE53v5OyClZBgP46PiQLAshLAGDqPWYGzi+ttY0iOETVp/fw5sXO9/fjKhTOkzZzjlvW3zh3PnpWz6fDNvJsWHE7n53/tvpyp1Pp11v76FVZCAgH7thIadJ4fO1UBbAsEL/ymF3W7fEyZph1ueR2vdL4ARFwJso+quXrhDGn9bh3briVTKNmg7U3v25l9W7n4dS/AlgSLi4li2gdtaf/lTNJlyUm2ImXxSGOb7lSsTkt2L5txy/ZFRETk8aBEjYiIyGOoaK0WLB/zEZtnjqJU4/b216PCrpAuay6MMRzbtorggGNJnp8hex7OHtxBoepNuXjiAOeP7AHA3cuHXCWrsnHa99Ts+B5gS544u7jetO4KJM+ImvyV6rN0xPsEnzmKr39+diyYkGgh3v/bsXAiOxZOpMOwP/BMm8H+ekJ8HBFXgknj6wfA3pWz8ctXDOPkRIn6z1Gi/nP2uv/d+Wrl+EH4ZMpmX9z4RkVrP8P2+RPsiwnHRkeRrVCZJGOLjY5k78o5dBqx5KbX3/3j+vu/a8lUDm9eat/1qXj91qz6+XOqt++Nk4srR7euJEv+End+00RERCRVU6JGRETkMeTq4WWb9rRkKj2m7LS/Xq/rABYPf4+N077HL19xsuQrnuT51Z5/i9kDX+Ho3yvwy1eMrAVL2stafjiWZaM+ZOyrtsVv3T3T0LzviESJmuTg7uVDs7e/Y3r/9lgJ8WQtUJIqb34B2NZ3md6vHV3HryU6IpQ/v3uHdFlyMvW9VgA4u7rRefRy4mKimdH/eeLjYrAsC59M2Wj10U93df0Lx/aSrVDpJMvqdR3AvCHd2L1sOq7uHjzTb4x9MeOF3/SiUNWmFKreFIAD6xaSKVdBMucpctf3nrNEZQpUbsj412phnJzJWrA01V/oc9fni4iISOpkLMtydAwiIiLyAIwx1kcrgx0dRrKY/9WbZCtUJskRLI+alZDAhB6NeGXkMnsCJiUJOX+Kn7vV4515RxKVfV7PF8uyTBKniYiISAqX8nodIiIi8sRy9/Zh69xxLB3xgaNDwTg50Xn08hSZpNm/5g9mfNge7wyZHR2KiIiIJDONqBEREUnlHqcRNZI8NKJGREQk9Up5j4hEREQkRRjRvjQXju9zdBg3CTl/isENMjO+ay3GdanBhB6NOH/k3wdud1KfFhzetPS+z9+1ZCpBp69PQTq0YTHLfxzwwHGJiIjIk0eLCYuIiEiq4pEmnX03qb9n/8jCoT3pMm71TXUS4uNwcn503ZxdS6fhlS4jGXMWAKBQ9esLCYuIiIjcCyVqREREnnBn9v7N8rGfEBMRBkD91weSv2K9m+psnjmSvavmkhAfh4ubO017DyNrgZLERkUw/8vuXDx5ACdnVzLmLEDrTyYQdOow84e+SWxUJFZCPKUat6dqu57JHnve8nVY9fPngG0EUJlmHTjxzzrSZ8tN4x5fsOSH9zl38B8ASjZsR7X2bwFw8cQBFgztQUJcHJnyFCY+Jsre5oj2pWk3ZBp+eYslOr508iBLR/Yj/PIFLMuiStseWAkJnDu4k6UjP2D1L4Op320QoRfP2rfa/u2dllRs9RqFqzcD4NDGJWz5fTQdv51PaNB5lo54n6uBAcTGRFK8XmtqvPh2sr9PIiIiknooUSMiIvIEi7x6mVkDXuK5gb+Ss0RlEuLjiY4ITVSvZKPnqdK2BwDHtq9m8Xdv88qovzi6dSWRYVfoNmGzrb3QEAC2zf+ZApUbUrPjeze9/l+/f/oylwOOJ1nWaeRSXN09bxv//jV/kKXA9a3Dw4IC6fjtfABWjPsUy7J47ecNxESEMqFHY/zyFaNA5Yb88cUbVGz1GqUbt+fMvq382uvOo18S4uOY+XEH6nT+kGJ1WgIQcSUYr3S+7F42napte1CwamPANhXq/0o1bs/updPtiZrdS6dSuskLAMz/8g1qdHiP3KWrER8bw2/vtiR74bLkq1D3jvGIiIjI40mJGhERkSfYmX1byZS7MDlLVAbAydkZT5/0ieqdP7ST9VO+Iyr0MsbJiaDTRwHIkr8EQacOsXj4e+QuXZ2CVRoBkKtUNZb/OID42Bhyl6lJnrI1k7z+c5/+es8xR4VdYXzXWliWRYZseXj6/VH2spKN2tl/Pr59DY16fIExBnfvtBSv15rjO9aQs0RlLp7YT6mGtrr+xSraR8/cTtCpwyTEx9mTNABe6XzveF7RWi34a/SHRFwJAgwnd23k6Q/GEBMZzsmdG4gICbLXjY4I49KpQ0rUiIiIPMGUqBEREXmS3cXuj/GxMfz+6Su89P1CshUqTeilcwxvWxyADNnz0G3iZk7sWMuRv5ez6ufPef3n9RSt9TT+xSpybNsqNk77nl1LptCy/9hEbd/PiJob16j5LzdP75vuzfxn3yODsf90K07OLlgJ19+XuJhoW3Pc306Zrh5eFKrelL0rZgO29WvcPL1tI5eMofOYFTi7uN5X2yIiIvL4UaJGREQklTLGOAH1H6QN/+KVuPTNW5zZ+zf+xSvZpz7dOKomLiaKhPg40vrlAGDbH7/Yy65eDMDTJwOFazxFvgp1+b5NMSKvXiY2OpIM2fJQuskL+PrnY8HQpNenuZ8RNXcrb4U6/LNoMv7FKxMTGca+VXNo0G0Q7t5p8ctblD0rfqdkw7YE7N9+0+5WGbLn4ezBHWTJX5zjO9YQfvkCAJlyFcLJ2YV9q+clmvrk7uVDVPjVW8ZSuvELLBvVH4BGPb4AwN3Lh1wlq7Jx2vf2KWJXLpzB2cWVNL5ZHsZbIiIiIqmAEjUiIiKpjDEmJ9AJ6AyEPEhbnmkz8NzAX/lrzEfERkVgjBP1uw0iX/k69jru3mmp/Uo/fnmjPmn9/ClQuYG97MKxfawcPwgAKyGe6i/0wSdTNtZP+ZY9y2fh7OqGwdDozSEPEuZ9qdnxXZb88D7jXq0O2BYTzl/JFvvTH4xmwdAebJk1mqyFSpOjaAX7eXU6f8j8r7qzc9Ek/EtUJq2fP2AbadP2s99Y8sP7rJv8NcY4UaVtD0o1ake55i+z/McBbJ45kvqvD0wUS65SVe1r/+QqWcX+essPx7Js1IeMvRaju2camvcdkSyJGmPMFOAnYI1lWQkP3KCIiIg8Esa6iyHPIiIi4ljGGDegOdAFqAJMB36yLGuHMcb6aGWwQ+OTlOXzer4AbwFdAU/gZ+BXy7LOOjIuERERuTMnRwcgIiIit2aMKWKM+Ro4he2L93TA37Ks7pZl7XBsdJKSWZb1A1AKeAHIC+w1xsw3xjxtjNGoahERkRRKiRoREZEUxhjjbYx52RizDlgNJAC1LcuqbVnWJMuyIhwboaQWls3flmW9BuQE5gLvA6eMMV8YYwo4NkIRERH5LyVqREREUgBjU8EY8yNwGmgDDANyWpb1vmVZBx0boaR2lmWFWZY1wbKs6kADwA3YaIxZZYx50RiTeIstEREReeSUqBEREXEgY4yvMaYn8A8wEzgDlLIsq7llWfMsy4p1bITyOLIsa59lWe8A/sAooCNwxhgz0hhTxqHBiYiIPOG0mLCIiMgjdm1b7drYFgZ+CliMbXeeVfezO4+ru+f5uJgo7ecsdi5uHoGx0ZFZ7+UcY0xuru8mdhHbAsRTLcu6kvwRioiIyK0oUSMiIvKIGGOyY/si/CoQAYwHpliWFeTIuERuZIxxxjY1qgvQEPgDWyJxvaWOo4iIyEOnRI2IiMhDZIxxBZphS87UBGZh+9K7VV96JaUzxmTGNi2qC+DM9W2+Ax0amIiIyGNMiRoREZGHwBhTENsUkk7AMWzJmVmWZYU5Mi6R+2GMMUBVbAnHVsAqbEmbpZZlxTkyNhERkceNEjUiIiLJ5NquOa2xjT4oBkwCfrYsa79DAxNJRsaYtEA7bP+f5wAmAL9YlnXcoYGJiIg8JpSoEREReUDGmLLYRhq0B7ZiGz0z37KsGIcGJvKQGWNKYvt/vwOwE9v/+/Msy4pyZFwiIiKpmRI1IiIi98EYkx5bYqYLkAn4BZhgWdYpR8Yl4gjGGA+gJbakTRlgCrbRZP86MCwREZFUSYkaERGRu3RtnY6a2JIzTwPLsK3TsdyyrHhHxiaSUhhj8gGvXPsXgG2UzXTLskIdGpiIiEgqoUSNiIjIHRhjsgIvYRstEI/ti+dky7IuOjQwkRTs2jbfjbElNusCc7H97mzSjmciIiK3pkSNiIhIEowxLlz/klkHmIPtS+ZmfckUuTdKdoqIiNw9JWpERERucG3axv+31f7/tI0ZlmVddWRcIo+Da9MHa2BLgD4D/IXtd0zTB0VERK5RokZERJ54NyyE2gXbQqi/oYVQRR4qY0w64AVso2wyY9vme4JlWScdGpiIiIiDKVEjIiJPrGtbC3cBXgT+wbYwsLYWFnnEtMW9iIjIdUrUiIjIE8UY4wM8jy1Bk4PrT/GPOTQwEcEY4wm0wvb7WRyYjG102z6HBiYiIvIIKVEjIiKPvWvrYlTF9uXvWWAVtif2S7UuhkjKZIwpwPX1oo5jG/E207KsMEfGJSIi8rApUSMiIo8tY0xmoCO2BI0zti96kyzLOu/QwETkrl3bga0Ztt/jmsAsbInWrdqBTUREHkdK1IiIyGPFGOMMNMD2pa4h8Ae2L3Xr9aVOJHUzxuQAXsa2nk0Ett/t3yzLCnJoYCIiIslIiRoREXksGGNyA69c+3cR2xe4aZZlXXFoYCKS7IwxTkBtbAnZp4DF2EbMrbQsK8GRsYmIiDwoJWpERCTVMsa4AU9j+7JWEZiGbeHRfxwamIg8MsYYX2zbfHcF0mJL2Ey0LOuMQwMTERG5T0rUiIhIqmOMKYZt6kNHYC+20TNzLMuKdGhgIuIw1xYNL48tcdsW2ITts2GhZVmxjoxNRETkXihRIyIiqYIxJg22L1+vAnmBicAvlmUdcWRcIpLyGGO8geewJW0KAr9iG213yKGBiYiI3AUlakREJMW69oS8IrYvW22AddiekP9pWVacI2MTkdTBGFME2zbfLwMHsX2G/G5ZVoRDAxMREbkFJWpERCTFMcZkBDpgS9B4Yltz4lfLss46NDARSbWurWnVHNvnShVgOvCTZVk7HBqYiIjIfyhRIyIiKcK1XVzqYZva1BRYiC1Bs0a7uIhIcjLG5AQ6Yfu8uYxtlM1Uy7IuOzIuERERUKJGREQczBjjz/UvTFewfWGaoi9MIvKwXUsQ18f2+dMEWMD1BLE6ySIi4hBK1IiIyCNnjHHl+hSEqsAMbAmaHfpyJCKOYIzJxPUpl+5cn3J5zqGBiYjIE0eJGhEReWSMMYWwPbl+GTiE7YvQ75ZlhTs0MBGRa64tYl4JW8LmOWAttkTyYi1iLiIij4ISNSIi8lAZY7y4vk1uYWzb5P5iWdYBhwYmInIHxhgfoC22BHNuYCK2z6+jjoxLREQeb0rUiIjIQ2GMKYctOfM8sAnb6JmFlmXFODQwEZH7YIwpji1h0xH4F9somzmWZUU5NDAREXnsKFEjIiLJxhiTAXgBW4ImA7bkzETLsk47NDARkWRijHEHnsb2OVcemIZtm+9dDg1MREQeG0rUiIjIA7m2nkNtbE+aWwBLsCVoVmhbbRF5nBlj8gCvXPsXiG2UzXTLsq44Mi4REUndlKgREZH7YozJhm1R4FeBaGxfUH6zLOuSQwMTEXnEjDHOQENso2waAPOwfSZu0E52IiJyr5SoERGRu2aMcQGaYvsyUgv4HduXkb/1ZUREBIwxfsBL2JLYBtsIw0mWZQU6NDAREUk1lKgREZE7MsbkBzoDnYCT2L54zLQsK9SRcYmIpFTXpoVWw5bYfhZYgS2xvcyyrHhHxiYiIimbEjUiIpIkY4wH0Arbl4ySwGTgZ8uy9jo0MBGRVMYYkxbbDnhdgGzABGzbfJ9wZFwiIpIyKVEjIiI3McaUxvZloj2wHdsT4PmWZUU7NDARkcfAtc/YV7HtkLcD22fsH/qMFRGR/1OiRkREMMak4/rT3izYnvZO0NNeEZGH49qoxWexfe6WAn7DNmpxj0MDExERh1OiRkTkCXVt/YTq2L4ktASWY3uy+5fWTxAReXSurQP2/22+T2FbB2yG1gETEXkyKVEjIvKEMcZk4fqOJBa25Mxky7IuODQwEZEn3LWd9ZpgS6DXBmZj+4zeop31RESeHErUiIg8AYwxzkAjbJ3/+sBcbJ3/jer8i4ikPMaYbNiS6l2AGK4n1S85NDAREXnolKgREXmMGWPyYNtW+xXgHLaO/nTLsq46Mi4REbk716ap1sI2CvJpYCm2qVHLLctKcGRsIiLycChRIyLymDHGuAPPYHsKWw6Ygm2Byt0ODUxERB6IMSY9tt2iugC+wC/YFn4/7ci4REQkeSlRIyLymDDGlMD2xLUDsBvb6Jm5lmVFOTQwERFJdsaYctg+858H/sb2mb/AsqwYhwYmIiIPTIkaEZFUzBjjA7TD1lnPhW1b7V8syzrm0MBEROSRMMZ4Aa2xjbIpAkzCNorygEMDExGR+6ZEjYhIKnNtvYLK2DrlrYHV2NYrWGJZVpwDQxMREQcyxhTCti7Zy8BRbKNsZlmWFe7QwERE5J4oUSPyCHl4ep6PjorK4ug4JOVw9/AIjIqMzHrja8YYD6CAZVl7/vN6JqAjtgSNG7YO+K+WZZ1/VPGKiEjKZ4xxBZ7CNtqyOjAL29+Mbcm105+zm8f5hNho9WkeQ06u7oHxMVFZ71xTRB4WJWpEHiFjjLX3QrSjw5AUpLifO5Zlmf8fX9tG+3cgwLKsHsYYJ6ABts52Y2A+ts72Om2rLSIid2KMyQF0wvZ3JBTb35AplmUFP2C7VqPJ5x48QElxlnXMdlPfREQePSdHByAiIjbXpjSNBtIA3xpjBgDHgC+ANUAey7JesixrrZI0IiJyNyzLCrAsazBQAHgbqAocM8ZMNcbUu/ZAQEREUhB9MIuIpByDgPqABWwFsgCtLMsqb1nWaMuyQhwZnIiIpF6WZSVYlrXCsqwXgPzAZuB74LAx5sNrI2/sjDFFjTHPOyBUEZEnnoujAxARuRtzp/3KpB9/wDg5kZAQz3MdOtOha48k644fPpSFs6cRHxdHyXKVGDhsNG7u7vzz9ya++fQDrl4NAaB2g6a8PWAITk6Oz1lfGz3zEXARCAH6A6eAfQ4MS0REHkOWZQUBPxhjRgAVsK19tscYsx7b1Kg/gavA18YYLMua7rhoU66AtdM5uWQcxjhhJcSTo86L5G7cBYBL/67myKwvCD19gFwNO1P4hU+SbCMhNpp/vuvE1eO7AKg75vqf/ciLp1n/blXS+Bexv1b+g5m4+fjetkxEUj8lakTkkbAsiyshl0mf4f46EA2bP0vL51/CGEN4WCjP1CpHxWq1KVy85E31Nqz6iz/nzGDa4vV4ennxyTvd+XXsD3Tt9R5pfNIyZORP5M5XkJjoaDq3bsLC36fxdNsXk+MWH9R0bGsHAGQFqgEtgQvAdgfFJCIij7Fr02i3AluNMe8AbYD3gB+BX4FuwC/GmEuWZS13XKQPh2VZxIWH4Jomw32dn6XiU2Sv2Q5jDHGRYWzsVwffotXwyVUML7/cFOv8DYFbF5EQe5v1CZ2cydPsDVx9fNn+ZdtExS5eaak6OOm3/nZlIpK6KVEj8gSIjIigf89XOXJwHy4uruQtUIhvf5rK3xvW8MWH71CyXEV2b9+Ci4srX46awOhvPufwgb1kze7P8AkzMcbQoFwBFm7YTYaMmQAYOqAvaXzS0v29j2577SMH9rFw9jSWzp/NK9370Pblrvd1D2l80t50P3GxsdiWdLnZwb27KVelOl7e3gDUrNeYUV8Pomuv9yhYtLi9npu7O0VLlubsmVP3FU9ysyzrEHDI0XGIiMiTybKsMGACMMEYUxTb4sMTgABgtjGmqWVZG5PrevHREewZ+xZhAQcxzq54Z8tP6Z7jCN6/kQOTPyZd/jJcObID4+xCyW4jOTp3GGFnDuCRMTule/2CMbC2dwWqD12Hm09GAA5O/RQXDx/yt3rnttcOO3OQcxtnE/j3QnI360bOei/d1z24ePpcv5+YSKz4OLjWN/HKkheACzuWwm0SNU7OLmQsUYvIi6fvKwYReTwpUSPyBNiw6i+uhlxmwXrbsNorIZftZccO7WfIiJ8Z9O0YPnu/F6+1a87UxWvJmt2fbu2f5s+5M3iuQ2fqNWnBojnT6dC1B3Fxcfw5dyZTFq1O8nrnz57hzzkz+HPuTDy9vGn2bFumLFqDb6bMABw5uJ++3ZLuFFWrXZ93P/0yybKVSxbw/eCPOX3iGL0//IxCxUokqlOsdDl+/+0XLgddwiddepbO/52zpxMnY4IuXuCvhfMYM3Xe7d46ERGRJ1FTIAOwDSiMbZH7hUCyzau59O9qYiOuUP2rtQDEhofYy8LPHqLE68Mp/uow9k/sx/ah7an86UI8fLOz4+sXOb95Lv51XsSvXBPObZxL7sZdSIiP4/ymeVQasCDJ60UFn+Xcpnmc3zQXZ3cvslZ9lkoD5uOW1vYAKizgIP+OfjPJc31L1KJw+wFJll3YsZTDM4cQeeEkBdv0wydn0ft/U5IQFxnG5gGNsSyLrFVakqfZG/YHVbcrE5HUTYkakSdA4eIlOX7kEJ+934tK1WtTq0FTe1meAoUoWrI0AMVKleXcmVNkze5vOy5djlPHjwLQ8vmOfPHhO3To2oN1K5aQr1BhcuTKk+hafy2cR59Xn6fFcy8wYtLvZMuRM1GdAoWLMmfV1nu+j3pNWlCvSQvOnjlFr5fbUKtBE/IWKHxTnSo169K+cze6tn0Kd3cPKteqi4ur6011wsNC6fFSazq98RZFS5a55zhEREQecyHAJiAQOH/tX2ByXsAnV3HCzx5h/8R+ZChajcxl6tvLvLLmJ21u28MYnzwliQw6g4dvdgDS5i1FROAJALLXasuByR+Tu3EXLu1aiXf2gnhmTtzvCNy6iF0jupKtWmvK9pmIR8YcieqkyVH4vqYR+ZVrjF+5xkReOsPO718hU5n6eGcrcM/tJMU9vR+1hu/APV0moq9cYud3L+PqnQ7/Oi/etkxEUj8lakSeADnz5GPBhl1sXruSdSuW8v3gj5m3ZgcA7u4e9npOzs643XDs7ORMdFwkAOWr1CA8LJRD+/Ywb/pkWrZLekRM1dr1+HTYaBbNmUH3F5+lacs2NG3Zhpx58tnr3O+Imv/L7p+LkmUrsGbZn4kSNQAdX+tJx9d6ArDkj9/JV/D6QnuRERF0f/FZqtVuQKfufW57HRERkSeRZVm/POxrePnlpvpXawneu45Lu1dyZNYXVB2yEgBnN3d7PePkjJPr9WOcnLFiogDIULgK8VHhhJ7ez9l1M8heM/EaLwAZS9SiWOevObdxLjuGvUTWKk+TtUpLvPxy2+vc74ia//PM5E+6/GW5+M/yZEvUOLm6457Odu/u6TKRrVorQg5txb/Oi7ctE5HUT4kakSfA+bNnSJfel/rNnqFanYbULZWHKyHB99zO0207MHHM92zfvJ4vR01Isk4an7Q816Ezz3XoTOC5AP6cM4M+r7bH1c2Nt/oNpEqtevc1oubY4QP2hMvloEv8vWENDZ5qmWTdi4HnyZwlK1dCLvPTD1/zxjv9AYiOiuLNjs9Sqnwlen6Q9O4LIiIi8vBFBZ/F1Ts9fhWakrFkbdb0KnvT9Ke7la3Gc5z880cuH9xMyW4jkqzj4umDf50X8a/zIlHB5zi/aR67fuiCk4sbBdp8QMbiNe9rRE342cN4Zy8IQExoEMH7NuJXodk938OtRF+5hKt3OpxcXImPjuDCjmVkLtvgjmUikvopUSPyBDi8fw/ffmZb9DchIZ4uvfrilzU7J44evqd2nmnXgcYVCvNs+5fx9PK6Y/0s2XLwyptv88qbb3P00H7Cw8LuK36AmZN+YuPq5bi4uGJZFi+8+gbV6zYEYMbEcVw4f86efOnathkJCQnExcbywqtvUL/ZMwDMnjKBrRvWEhIczIZVfwHQ+OnWvN7ng/uOS0RERO5d6On9HJ4xBAArIZ68LXrikSErEeeP3VM72Wu0Zd3blclR63mc3e/cN/HwzUaep94gz1NvEBZwiPio8PuKH+D0yskE7VmDk7Otb5Kr4StkKlkHgMsHt7B71BvERYYCFuc3/0HxLsPIVKoup1f8SnRIIAVa9wVg84AmRAWfIzb8Cmt6lSNTqboU7zKMkENbODL7a4yTM1Z8LJnLNCRXw84Aty0TkdTP2HblE5FHwRhj7b1wmy0a5YlT3M8dy7K08p+IiKQqxhir0eRzjg5DHoJlHbOpbyLiYE6ODkBERERERERERGyUqBERERERERERSSGUqBERERERERERSSGUqBERu1Z1KxIVGXnHet3aP82p40eT7bpjhg2hScUiNKlYhDHDhtyx/kdvvUZxP/ebFieeO+1Xnq1dnqdrlqF7h2cJuWzb1SohIYEXmtbi2ToVeLZOBV5r15yAUyeSLXYRERFxjE0fNiA+5s79lh1fv0hE4Ilku+7Red+y7p0qrHunCkfnfXvLertHd2dNzzIs65iNuP8sWnyrsvBzR9k6pDXr+9Zgwwd12DOu913do4g8XpSoERG7Oau24uHpecd6P06bT668+ZPlmts2rWPZ/NnMW/sP89b+w7L5s9m2ad0t669auhBjbl7f7uih/fzwxaf8PHsJ89ftpFS5Sgwf/DEATk5OjJ2xgLmrtzF39TZq1m/M0AF9kyV2ERERcZyqg5fj7Hbnfku596bglSVPslwz+MAmAv9eSLUvVlHti1UE/r2Q4AObkqybo/YLVPk86S2/b1Xm5OJG4Rc+pcbQ9VQbspL4mEhO/DkmWWIXkdRDiRqRJ8yyBXNpXq0kretVYtz3X900MuXGnxuWL8SILwfyQtNaNCxfiCk/j7a30bB8IQ7v35ss8SyeN4un276Ih6cnHp6ePN32RRbPm5Vk3ZDgIMZ8M5i+g4be9PqRA/soUqIUvpkyA1CrQRMWzp5uL/dJm87+c1hoKMZJH30iIiKpQeDWhazvW4NNHzXk2PzhN41AufHntX0qcmT2ULYMbM7aPhU59dcv9jbW9qlI6OkDyRPP5vlkr94GZzdPnN08yV69DYGb5ydZN2PxGriny3RPZZ6Zc5I2T0kAjJMT6fKVJepSQLLELiKph4ujAxCRRyfo4gU+fbc70xavJXe+gvz64/Db1o+KjGDq4rUEnDrBM7XK0bLdS3inSXPL+levhNCpZcMkywoULsbQH39N9Pq5gNNUql7bfpzNPxfbNq9Pso3PP3iL7u99dFPiBaBw8ZLs3bmDMyePkyNXHhbNnk5EeBghl4NJn8EXsE3X2rd7JxkyZmT8zEW3vW8RERFxvOgrl9j3S18qfbIQ76z5OLl47G3rx0dHUvmThURePM3GfnXIXrMdLh7et6wfG36FbUNaJ1nmnaMQpbqPTvR6ZFAAGYpWsx97ZMrB5YOb7/KO7k18TCQBa6dRsG3/h9K+iKRcStSIPEF2bd9CsZJlyJ2vIACtXuh022lATZ9tC0COXHlIlz4DgefOkK9gkVvWT5suPXNWbU3eoK9ZOn82rq5u1Gn0VKKyPPkL8cHgYbzzWgeMMdRv+jQALi7XP+J+nDafhIQExg8fyo/ffsGAoSMeSpwiIiKSPK4c3Y5P7pJ4Z80HQPba7Tk49dNb1s9a5RnANirFxTs90cFnccle8Jb1Xb3TUXVw0lOTHC0hPo7do97At1gN/Mo1dnQ4IvKIKVEj8iSxrETru9yOu7uH/WcnZ2fi4+JvW/9+RtRky5GTs6dP2o/PnTlF1uz+ieptWb+aLetX07B8Iftrz9Qqy4/T5lOgcFGaPduWZtcSS7t3bCVLthyk8Ul7UxtOTk60eqETzaoUV6JGREQkpbMs7qHbgpPr9X6LcXIiIf72/Zb7GVHjmTEHUZfO2I+jLgXg4Zv97oO8C1ZCPP+OeRNXr3QU6fh5srYtIqmDEjUiT5BS5SvzUe/XOXnsCLnzFWDe9EnJ2v79jKhp/HRrvuj/Nu07vwHA/JlT6P/Fd4nqDRg64qbkSnE/d/5Y+499KtbFwPNkzpKV6KgoRg0dRKfuvQEIvnQRJycn0vtmBGDZgtkUKlrifm5PREREHqF0Bcqz96e3iQg8jleWvJxdNyNZ27+fETVZKrfgwOSPyNmwEwBnN8xK1mSKlZDAnnFvYZycKd7123t6wCYijw8lakSeIJn8svDJ1yPp/mJL0vtmok7jp3BxdcXTy8thMVWqXpsGT7WkZa2yWJbF0207ULFaLQBWLlnA6qWLGPTdj3ds56O3unL2zCliY2Jo+mxbOnTtAcClC4F82KsLcbGxWFjkyJWHL0dPeKj3JCIiIg/OPV1minb6ih3fdMTNx5fMZRtinF3vaqenh8W3aDX8KjRjY7+6YFlkq9EG32tr1lzYsZSLO5ZRvMswAHYO78yVozsB2NC3Bmn8C1O+7/Tbll3avZJzG2aTxr8Imz+2TXlKX7AiRTt98WhvVEQcyliW5egYRJ4Yxhhr74Voh8YQHhaKdxofAOZO+5XZUyby28JVDo3pSVbczx3LsvS4TEREUhVjjNVo8rmHfp24yDBcPG2jZwPWTidgzVQqfZz0LkuSPJZ1zKa+iYiDaUSNyBPmt/GjWDp/NvHxcaRL78vAbxPPvxYRERFJCU4t+4nAvxeSEB+Ha5r0FOv8jaNDEhF56DSiRuQRSgkjaiRl0YgaERFJjR7ViBp59DSiRsTxnBwdgIikLp1aNmT1skUOu37/nl2oVzofrepWpFXdioz97kt72YJZU3m2dnlKZfNiys+3Hyk0a/LPNKlUlCYVi/D5B2+RkJAAwJ6d22lVtyItapRm3vTJ9vpzp0+66VoiIiKS8m0d3IqL//zl6DAI3r+RZS/l4NRfv9hfCz93hK1DnmNj/3ps7F+PoH/X3PL8M6t+Y907VVn3ThX2/9of61q/5cqxnWz6sAEb3q9FwLqZ9voBa2dw7I/vH9r9iMjDpUSNiKQ6r/Z6lzmrtjJn1VZe7/OB/fUiJUrz9bjfeKrV87c9/8zJ44z5ZjBT/1zLn1v2cfLYERbMmgrATz98Tf8h3zJj6UbGfGPbxSEkOIi5U3/llTfffng3JSIiIo+luMgwDk3/nEyl6930+p5xfchRqx3VhqykdK+f2DO+D/HREYnOj7hwiqNzv6XyJwuo8fVGIgKPcW7j7wAcXziSwh0/o/LAJRyba1vEOCY0mIC108jzVPeHf3Mi8lBojRqRVCgyIoL+PV/lyMF9uLi4krdAIb79aSoXA8/zXreXCA+9SnR0FLUaNOXdT2y7BIwa+hnHjxwkLPQqJ44epnjpcnTp9R5DP3mfc6dP0uCplrz7qW3ESKeWDSlcohQH9+zm/NkzNHnmOXp/+FmiOMJCrzJ0QF8O7vuXmKgoKtWoTd9BX+Ps7Mzorz/nz7kzcHP3wBjDhLnLSJsu/UN9XwoWLQ6Acbp9DnrZgjnUa9oC30yZAXiu46vMm/Yrz7TrgIurK5GREcRER+Hk7AzANwP70avfp7i5uT3U+EVERB5H8dER7Bn7FmEBBzHOrnhny0/pnuOIDrnA7tFvEBcZSkJsNJlLN6BQ+48BODLnGyLOHiEuMpTw88dIm7cUeZv34ODUgUQFncGvQjMKtx8A2EbN+OQuTujJvUQFnyNr5RYUbNs/URxxkaEcnPIpoaf3kRAbjW/RahR+cSDGyZmjc4ZxbvNcnF09wBgq9PsdV+90yXL/B6d+Qp6nunPpPyN7Qk/tJVOpugB4Z82Ha5r0XNq9kiwVm99UL3DrQvzKN8EtbSYActTpwNm108leoy1Ozq4kxESSEBuFcbL1Ww5N/4wCz72Pk4v6LSKplRI1IqnQhlV/cTXkMgvW7wLgSshlANKmS8+oyXPwTpOG2NhYXmvXnHUrl1Kznm17x727djDzr014eafhufqV+fazDxk7bT5xcXE0rliYNi+9Su58BQE4dnA/P/2+mOioKF58qhZlKlahTqOnbopj6IC+VKhak0Hf/UhCQgJ933iZOVMn0qhFKyaM/o51+87g4elJeFgo7h6Jt9LctGYFX3/6QaLXAZ5p14GXu72VZNmkMcOZNekncubOR++PPiN/oaL39P6dCzhNdv9c9uNsOXJyPuAMAN3e7s+g93oQGRHOu598wdaNa3FycqJC1Zr3dA0RERGxufTvamIjrlD9q7UAxIaHAODilZayb0/CxcObhLhYtg9tz6XdK8lUyjby5OqJ3VQetAQXD282fdSIwzMHU/69KSTEx7Pu7Ur41+2Ad9Z8AIQHHKL8BzNJiI3m74HNSV+wIpnLNrwpjoNTPiVDkSoU7zIMKyGBf8e8ScCaaWSp1JwTi8dQZ9S/OLt5EhcZhpObR6L7CNqzlkPTBiV5j9lrtCF309cTvX5x1wriwq+StVLzRImatHlLcW7TXHI37srV47sIP3eUyEtnErURFRSARyZ/+7FnxhxEBZ8FIF/L3uyb8D7x0REUev5jgvdvxBgnfItUTTJOEUkdlKgRSYUKFy/J8SOH+Oz9XlSqXptaDZoCEB8fz7CBH/DP1s1gWVy6GMiBPbvtiZrqdRvik9b2dKhwsZIULl4SN3d33NzdyZO/EKdOHLMnap5p1xEXFxdc0qShacu2bFm3OlGiZtXShfy7YysTx3wPQFRkBFmz5SCNT1ryFijE+907UaNeI+o0ambfEvxGVWvXZ86qrfd072/1H0jmLNlwcnLijxm/8frzT7N06wGcr41+eVAFChdl0vwVAMTExNDluab88OssJo39gX/+3kTGzH70HfS1RteIiIjcJZ9cxQk/e4T9E/uRoWg1MpepD4CVkMChaYMIObwNsIgOuUDoyb32RE3GknVw9Up7rY2i+OQsjpOrO06u4J0tP5EXTtgTNbbRJS44ObuQtcozBO9bnyhRc2HHUq4c+4eTi8cCEB8TibtvNlw8ffDOlp9/x/QgU6m6ZC7b0L4l+I0ylqhF1cHL7/q+Y8OvcHjGEMq/PyPJ8hKvDefglE84u3YG3jkKkaFQJZycXe+6fYA0OQpT6aN5ACTExbDty7aU7T2Bk0vGEXJoK27pMlP4xU81ukYklVGiRiQVypknHws27GLz2pWsW7GU7wd/zLw1O/j1x+FcvRLC9CXrcffw4JN33iAmKsp+nrv79adDTs7OuHlcP3Z2diY+Li7J61mWhTGJF/+3LIsffp1Fzjz5EpVNXbyOf/7eyJZ1q2nToCpjpy+gcPGSN9W5nxE1WbLluKnOVwPeI/DsGbLnzJ1kO0nJliMnZ8+csh+fCzhN1hz+ier99MPXtH7xFa6GXGblkoVMnLuMkV8NYtHsaTzb/uW7vp6IiMiTzMsvN9W/Wkvw3nVc2r2SI7O+oOqQlZxc8iNx4Veo/OkinN082Pvzu8THXt8d08nV3f6zMc44ud1w7OSMFR+f9AUtC5Lot4BFmd4T8PJL3Geo9MkiQg79TfC+DWz+uDHl3puKT65iN9W51xE1YWcOEB0SyJZPbQ/UYkODubjzL2LDQsj/7Nt4+eWmbJ+J9vob3q+Fd/aCidr2yJiDqBtG2kQGBeDhmz1RveMLRuJf5wViw69wYcdSKvafzZHZX3Nu4xxy1Lr9+n0ikrIoUSOSCp0/e4Z06X2p3+wZqtVpSN1SebgSEkzolRAyZcmKu4cHgecCWLV4Ie06vXZf15g/awpNWrYhJjqapfNn81b/gYnq1G3cnJ9GfM2AoSNxdnbmctAlwsNCyZAxExHhYVSsVouK1Wqxa9tmDh/YmyhRcz8jagLPBdiTNetXLsPZ2Rm/G5I3d6Nh82d5+ZkGdH/3I9L7ZuT3yT8nWoD45LHD7N6+he7vfsjBvf/aE1VOTk5EhIfd0/VERESeZFHBZ3H1To9fhaZkLFmbNb3KEhseQlzEVdzS++Hs5kFU8Dku7liKf/37exBydsPvZKnyDAmxMZz/eyEF2yR+EORXtjHHF4yg2CtfYZyciQkNIi4yHDcfX+Kjw/EtWg3fotW4cmQbYWcOJErU3OuImgyFK1N39B778Z6xb5E2X2lyNewMQPSVS7ilzYgxhoC1M3Bydce3eOKp1lkqPsXWz58l/7Nv45rGl4DVv5G1aqub6oSfP8aVI9vJ/+zbhJ7aB9j6LcY4ER8Vftcxi0jKoESNSCp0eP8evv3sIwASEuLp0qsvflmz06Hrm/Tp8gKt61Uiaw5/Kteqe9/XKFaqLF2ea0rguQAaP9060bQngA8+/4ZhA/vRqm4FjDG4ubnz/mff4OLqSu/OzxMdGUmClUCxkmVp+FTL+47lRv17vErQpQsY40Qan7SMnDQbFxfbR9miOTMYNrAfV69cZtWSBfz8wzeMm7mIAoWLMuLLgfhlzUa7Tq+RM08+ur3djxea2jpD1eo0oEWbF266zlcfv8cHn38D2Kaa5cydl2dqlSWDbyaGT5yJiIiI3J3Q0/s5PGMIAFZCPHlb9MQjQ1ZyNXqVXSNeY9NHDfHwzZ5kkuJupc1Tku1ftiX68nmyVGqeaNoTQOEOgzg0/TM29q+PMQYnVzcKvzgIJxcXdg7vQkJsFFZCAmnzlMSvQrP7juVuXfxnKScWjgJj8PTLTZm3frE/GDoyeyju6bOQs/7LePnlJl/L3mwZaFtkOGOJ2mSv3vqmtg5O+YTCHWyjfXxyFcPLLzcbPqiDm48vZXr/goikLsayLEfHIPLEMMZYey9E37mig3Vq2ZBO3XsnmZyR5FXczx3LspIany0iIpJiGWOsRpPPOToMwLbrU55mbySZnJF7t6xjNvVNRBzs9nvYioiIiIiIiIjII6OpTyKSyMR5f925koiIiEgKUPHDOY4OQUQkWWlEjYiIiIiIiIhICqFEjYiIiIiIiIhICqFEjUgq1KllQ1YvW+TQGPr37EK90vkY0r+P/bVVSxfSvFpJmlQqyjtdXyQyIuK2bcybPpnifu5J3ktSZRNGfctTVUtQIovHPd3/pQuBdG3TjGZVivNsnQrs3v53kvXmTp9ElQJ+tKpbkVZ1K9Lr5TZ3VRYeFka/NzvTsnY5mlcryYRR39rLli6YQ4sapaleJPtdxysiIvKk2Dq4FRf/ceyU6z1j32JNr3IcmPSR/bULO5axvm8N1r1TlV0jXyc+Ouk+TfSVi2z/qh3r36vOxv71CTmyw15mJSRw5PevrpXVY8c3He4qntu1eaO4qHD+/bEnG/vVZX3fGpxYNCZRnZirl1j9Zkl2/tDF/tr5vxey4f1arHqjWKL6IpIyKFEjIvft1V7v0n/Id4AtWfHJ290Z9dsclvy9H+80PkwY/d0tzz1/9gyzJv1E6fKV77qsQrVajJ4yjwpV7237zu8Hf0z5qjX5c/NePvpyOH3feJlb7XhXpVY95qzaypxVW/nh11l3VTZ++Fe4urkxd/V2Zv61mfmzprJr2xYAGrdoxY9T/7ineEVEROTRytuiB0Ve+hywJUD2/fIuZd+eRM1hm3DxSMOJP39M8rzDM4eQoXAVany9gaIvD+HfMW/a+xgnl44j/NxRqn2xmmpDVlK86637RXfb5o2Ozx+Ok4sbVYespMqgZZzd8DshR7bfVGf/xH5kKl3/pteyVmpOuXen3FUsIuIYStSIONCYYUP48uN37cchwUFUK5yNiPBwNq9dyQtNa9G6XiVa1i7Hn3NnJtnGf0fX3Hh8MfAcvTs/T7vG1WlZuxzjvv/qod3L+pVLKVGmHLnzFQSg7ctdWfLHrFvW//Sd7rz/2de4ubvfdVnJshXIna/APce25I/fafdyVwDKV6mOu4cHe3Zuv8NZd+/g3t1Ur9sQYwxe3t5UrFaThbOnJVv7IiIiKd3Red9y4LcB9uOY0GBWvVGMuKgIgvauY8vA5mz6qCEb+9Xl3KZ5Sbbx39E1Nx5HhwSy84cubP6kKRv71eXY/OEP7V4u7VpJ2ryl8c6aDwD/eh05vyXphy6BW+bjX/8lADIUroyTqztXj+8C4OTisRRs9yFOLq4AuKfLfFfXv12bNwo9tY+MJetgjMHFwwvfIlU5t/H6wsrnNszGLV1mMhSpepd3LiIphXZ9EnGgZ9p1oH2Tmrz7yZe4uLiwaM506jVpgZe3N0VLlWXywlU4Oztz6UIgbRtWpXrdhqRLn+Gu2+/3Zme6vdOfClVrEhMTw6utm1CiTHmq1WlwU70jB/fTt9tLSbZRrXZ93v30yzte69yZU2Tzz2U/zpYjJ+cDziRZd/qEsRQoXIxS5SvdU9n9CAkOAiwyZMyUKLaSZSskqr9t0zpa1a1IGp+0vNrzHWo3bHbHsmKlyrFswRzqNX2asKtX2LDqL/IUKJQs8YuIiKQG2Wu0ZcunT1Go/QCcnF04v2kumcs1xsXDi7R5SlLp4z8wTs5EX7nI5o8bk6lUHVy90991+//+2It8LXvjW6QqCXExbPuiDenyliFjydo31QsLOMi/o99Msg3fErUo3H5AkmU3igoKwDOjv/3YI6M/UUFnE9WLCQ3GsizcfDLaX/PMmIOooAC8s+UnJjSYwC3zCdy2GOPkRN7mPfAr3+S2175dm+nylbmpbtq8pQjcuhC/8k2Ii7zKpX9X450tv+0eLp/nxJKxVPxwLoF/L7zjPYtIyqJEjYgDZffPRf7CRVi7fDH1mrRg3vTJfPD5NwBcDrrIx2+9xsnjR3B2duFKSDAnjhyidIXEU4WSEhEeztaNawkOunT9tbBQjh0+kChRU6BwUeas2pp8N3YbZ04e5/fffuG3havvqexRqNOwGU2faYOHpyf7/93J6+1aMGHeMvIXKnrbsi693uObgR/QtmFVfDNmomK1WlwODnLIPYiIiDiCZyZ/0uQoxKVdK/Ar15iAdTMo0mEQADFXg9g7vg/h54/j5OxCbPhlws8dJX2B8nfVdlxUBJcPbOTg5KAbXgsj7OzhRImaNDkKU3Xw8uS7sfuUEBeLFReDZSVQZeCfRAQe5+/PniGNfxG8suRJlmvkbd6DQ9M+Y/OAJrilzYhv0arEhAYDsO/ndyn0/Me4eHgny7VE5NFSokbEwVq2e4k/ZvxGztz5CL16hfJVagAwqG9P6jZuzvCJMzHG0KxKcaKjoxKd7+zsTEJCgv34/3UsKwGMYcayjbi6ut42huQYUZPNPxd/b1hjPz4XcJqsOfwT1du5bQsXzp+jRY3SAFy6cJ4BvbvR+6PPcHP3uGVZqxc63TGGpKT3tT2Ruhx0yT6q5lax3TjqpmjJMpStXI1/d2wjf6Gity3z9PLi469+sJcP6tuTfIWK3Fe8IiIiqVX2mm05u24mnplzExcRSobCVQDYP/EDMpdrROm3fsEYw/r3qpMQG53ofOPsYuu/XGOvYyUAhsoDF9unEd1Kcoyo8ciYg+D9G+zHUUFn8MiYeFMANx9fAGJCg+wjYCKDAvDImAM3H1+cPbzJVq01AF5Z8pI2d0muntxz20TN7dr8L2d3L4p2+sJ+vG/iB3hnt01BDzmynbCf3gYgPiqc+Jgodnz9IuXe09o0IqmBEjUiDtaw+bMM/aQvE0Z/R8vnrydLQq9cIUfO3Bhj2Lh6OaeOH03y/Jx58rFn53bqNWnBkYP7ObDHNofZO40P5atU56cfvuaNd/oDtgSFi4srmbNkvamN5BhRU6NeIwZ/0JuTxw6TO19BZv46niZPP5eoXvPWz9O89fP2404tG9Kpe2/qNHrKXn6rstv57vOP8MuWnRdf7Z6orFGL1sz4dTzd3u7H9s0biI6MpHjpconqBZ4LIEs2W0fo7OmT7N7+N93e7nfHsrDQq7i4uOLh6cnBvf+y4s/5zFq+6Y4xi4iIPE6yVHyKg1M/5eSfY8hRs6399diIK3hmyokxhqB/1xAReDzJ8738cnP12E78yjUmLOAgoaf2AuDimYYMhStzfOEI8re0JR+iggIwzq64p/e7qY3kGFGTqVRdDkzqT/j5Y3hnzceZlZPJWunpJOtmrdSCMysmka9lHy4f3EJCbBRp85SylVVpSdDuVfjX60j0lUuEnt6Hj39hAA7PGIy7bzZyNex8T23eKC4yFOPsgrObJ6Gn9nFh22KqfLYUgHo/7rfXC1g7g4s7/6JMr58e6H0RkUdHiRoRB/P08qJekxbMnfYrS7cdtL/e56PP+ez9Xvz0wzcUKlaCQsVKJnn+qz3f5e0uL7B+xVIKFStJ0RJl7GVfjf6Vrwa8R8vatqSEt7cPnw0fmyhRkxy80/jw6bBRdH/xWeLj4ylasgwffD4MgAvnz9Kt/TMPnAz6ZeQwfhs/iuCgi3zYqyvu7h7MX7+TND5pObTvX4olkXwB23v5QfdO/DFjMh4ennwxagJOTra11Af06Uadxk9Rr0kLpv3yIyuXLMDZ2fbR+Fb/QRQtWQbgtmWnTxznna4v4Ozigru7B1+NmYhfVm3HLSIiTxZndy/8yjUhYO10an67xf56obYfsv/XfhxfOBKfnEXxyZn0ttB5mvdg14iuXNq9kjQ5i+GTu4S9rOQbozg45RM29qtru5ZHGkp0/TZRoiY5uHimoVjnr/ln2EtYCfGkzV2C3B0+A2xrv/zzTQd7Mqhguw/598cenH13Fk5uHpR8fQTmWh+jYNt+7BnXh5PLfsYYQ4E2/ewjXkJP78cnb+kkr3+7Nvf+9A6ZyzXCr1xjIi6cZPfI1zFOzji5ulPyjVF4ZEj+Pp6IPHrmVlvUikjyM8ZYey8kHuqbGvXv2YXiZcolOYLlUUtISOCFZrWY+udaewImJQk4dYK2jaqx4UDihQiL+7ljWZZxQFgiIiL3zRhjNZp8ztFhJIs9Y98ibb7SSY5ueRishAS2DGxO5U8W2hMwj1rkxdNsHtCYumP2JSpb1jGb+iYiDpbyvtGISKrgkzYtU8aPYkj/Po4OBScnJ6YvWZ8ikzRLF8zhzY6tyJg5+Z/4iYiIyINz8fLh1LKfOTDpo0dyPePkRJWBfzosSXP+74X88+1LuN3lduEi8uhpRI3II/SwRtQ0LF+I0b/NpWDR4sne9v0KOHWCppWLUaBIcayEBDy9vPl46AiKlkx6mO/dupd1a5Iyd/okylasQp78tu2zVy5ZwI7NG+5qweSHQSNqREQkNXqQETVr+1Sk7NuT8cmZchbej7x4mvXvViWNfxEsK+HaQr1fkvaG6Vf3Y+vgVuRp9gaZyza8r/MD1s4gfcEK9m23L+xYyuWDW+5qUeT7pRE1Io6nNWpE5KHxSZfevi7N5HEj+Lj3a/y+YstNdeLi4nBxeXQfRX9Mn0wG34z2RE29Ji2o16TFI7u+iIiIpEwuXmnta8+cXDqeveP7UPXzv26qkxAfh5Pzo+u3nF03AzcfX3uixq9cY/zKNX5k1xcRx1CiRiQV2bl1M98M7Ed4WCgA737yBdXr3vyEZuLo7/hz3izi4+Jwd/ewj2KJjIigf89XOXJwHy4uruQtUIhvf5rK8SMH+bBnVyIjI0hIiKdlu4688ubbyR571doNGD7E9vSnYflCtHqhE1vWryZn7rx88PkwhvTvw56d2wBo8dyLdOn1LmDbOvyjt7oSFxtL/kJFb9qi/L8jiW48PnpoP19++A6XLgRiYdHpjT5YVgJ7dm7ni/5v88MXn/Lep19y/lwAa5b9yfe/TKdz68Z06PIm9ZradnZYtXQhv/74AxPnLuNi4DkG9+vDuYDTREdF0uzZdrzW+/1kf59EREQeFyGHt3Fo+iDiIsMBKNT+YzKVrHNTnRN//sj5zfOwEuJxcnW3j2KJj45gz9i3CAs4iHF2xTtbfkr3HEf4uSPsGdeb+OhIrIR4ctRsR56n3kj22DOWqMXhmbatr9f2qUiO2u0J3rcBr8y5KdzxMw5M+pArx3YCkL3Gc+Rt3gOwbQ++Z1wfrPhY0uQodNM25P8dSXTjcVjAIQ7+9jHRVy6CZZG72RtgJXD1+C4OTP6II79/RaH2A4gKPmffwWnbF23I1ehV/Mo3AeDCjmWcXDKWiv1nEx0SyP5JHxIVFEBCTBRZq7Yk39NvJfv7JCIPhxI1IqlEyOVgenVqy/AJMyhbqSrx8fGEhV5NVO/pth3o1N22bsymNSsY1LcH0xavY8Oqv7gacpkF623bd18JuQzA9AljqdmgiX0L7/+//l+9Oz9/yy3Cp/65Fg9Pz9vGv2z+bIrcsCPVxcBzTJy7DIBhg/qTkJDAvDU7CA8L5YVmtShcvAQ16zeh35uv8GKXN2n5fEd2bdtCh+Z1bnsdsI3S6fnSc7zVfxCNn24NQEhwEOl9M/LHjN9umjo1d/ok+3kt273EHzN+sydq5k2fzLPXtkzv92Znur3TnwpVaxITE8OrrZtQokx5qtVpcMd4REREnjSxYZfZObwzZXr9TPpCFbES4omLDE1UL3uN58jTrBsAQXvWsn/C+1T+dBGX/l1NbMQVqn+11tZeeAgAp5dPJFPpevZtuv//+n/t/KELkYEnkiyr9MkCnN1u328J3LKQtHmuT3uKDrlAxf6zATg0/XMsK4FqX6wiPiqMLQObkyZnUTKXrs+/P/YkV6Mu5KjZlpAj2/l7UNLbet8oIT6Ond+/QoHnPiBrZdso35jQYNx8fDm7buZNU6cC1s6wn5e9ZlvOrp9pT9ScXTeDHLXaAfDvj73I17I3vkWqkhAXw7Yv2pAubxkylqx9x3hExPGUqBFJJXZt20z+wkUpW6kqAM7OzqRLnyFRvb27dzD++6FcCQnGyThx4thhAAoXL8nxI4f47P1eVKpem1oNmgJQvkpNvhn4PrGxMVSqXpvKNeokef3vf5l+zzGHXgmhVd2KWJZFztx5GfzDeHvZM2072H/evHYlH3w+DGMMaXzS0uzZdmxas5Kylapx+MBenm77IgClK1SmYNE7zxU/ceQQ8XFx9iQNQHrfjHc8r2HzZ/lqwHtcDrqEMYZtm9bxxchfiAgPZ+vGtQQHXbLXjQgL5djhA0rUiIiIJCHkyHa8sxcifaGKABgnZ1y90yeqd/XEbo7N/4HYsBCMkxMR548B4JOrOOFnj7B/Yj8yFK1G5jL1AchQpAoHpw7CioslQ9Hq+BarnuT1y/T66Z5jjou4yqYPG2BZFl5+uSjx2nB7WfYabew/B+1dS5EOn2GMwcXTh2xVWhK8dx0ZClUi7MxBsld/DoD0Bcrjk7PoHa8bce4oVnycPUkD4Obje8fzslR8ioNTPiEmNAgwXD6wiRKvjyAuKoLLBzZycHLQ9XuLCiPs7GElakRSCSVqRFKJu1n4OyYmhj6d2zNp/gqKlSrLhfNnqVsqLwA58+RjwYZdbF67knUrlvL94I+Zt2YHjVo8S5mKldmwejk///A1c6f+yldjJiZq+35G1Ny4Rs1/eXmnuenejLl5zbr/H//39Rs5OzuTkJBgP46OirK3dz88vbyo16QFf861Pa2q16QFXt7etqlmxjBj2UZcXV3vq20REZEnyl38LU6Ii2HXD12p+NFc0uYpRdTl86ztVRYAL7/cVP9qLcF713Fp90qOzPqCqkNWkqVic9IVqEDQv2s4sXAEZ9dOo+QboxK1fT8jam5co+a/nN29b763RP2TO/dbjJMLWNf7Lf+fFnW//RZndy/8yjXh/KZ5APiVa4KLhxdxkWGAofLAxTi5qN8ikhqlvL1sRSRJZSpW5ejB/ezcuhmA+Pj4RNOUYqKjiI+PI2t2fwCmTRhrLzt/9gxOTs7Ub/YM73/2DZeDLnElJJiTx46QyS8rzz7/Em+8+xH//pN0YuX7X6YzZ9XWJP/dadrTnVStXZ/ZUyZgWRbhYaEsnjeTKrXrkcYnLQWLFGfRbNtont07tnJ4/x77eTnz5LOva7N57UqCLgYCkLdgYZxdXFg6f7a9bkiw7amSt48PYVcTTxn7v5bPd2Te9MnMmz6ZltemPXmn8aF8ler89MPX9nrnAk5zMfD8A923iIjI4yp9wQqEnz1EyGHb32krIT7RNKWE2GishHg8fLMDtmlN/xcVfBbj5IRfhaYUfnEgMaFBxIaHEBF4HPd0fuSo1Y58z75jXyfmv8r0+omqg5cn+e9O057uJGOJ2gSsnoplWcRFhnFu8x9kLFETF08f0vgX5tymOQBcOfoPoaf328/zypLbHm/Q3nXEXLkIgHf2AhhnF85vWWCvGxMaDICLpw9xEbfut2Sv1ZaAdTMIWDeD7NemPbl4piFD4cocXzjCXi8qKIDokAsPdN8i8uhoRI1IKpE+gy/DJ8xg6IC+REaEY5yceO/TL6lau769ThqftPToO4B2jauTLUdOata/vivA4f17+PazjwBISIinS6+++GXNzrjvv2Lh7Gm4urphjKHf4GGP/N66vd2fwf1607J2OcC2mHDNerbYh4z8hY/e6sqvPw6nWOlylCpf2X5er34D6d/zVX7/7RfKVqxKNv9cALi4uDBi0u8M7tebMcMGY4wTr3Tvw9NtX6RNx1f55tMPmDD6O9795ItEsZSvUsO+9k/5KteHU381+le+GvCePUZvbx8+Gz6WzFmyPpw3RUREJBVzTZOBMr1+5uDUT4mPjsAYJwq1H0DGErXsdVw8fcjf6j02f9IUj4w5yFSqnr0s9PR+Ds8YAtiSPHlb9MQjQ1aOzR/OuY1zcHJxA6Bwh0GP9saAfC37cODX/mzsVxewrbPz/9hLvP4De8b14eTisaTNW4r0Bcrbzyvw3AfsGduLgNVTSF+oIh4ZcwDg5OxCmd4TODDpQ47N+xaME3madSN7jTb41+3AwWkDObH4Rwo9/3GiWDIUrkJ8ZNi1n6/3kUq+MYqDUz6xx+jskYYSXb/FPb3fw3lTRCRZmfsdaici984YY+29EH3nivLEKO7njmVZtx4nLSIikgIZY6xGk885Ogx5CJZ1zKa+iYiDaeqTiIiIiIiIiEgKoUSNiIiIiIiIiEgKoUSNiIiIiIiIiEgKoUSNiIiIiIiIiEgKoUSNiIiIiIiIiEgKoV2fRB4hD0/P89FRUVkcHYekHO4eHoFRkZHa41tERFIVZzeP8wmx0erTPIacXN0D42Oi1DcRcSAlakRSOWOMG/Ad0AhoZVnWvw4O6bFgjPEAhgO1sL2v+x0ckoiISKqnfsvDoX6LyONFU59EUjFjjD+wBsgBVFBnJ/lYlhVlWdbrwFBgrTGmjaNjEhERSc2u9VvWon5LslO/ReTxokSNSCpljKkHbAX+wPbk5IqDQ3osWZY1AWgMfGWMGWaMcXV0TCIiIqnNDf2Weajf8tCo3yLyeNDUJ5FUxhhjgPeAPkAHy7JWODikJ4Ixxhf4DUgDtLUs67yDQxIREUnxrvVb+gK9Ub/lkVG/RSR104gakVTEGJMOmA20Biqps/PoWJYVDDQHVgDbjTE1HBySiIhIinZDv6UV6rc8Uuq3iKRuStSIpBLGmBLYhgyfB2pZlnXawSE9cSzLSrAsayDQBZhtjHnr2pNCERERucEN/ZZA1G9xCPVbRFIvTX0SSQWMMe2BH4B3LMua5Oh4BIwxebE9JTwEdLEsK8zBIYmIiKQI6rekPOq3iKQuGlEjkoIZY9yMMcOBz4AG6uykHJZlHQeqA+HAFmNMYQeHJCIi4lDX+i0/oH5LiqN+i0jqokSNSApljMkOrATyARUty9rl4JDkPyzLirQs61XgO2C9MaaVo2MSERFxhGv9llVAXtRvSZHUbxFJPZSoEUmBjDG1sc3rXgI8Y1nWZQeHJLdhWdZPQFPgW2PMUGOMi6NjEhEReVSu9Vu2AYtRvyXFU79FJOXTGjUiKci1Bd7exrb99kuWZS1zcEhyD4wxmYApgBvwvGVZgQ4OSURE5KFRvyV1U79FJOXSiBqRFMIY4wPMBJ4HKquzk/pYlnUJaAasB7YZY6o6OCQREZGHQv2W1E/9FpGUS4kakRTAGFMU+BsIBmpalnXSwSHJfbIsK96yrI+B7sAfxpge2gpTREQeJzf0Wy6jfkuqpn6LSMqkqU8iDmaMaQOMBt63LOsXR8cjyccYkx/bVph7gNctywp3cEgiIiIPxBjTFhiF+i2PHfVbRFIOjagRcRBjjKsxZhjwFdBYnZ3Hj2VZR4FqQDyw2RhT0MEhiYiI3Jdr/ZZvgS9Rv+WxpH6LSMqhRI2IAxhjsgIrgGJABcuydjg4JHlILMuKADphe/q4wRjzjGMjEhERuTfGmGzY+i1FUb/lsaZ+i0jKoESNyCNmjKmBbQvLlcBTlmUFOzgkecgsmx+BFsAIY8wQY4yzo+MSERG5E/Vbnjzqt4g4ntaoEXlEri3M1gvoD3SyLGuxg0MSBzDGZAamAxbQ3rKsiw4OSUREJJFr/Za3gH6o3/LEUr9FxDE0okbkETDGpAGmAS8DVdTZeXJd6+A0BrZi2wqzkoNDEhERuckN/ZaXUL/liaZ+i4hjKFEj8pAZYwoDW4AIoLplWccdHJI4mGVZcZZl9cM2wmqhMaabtsIUEZGUwBhTBPVb5Abqt4g8epr6JPIQGWNaAT8CHwI/WfqFk/+4tqPCHGAH8Ma1RfxEREQeOWNMa2z9lv6o3yJJUL9F5NHQiBqRh8AY42KM+Qr4FtvCe+PV2ZGkWJZ1GKgCuAAbjTH5HRySiIg8Ya71W4YCw4Bm6rfIrajfIvJoKFEjksyMMVmAZUAZbFtYbnVsRJLSWZYVDnQAfsLW6Wnu4JBEROQJca3f8hdQGvVb5C6o3yLy8ClRI5KMjDFVsW1huQHbE6lLDg5JUolrW2GOBJ4FxhhjBmkrTBEReZhu6LesR/0WuQfqt4g8XFqjRiQZXFtQ7U1gAPCqZVkLHBySpGLXnm5OB2KAFyzLCnJwSCIi8hhRv0WSk/otIslPI2pEHpAxxhuYDHQBqqqzIw/KsqxAoCGwC9hujKng4JBEROQxoX6LJDf1W0SSnxI1Ig/g2sr3m4AEoJplWUcdHJI8Jq5thdkXeAf40xjTxdExiYhI6nat37IZiEf9FklG6reIJC9NfRK5T8aYZ4DxwCfAj9odQR4WY0xhbFthbgZ6WJYV6eCQREQklbmh3zIAGKt+izws6reIPDiNqBG5R8YYZ2PMEGAE0MKyrDHq7MjDZFnWQaAy4A2sN8bkdXBIIiKSSlzbevsLrvdb9HBJHir1W0QenBI1IvfAGJMZWILtj095y7K2ODgkeUJYlhUGtAcmAZuNMU0dHJKIiKRwN/RbKqF+izxC6reIPBglakTukjGmErYtLLcBjS3LuujgkOQJc20rzOFAa2C8MeYTY4w+x0VEJBFjTGVgO7AV9VvEAdRvEbl/WqNG5A6ubWH5OjAIeM2yrHmOjUgEjDHZgBlAKNDRsqxgB4ckIiIpwH/6LV0ty/rDwSGJqN8ico+U0RS5DWOMJzABeBOoriSNpBSWZZ0D6gMHgW3GmLIODklERBzMGOMFTOR6v0VJGkkR1G8RuTdK1IjcgjEmH7ARcAWqWJZ12MEhidzEsqxYy7LeBj4AlhljXnF0TCIi4hjGmPzAJsAF9VskBVK/ReTuKVEjgm3kjDHG+Ybjp7B1dn4GOliWFe6w4ETuwLKsmUBtoK8xZqwxxsPRMYmIyKNjjGmOrd8yHvVbJIVTv0XkzpSoEbGZATx9bevtQcCPwLOWZY3UFpaSGliWtQ/brh6+wDpjTG4HhyQiIg/ZtX7LZ8AYoKX6LZJaqN8icntK1MgTzxhTBqgAbAEWAbWACpZlbXRkXCL3yrKsUKAtMB3YYoxpBLbh8MaYIQ4NTkREHpgxppoxpte1nzMBfwI1UL9FUiH1W0RuTbs+yRPPGDMdOA88A8wC+luWFefYqEQejDGmNjANGAUMB44Bda49wRIRkVTIGLMGGIdtQdbfgZmo3yKPAfVbRG6mRI080YwxhYDtQAwwEogECgJvWpYV5cjYRB6UMSYHtk58ELAbyGlZ1suOjUpERO6HMaYGMAn4Cvgc6GZZ1mzHRiWSfNRvEblOiRp5ohlj1gI1gXBsCZtt2Bbjm6053pLaGWOqApeBN4AW2OaBl7Es64Qj4xIRkXtnjFkM+GD7LH8Z8AJ2WpZ1xaGBiSQT9VtErlOiRp5oxphK2EbT7LYsK8HR8YgkJ2PMeKAJkAYIAIoCf1mW1cShgYmIyD0xxjQElmH7LI8G/IBdwOuWZe11ZGwiyUX9FpHrXBwdgIgjWZb1t6NjEHlYLMvqCmCM8QPKA82ALA4NSkRE7ocvsALb1KdtwEHLsuIdG5JI8lK/ReQ6jah5QJ7uruejYuL0ASJ2Hm4ugZHRsVkdHYeIiIiIiIikPkrUPCBjjBXy5zBHhyEpSPpm72BZlnF0HCIiIiIiIpL6aOqTiEgK5O7heT4mOkqj9cTOzd0jMDoqUqP15IE4u3mcT4iN1meL2Dm5ugfGx0Tps0WSlaeb6/moWM06eNJ4uLoERsZoZkFyUKJGRCQFiomOyjJnf5ijw5AUpFXRNOrwygNLiI3OUu/Xs44OQ1KQlS9n12eLJLuo2LgswbM+dHQY8oj5thmsz5Nk4uToAERERERERERExEaJGhERERERERGRFEJTnx4DCzf+y6Bf/8Td1YVfPuhIQX+/h37Nk4HB1H3rO45N/+yhX+thiYiK4a0fZrLn+Dksy6Jo7qz88FZbfLw8EtVN3+wdiuXJhpOTbY3gse+8QPG82R51yCJyBwHHD/FOq+o0ad+VTn2HJFln9rhvWDt/Ok4uLnh6+9Dt0+HkKlgMgAsBJxk3sA/nTx/HydmJpzv1osFzL3Mh4CTdG5ey1wMY+MtCfDJkfCT3JSKOd3btdE4vHY9xMlgJCWSv/QI5G3VJsu6JBSMI3DQHKyGOtPnKUeSVoTi5unPl8FYOTx9EXMRVADKVrk/+th9hnPTsVKTWu+NZOrgTnu6uj/S6Yxb9zXM1ipM5nTcAE5ZtJzImju7NKz/SOO7X4YAg6vT9ic6Ny/PZSw0A+HLmWn5Zup2sGdIAULlITr7u0iTJ85dsO8Qnk1cSF59A6XxZGflmC7we8X8DSUyJmsfAxMWb6d+hCS1rln4k14uLj0+WduLjE3B2frCOSfDVcHzTet/XuROXbCYmLp6No98F4OUhk/hl0UbealMvyfrLhvUkjaf7fccqIrdmWRZhVy7jk973vtuIj4/nx096Ubl+81vWOb5/N0un/8wPC7fh4eXNosmjmfT1R3w0bg6WZfFVz/a07d6Pyg1aYFkWV4Iv2s/19knHt3M33Xd8IuJYlmURFx6Ca5oM93W+X8WnyFazHcYY4iLD2PJhXTIUqUaaXMVuqhf072oCN8+jwieLcHLz5MCE9zi1dBx5mvfE2dOHYl2H45U1Hwmx0fzzVVvOb5pDturPJcMdiqRua7/p6pDr/rjob2qXzGNP1LzSqPwjua5lWYSERZHBx/O+24iPT+DtcX/SrGLhRGXtape0J25uJSwyht4//smiz14ifzZfeo1ZyMj5m+nbpuZ9xyTJQ4mahyh9s3f4+OWmLNy4h+DQcAZ1bsEzNUoBsHzbAQZOXER8gkWmdN5837MN+bJnumVbx85eoveIWVy6Eo6LsxMDXm5GgwpF6DfuDzbtPcbhgAv8tGgDC7/snuT5RTsOZO2It8mc3oc2A8ZjjGHmwC5cDAmlVs9v2T/5E8Iio+k7Zi7/HD4NQLt65el9LWnx1PujqVw0D9sOnsTDzZWvu7eytx0dG8frX08le6Z0DO76NH9tO8Cw6cuJio3DzcWZIa89Q8UiuVm3+wj9xv1B1eJ5+efQad59viHng68wet5a3FxdSEiwmNivI4Vy3n4NqhPng5i95h9+X/0PT1UpwUcvN72n/y7/Z4DI6Fhi42yJp4ioGLJnSn9fbYmkZtGREfzQ7zVOH9mPs4srOfIW5N3vJrPn77X8PKQvBUtW4NCuv3F2ceWtr8Yzc/QXnDq8j0xZ/en7w1SMMbxWrwgj/txB2gy2z7EJX/XDK40P7d7sf9trnzq8j7ULZ7JpyVye7tyLxu1eve/7mDt+GOXrNCUqIoyoiPCkKxlDfFws0VEReHh5Ex56lYxZswOwa+MqPL3SULlBi2tVDekzPvwRiiJPgvjoCPaN7014wEGcnF3xypqfEj3Gcnn/Rg5PGYBPvjJcPboD4+xCsddGcGLet4QFHMDDNzsle/0MwMa3K1L5y7W4+dhGsh2eNhAXjzTkffad21477MxBAjfN4cLWheRq2o0cdTve1z24ePrYf06IicSKjwNjEl/v9D7SF66Es7sXABlL1eP43G/I07wnafyL2Os5ubrjk7sEUZfO3Fc8Io8b3zaDOTXpPdJ4ulG6+0ja1SrJ6t3HCQwJo0eLynRtWhGAg2cu0W/CMi6EhGNZFj2erkL7OqU4fzmU939eRsClK0TGxNG6RnHeblUd4JbtDZu9nvPBobwybA7urs6Me6sl8zbtJzwqhs9eakCFnqOZ+E5rSuSxfT8Zt3gru46dZ9SbLTgcEET/icsIDo0kJi6ebk9V4sW6d35wvv/0RX5ft4c/Nu2nx9NV6NSw3H2/Z9/P20ij8gUJj4ohPCrmns9fvvMoZfJnI38224OyVxqVo/vIBUrUpABK1DxkPl4erBrem817j/PKl5N4pkYpLoaE8vo3U1k0tDtFcmVl0tItdB06hRXfv3XLdroOncLLTavwUuPKHDh1nmZ9R/H32Pf54rVn2H00gJ6t6tCkcrFbnl+zVAHW7jrC09VLcSrwMhYWsXHxrNl5mJqlCgLw9bS/SLAsNo5+l9DIaBq9/QPF82SjYcWiAOw7eY45n7+Gi7MzJwODAbgcGkGHzyfSvGoJ3mhZi+PnLvH1tL+Y/flrpPXyYP/J87QZMJ49v35sa+PEOb59szVfv2FL9OR67kM2jnkX/8wZiI6NIz4+Icn4g66EMXfdLn5fvcP2wVurDLMGdcE/s+2pWEhYJM0/GJ3kuUVzZWF83w6JXn+lWVW2HjhJwRc/BaB+ucK0qXvrD8rm748mLiGBhuWL8EGHxri76tdHHg//rF9O+JUQfli4HYCwK5ftZWeOHqDXF+Po/tlIxg3qw6CuLfly+ioyZc3B56+1Yt2iWTRs04lK9ZqzbuFMnurYnfi4ONYvmsUX01Ykeb1L5wNYv2gW6xbNwsPLixrN2jBk2nLS+WYG4PSR/Xz3Xuckzy1drR4vvzc40esnDu5h5/rlDPx1MbPGfHnLe81bpCQtOvWkW4PiePukw9snHZ9PXnrtXveTJr0vX/fuwPlTx8iaKx+vvP8lmbL5AxAZHsp7z9XEsixqNHuOZzq/hUniS5qIJBb87xriwkOo8sUaAGLDQ+xl4WcPUbTr9/h0/oaDk/qx65sXKD9gAR6+2dk1rAOBm+aSvc6LZCrXmMBNc8nZqAsJ8XEEbp5H+Y/mJ3m9qOCzBG6eR+DmeTi7e5GlSkvKfzQft7S2JE94wCH2/pj0wy3f4rUo8PyAJMsu7ljKsVlfEHnxJPme60eanEUT1fHJU4qzq6cSExqEi1c6Lvw9P8lkTMzVS1zY9iel35502/dO5EkVGRPLsiGdOHUhhOpvj6N9ndJ4uLnQYegsPmxfh5ZVbb9/waERALwxYgHvPVeDasVyERMbT8tBUyibPxt1S+e7ZXvvtK7BpBU7mfBOK4rluvZwZtN+ewztapdk2urdDO7UEIBpq2w/x8Un8NrweYx96xkK5chEaGQ09d//hYqFclAoR+KH7wFBV5m9fi9zNuzFy92N1jWKseTzl8l0bRTPgdMXeW34vCTfhzql8jHopfqJXt97MpCVu44x/5MOfD17faLyORv2sWrXcfzSe/NB21pUKuyfqM6ZS1fImTmd/dg/UzoCgq4mGYc8Wvqm+ZC1rlUGgIpFcnMu6CpRMbFsO3iKEvmyUySXbYv5Dg0r8u6o2YRGRCW5PkpoRBT/HgugQ0NbFrlIrqyUzJeDrQdO0rRy8buKo2bpAqz+5xDZMqajfOFcWFhsO3iS1TsPU7tMAQBW7zzMl68/gzGGtF4etK5dltU7D9sTNW3qlMPF2dneZnRMHE3eHUm/Do3t065WbD/I8XNBNOs7yl4vLj6BC5dDAcifPROViua5Ka43v5tBsyrFaVyxGHmyJV7vYcehUzR6ZwR1yhRiRO92Sa7Bkz6NJ+tH3v6J2n+t/ucwAAd/+wSALkOnMGL2Knq2rpuo7p5fP8I/cwauRkTx+jdT+XrqX/c9kkckpclTpCRnjh9i3KA+lKhUk/K1r89hzp6nIHmL2kYC5itWhotnT5Mpaw7bcfEynD91DIC6z77Iz0P68lTH7uxYtwz//IXxy5E70bU2L/uDr3t3oFaL5+k3aoY9CXKjnAWK3tMUo7jYWMYM6EGPwWNwvuEzKikXAk6xdeVCRi/9lwyZszDv5+/5od/rfPjj78THx7Nny1q+nLEK/3yFmT9xBD/0e41BE/8kQ+asjFt1kPQZ/QgJusAX3dvhnTY9Ddt0uus4RZ5kaXIVI+LcUQ5O6keGItXIWPr6lw6vrPnxyV0CAJ/cJYm6FICHr22km0+eUkRcOAFAthrtODTlY3I26kLw7pV4Zy+IZ+acia51Yduf7BnZlaxVW1PqrQl4ZMyRqI53jkJU+mz5Pd9H5nKNyVyuMVFBZ9g9vDMZS9fDO1uBm+r4FquBf4NO7Py6PU6u7vgWq0mw87qb6sRFhrH7+07kavI6PrlL3nMcIk+CVtVtD6Fz+aUnXRoPzgZfJT7BIi4+wZ6kAfD18SI8KoYN+04S9Mv1EbVhUTEcCgiyJ2qSai+ppMqN2tcuRcP+ExjYsT6HAi5xNSKaqkVzcvDMJQ4FXKLLd3PtdaPj4jl05lKiNhdsOUCnYbNpW7Mkv/Vti3+mtImuUyRn5nua+hUbF89bP/7JyO7Nk1xK4pWG5XinVXVcXZxZtesYHYbOYvP3r+Pr43XX1xDHUqLmIXN3sy3E9P9foLj4BCzL4l6ewVq3eN3cQyu1Sxfk62nLyZ4pPbXLFMSyLNbsPMyanYd5/4VGtutYVqI2b3xY7O1x8/osri7OVCiSiz8376VFtZI4OzthWRb1yxdm7LsvJIrh4OnARG389lEndhw6zdpdh2n+wRi+69Hanhj6v+J5szP23ReYuWoHLwz6haerl6J17bIUy3N9Md/7GVEz4c+NPF+/Ah7X/hu1qlma6Su3J5mo+f/InbReHrzUuDKj5q5J8loiqVHWnHkZsWg7uzetZse6ZUz5biDfzd8CgJv79eSxk7Mzru7uNx3HREcBUKxCdaLCwzh5aA+r5v5G3ZaJf+cASlWrS7eBI1i3aCaD33iO6k1bU6PZc2TNmdde515H1Fy+eJ7zp47x+eutAQgPvQKWRWTYVd4YNPKmuhuXziVXweJkyGwbwlznmfbMGGVbdDhz9pzkK14G/3y2ed61WrRj+ojPAXB1c7dPg0qf0Y9aLdpy4J/NStSI3CVPv9xU/mINl/etI2j3Ko7+/iWVPreNunNyvf65YpycbzrGyQkrJg6A9IUrEx8VTtjp/ZxbP5OsNdomeS3f4jUp0mko5zfPY/d3L+NX+WmyVH4GT7/ryeP7HVHzfx4Z/UmbryxBO5cnStQA5GzUxb7QcOCW+Xhnv14nPjqC3d+9hG+JWuRq2u221xF5kt04et3ZyYm4W4y8B0i49v1qxZedcXVJ+qHNvbT3f/6Z01HYPzPL/znC+r2neL5OSYwxWNgSRHeTXKldMi/fvd6M2ev20v7LGTxbrRitqhcjT5br62Xd64iawMthnAi8TLsvZgBwJTwKy4LQiGi+7/YUWa4tIgxQt3Q+cmRMy/5TF6le/OaHaP6Z0rF+z0n78ZlLV8iRMXEiSR49JWocoFLRPPT8fiaHTgdSKGcWpi7fRqn8OZIcTQO25EDJfDmYunwbHRpV4tDpQPYcO0uFIrnu+pq5svji7GSYtmIby4b1BKDROyNwdXEmp5/tQ6Ju2UJMWrqFysXyEBYZzZy1O/ns1Ra3bNPJyTCydzveGz2HV76czM/vd6BeucJ8NfUv9p88T9HcthFDOw6dolyhxLHGxcdz+sJlyhfORfnCuTh+LojdxwISJWrcXV1oXbssrWuXJfhqOPPW7eKdUbO5Eh7Fu+3q06p22fsaUZMrqy8rdhykZc3SWJbF8u0H7THfKCQ0Anc3VzzdXYmLj+eP9bspmS/x0zmR1OrS+QB80mWgcoMWlKlen1drF7xp+tPdqv1Me+ZPGMG+bRt466ufkqzjlSYtDdt0omGbTgQFnmXdoll8/VYHXFzdeLH3AEpVrXvPI2oyZ8/Jr5tO2Y+njxxMVER4krs+ZfHPzZo/phIVEY6Hlzfb1y6z7+RUrmYjpnz7KcEXzuPrl5V/1i0nd2Hbk+6QoAukSZsBF1dXoiMj2LryTyrUSXr3BBFJLCr4LK7e6clcvim+JWqzoXc54m6Y/nS3slZ/jlNLxhJycDPFXvshyTounj5kr/Mi2eu8SHTwOQI3z+PfkV1xcnEjX+v38S1e875G1ISfPYx3dtt08ZjQIEL2byBz+aRH10aHXMA9vR+x4SGcXDSSvM/0ASA+Jord33cibf5y5GvV956uLyJQKEcmXP7H3l1HR3F2ARz+zW7chYSEBAgECRII7u4UdytaoBSHAsVdirsXd3d3d5fglhAk7rrz/bGwkG9jQMIGeJ9zek525p2Zu+nmMnP3FaWCHefvxxv6ZGNuQqk8WZi54xwDmqjnV/HyDUZfqYhXtEiIubEhweFRie5vWbEAq4/e4PoTHw6Nbw9Azky2mBjqs/HkbZpXUN8rPPT2xcHaHAuT+F9MW5gY0rZKIdpWKcRrv2C2nr1H+2lb0ddTMqxlRSq4Z/viHjXOdpY8XtZP83rSplOaeXUAXvsFk+lDweX2sze8fB9EjkzaIxeqeGRn0H8HeeLjj6ujDcsPXaNBae0hncL3Jwo1OpDB0oxFf7fij8lriY1TkcHSlMUDWid5zJKBrekzZzPzd5xCT6lg0d+tyGCZdNL5fxU8cnLh7jMcbNR/tMYG+pTK/+lb7AEtqzFgwTZK/zUVUE8mXLWoW4Ln+kiSJKZ2b8ywpbtoPXY5q4a2Y/GAVvScuZGIaPVEvSXyuCRYqIlTyfw1fQNBoRFICgnnDFaM6vBbktezsTCl42+l6fhbaV6+9ef5G/8v+h187p9W1ek9Zwuluk0BIH+2TPRvoU5u+y7cYf+Fu8zp05yHXu/oM2cLkgSxsSqK58nK0N/FA5rw83j58C6rp6u/PVbFxdGoc39s7B15/fzRF52nUoPWdKuWj0oNf8fQOPmutbYZM9GgY28adOyN1xNPIsJCvyr+5BzcsBT/dz607DWcktXq8+jmFQY0KYuegSGm5pb0GL8AACMTUzoNm8q4rg2RZRlzKxt6TlgIgOfV86yfMw6FUklcbAxFK9SiVmvxTbggpFTYK0+ebFYXT2VVHFnr9MDQ2oHwN0+/6DyOZZtyrn9JHMs110zWmxRDG0ey1O5GltrdCHv9iLiIr88zr4+vwf/OSSQ9PZDBqWoHbN0rAuB9bBVRgW80xZcbU1qASoUqLhbnqu01BR2fU+sJuH+OmFB/Lt05AYB9sbq41Et8nkJBED7RUypYM7Apg/47yJTNp1EoJHrULUnzCu4s6lWfoSsPU6bfYgDMjA2Y81edZAs1XWoXpef8PRgb6LG4dwOt/XVLujHwv4MUzuGI84f5XPSUCtb904whyw8xZ9cF4lQq7C1NWdavkdbxn8tka0HPeiXpWa8kD7x8CY1IvED0LcatP8GNp29QKiQM9JQs7FlP83tYfugqPv6hDGlRAXNjQ2Z0rUXLiRuJU8m4Z8vIxLol0yQm4ctIspzYwBohJSRJkgP3TdN1GEI6YlW7P7IsixlGhW8iSZK87X7aFC6EH1OjPGYitwjfTJIkufLK17oOQ0hHjrXLJHKLkOokSZL9Nw/VdRjCd2bTdLzIJ6lEe+YhQRAEQRAEQRAEQRAEQSfE0Kd05NDl+4xZuU9r+4h2taleLPmxgu8DQ2g4bLHW9rql3TUTBguCIAiCIAiCIAiCkH6JQk06Ur1YnhQVZBJjZ2X+xRPqCoIgfK1+DUsxcf0xDI2Mk2w3rksj/hg2FYcs2VPlupvmT+L4jrWAel6cZn/9k2T7uUO7cWzbatZeeYOxqXp8dkigP0vG9uPJ3Rvo6elRplZjmnUfjOf1Cywe01dzbJDfe6wyZGTatrOpErsgCF/m0vCqFBm+G6VB0nnm5rQ25GwzDpOMLqly3Wc7Z+BzehMAjuWaaSYD/n9Bj6/yYMUg4qIjMcrgTL4/52JgoV6a9/Wp9bw6uARJoUBS6JGz1WiscpdIlfgEQfhy5f9ewsHx7TE21E+yXbMJG/i3Yw2yOVgn2S6lpmw5zfoTtwD1xMQfJzv+nEolU3PYSiKiYwDIaGXG9C61yGJvxcUHXgxYsl/T1jc4HHsrU05MVq8sZ9N0PHmz2KP4MOBoYc/65M1qnyqxC7ojCjW/gLI9pnF4Wq9kk1LTEUuY3K0h2RwzpMp1J687zLojlwFoVbUYA1tVS7J99xkbWHv4Ml5bJ2BmrJ4tvfPkNZy+9YQ3/sHxtgOsPnSRBdtPoVAq0FMomNClPqXzp86DoCAIyUvpykzDFm9LtWvevXyG8we3M3PXJQD+aV6RfMXKkq9Y2QTbXz6+DwntodJzhvyJe4kK9Ju2AoBA37cAuBUqGe99TerRArfCpVItfkEQvkxKV2Yq2H9Nql0zwPMC7y7tocSEYwBcGV0Hq9ylsHaLP8GmLMvcW9STPJ1nYJWrBM92zuTJpvHk+WMGMaH+PFo7klKTz2Jgacf7awfxXDGQkhNPplqcgiB8mZSuqrRpSItUu+a5ey/Zed6Ts9O6AFBtyArK5M1K6bzxF1pRKCS2DG2Bhal6FeCFey8xbOURVg1oQonczvFibzN5MyXcMsc7/sC4dpgZG6Ra3ILuiTlqfgFn5vZPtkgDsHlM51Qr0py9/YQdZ25yfsEAzi8YwI4zNzl7+0mi7fdfvIskaT9MtalegtNz+2lt9w8OY8iineyY8Cdn5vZnYKtq9J2zJVViFwThk/OHdtCzdiH6NyrNlkVTaJTHTLM60+c/d62Sl/Wzx/JPi8p0rZKXfWsXas7RtUpeXjy8myrxnN2/lQr1W2FoZIyhkTEV6rfi7P6tCbYNCfBj07yJtP9nYrztr58/5sWDO9Rp+5dmm1WGjFrHB/q948bZo1Ssl3o3bIIgaHt3eS8X/inHpeHVeL57NsfaZSI2Mgwg3s/n+hfn6bbJXBlTl3P9i+N1eJnmHOf6FyfUyzN14rm0E8cyTVAaGKM0MMaxTBPeXdqp1S7k2U0U+oZY5VL3knGq/DvvLu0G1EUcgNhIdY6MDQ/G0NoxVeITBCFxuy54UqL3QioMWMr0bWexaTqe0IhogHg/F/xrLhM2nKT6kBUU/GsuS/Zf1pyj4F9zuffyXarEs/3cPZpXcMfYUB9jQ32aV3Bn+7l7Cbb9WKQBCImISvDZ6H1QGMdvPqV5+fypEp+QfokeNT+JnWduMW7VPowM9GlQriBjV+7X9ECxqt1f87N7+3G0qFKUE9cf8sY/mJ6NK9KlrvqbaPf249g4qhN5Xb79RmL7qRu0rFJEUyBqWaUI20/doIy7q1Zb/+Aw/l17iJ0T/2TNoUvx9lXwyJng+T/eAIVGRGFvbU5QWCSZMlh+c9yCIHwS6PeOBSN6MWnDMTK55GD3irlJto+KjGDShmO8835Bn3rFqdSgjWaoUULCggMZ3q5Wgvsy58hD3ynLtLb7+niRv/inLsN2js7cu5LwsKTFY/vRvPsQTM3j5wavJ57YOjgxf1h3nt6/iXWGjLQdMI4sOfPGa3di53o8ylRJsIgjCELqiA72xXP5QIqO2I2JQ3ZeHtCea+9zcVERFB2xm4j3r7g0tBIO5ZqjZ2SaaPuYsCCuT2qc4D5Tp9zk+3Oe1vZIP2+s3UprXhvaOhH44EKC7YwyOGteG5jbIssqYkIDMDC3JXe7SVweUR09E0uQZQoNFl8oCUJaeh8URt9F+zg0oT2ujjbM33MxyfYR0TEcmtCel+8CKdNvMS0rFkyyV0pQWCR1R65OcJ9bZrsEl/b28g2iTL6smtfOGSw4f+9lotdoNmEDt56+wcbChK3DWmrt33DyNpUKZsfeKv79Vb1Rq4mNU1G1UA4GNSuHob54zP/Rif+DP4H3gSH0mbOZI9N74epkx7ztSXerjYiK5vD0Xrx460/pblNoVbVYvCFF/y8wNII6/8xPcF+eLBlZMrCN1vZX7wMpWyCH5rWznTVn7zxN8Bx/z9/GP61rYGma9Pjzz9lamjGtR2PK95yOlZkxKpXMnn//Sv5AQRBS7OHNy2TPW5BMLuq/5cqNf2f5v4nPB1O2dhMA7J2yYmphhd9bb5yz5060vamFVYqHT32pcwe2oadvQNFK2oWguLhYHt68RJu+o+g+fj4XDu1kYvfmLDh0O16749tW07rf6DSJTxAEtaDHVzF3yY+Jg3rocqbyLXi8flSi7TOWbACAsV1m9EwtifJ/jV6mhL/UAdA3tUzx8KnUFBsRgtfR5RQdtR9Txxy8vbiL27M7UXzc0QS/JRcE4dtdeehNgWwOuDraANCmUkGGrUz8779RGfUXNFnsrbA0M+K1fzC5nBIfXWBpapTi4VNfa9OQFqhUMjO2n2Xa1jNM7Rz/Pmbd8ZuMaFUp3rZbC3rinMGC4PAous3ZydQtZxjasmKaximkPVGo+Qlc9nxBQVcnXJ3sAGhTvThDl+xKtH3j8oUAyJrRBiszY177BpIrc+LfGFuZGafZJMU7Tt9EX09JzRJ5k2/8meDwSJbuOcvxWX3I6WzP9lM3aDN2OWfn/y1ugAQhtcjyF/096Rt8KvgqFEriYmOTbP81PWoyODrz7vUrzev3Pl5kcHDSanf74iluXzxJ1yqfckvvusUYvngbdpmyYOeYmbxFywBQsnp9Zg76g+AAXyys1TdoD25cIiTInyLlayT5HgRB+FYyJDCPVGIU+p/yjKRQIqvikmz/NT1qjGydiPT10ryO8vPG0DZTsu2iQ/wACX0za95d3oO+iSWmjupCd8YS9bi/tA8xIf4YWNgmGbMgCF9HRuZLHgM+73WiVCiIjVMl2f5retQ4Z7Dk1fsgzWsv32CcMlgkeR2FQqJNZQ+K9VoQr1Bz+aE3ASERVCucI1575w/nszAx5PcqHszfE3+EgvBjEoWan4As80UPU4YGn/63K1KQlL6mR01mOytevfPXvPZ6H4BzBiutdqdvPeb0zce4tx+n2VbyzylsGfsHblkcEo3p+LUHWJoak9NZPaN5w/Ie/DVjA37BYWSwTHyohSAIKZerYDHmDv0LnxdPcMzqyvHtqTdZJ3xdj5rSNRvy3/gB1GqlnpTv5M51/DF0qla7riNn0nXkTM3rRnnMmLX7MsamZsiyjKGxCS8f3SNLzrzcvXwGM0trzK0+PTwd27aKivVaodQT/0wKQlqydC3C/aX9CX/7DJOM2fA5sylVz/81PWrsi9Xl4ZrhOFVtD4DP2S3k+n2cVjtzlwLERUcS+PAiVrlK4H1sNfbF6wJglCELIS/uEB3si4FFBgLun0XP2Bx9c5tvfk+CICSsaE4nes7fy1Mff7I72rDuw0pLqeVretTUL5WHf5Yd4o8aRQDYePI2/3asrtXONygMhULCxtwEgJ0X7pMni128NmuP3aB5BXf0lJ+mmQ0MjcBQXw9jQ31i41TsuuBJfhcxZPtnIO5AfwLF3LLSY+ZGnr72JXumDKw7fDn5g77A1/SoqV+uIIMW7uCPOur5b9Yfvcrkbg212k3r3php3T9902VVuz8XFg5IcigWqHsD3XrizfvAEOyszDl18zHmJkbYWiQ+Tl0QhC9jlSEjf46ayfg/m2BubUuxSrXQ09fH0NhEZzHlL16eEtXq0adecZBlKtRvSb4Pc9ZcOraXy8f20X2c9jfkn5MkiR4TFjJ3aDdioqMwNDJh0Ox1moJ3VGQEZw9sZ9L6o2n+fgThV2dgaYdb+0ncmv47+mY22BaqhqTUT3Y57rRknac0dkVrcXFIZUDGoUwTrN3Uq7+9v3YQ3+uHyNNpGpJCQb6us/FcMQhVTJR6ee6u6rm8LLIVIEvtblyb0AiFngGSngH5eywWvX4FIQ3ZW5kxrUstWkzciI2FCTWL5ERfqcAkBYuqpJWy+bJSp0RuyvRfjCxD8wrumjlr9l9+yP4rD5ndrQ7vAsPoPm83MXEqZFkmq70Vi3rV15wnIiqGHefvc3B8+3jnf+jtR7/F+5EkiIlVUTy3E0OaV/ieb1FII9LHSVmFryNJkhy4b5quw2DH6ZuMW7UfWwtTapbIy4Q1B3m7YxIKhUJrMuHPJwz+/HVqTiYMMHHNQTYeu4qMTIvKRRncRj2EYN+FO+y/cJc5fZprHfN5rABtxq3g2oOXvPYLwtHWgjxZHdg2risAc7edZNXBC+jrKTHU12N853qUyqf75bmtavdHlmVxJyZ8E0mS5G33Q3UdBhFhIRibmgNwdNtqjm5dxYS1h3Uc1a+pUR4zkVuEbyZJklx55WtdhxFPbEQoesbq3rCvT23A59R6igzTXmVJSBvH2mUSuUVIdZIkyf6bh37364ZERGH+4Tli7fGbrDl6g/3j2n33OH5VNk3Hi3ySSkSh5hull0JNSHgk5ibqJd3WHLrEmkMXOTC1p46j+jWJQo2QGtJLoWbLwsmcO7iduNhYzC2t+XP0bJxd3XQd1i9JFGqE1JAeCzXPd83i3eXdyHFx6Jla4dZhMqZJTBAspC5RqBHSgq4KNdO2nmHn+fvEqmSszYyY3qU2uZ0TnyBYSF2iUJN6xNCnn8SiXWfYceYmcXEqrMxMmNWrma5DEgThJ9Dkz4E0+XOgrsMQBOEn5lKvNy71eus6DEEQfgL9G5elf+Oyug5DEL6ZKNT8JP5uUZW/W1TVdRiCIAiCIAiCIAiCIHwDRfJNhJ/db4Pmc+DiPZ1df+Oxq5T+ayq2dQawePeZePvCI6PpMHEVhTpNoFiXSUnGeeuJN7UGzKNE18mU6DqZw5fvA3D94SvK9phGia6TWXfk00TLaw9fYuqGL1sJQhCElBvetiZXju/XdRjcuXSKJvks2Ld2oWZbVEQ4U/u25a8aBehZu1CycUZHRdKrThEGNCmn2fb4zjX6NSxFrzpFOL5jrWb7se1r2LJwcuq/EUEQALg2sTG+N3Q/V1bA/XMca++M1+Flmm3X/23GpeFVuTS8KheHVOJYu0yEvtS+d5FVKh6uGc7FwRW5OLQyN6a2IirgDQDBz25yaXhVLgyuEG8VLJ/TG3m+a1bavzFBEACoO3I1B68+0tn1N526Tdn+S7BrPoEl+xNfLOb2szdUHLiU8n8voVTfRfRZuJeomFgArj95Tfm/l1CyzyLWf7YK1rrjN5m29UxipxTSAdGjRtA59+yZWPZPG2ZsOqa1b862E5gZG3L9vyE88X5PrYHzuLZ0sNaqUGGRUfw+fgVLB7ahmFtWYuPiCA6LBGDG5mP827UBHjmdKf3XVFpVLYZ/cBhrDl1m54Su3+U9CoKgGxFhIayeNoJC5eIvhblz2SyMTc2Zf/AWr58/Ztjv1Zl34BbGpmYJnmftzNHkLliC5w9ua7ZtWzKNTkOm4JqvEH3rl6BSg9aEBPhxbOsqRi7bk6bvSxAE3YqNCOXJpvHYFqgcb3uhQZ8KK++v7ufp1smYZcmrdbzv9YMEP71OsXFHUCj1eLRuFM93zSJ3u4m82DOXnK3HYZGtABeHVsaxbDNiQv15fWoDhQZtTPP3JghC+pDfJSNL+zRg1o7zSbbLkcmWQ+M7YKCvRKWSaT99KysOX6dr7WLM3H6eSR1rUDC7A2X7L6FlxQL4h4Sz9vhNtg9v/Z3eifA1RKEmnQiPjKbb9PV4vniLnp6CnE72rBjSlrf+wXSavIaQ8CiiomOoXiwPYzrVBdSrKj3yekdIeCSPvd/jkcOZPs0qM2zJbl69C6BuGXfGfmj726D5uGfPxO2nr3ntG0jDch6MaF9bK47g8EiGLt7J3ec+REbHUq5ADiZ0rodSqWDS2oNsPXkdQwN9JGD3pL+wMvv25TM/rjKlUGjPO7X91A0W9GsJgKuTHYVyOHPkiicNyhWM127LieuUzJuNYm7q5e70lEpsPizVra+nICIqhqjoWJQKdSey4f/tZljbmhjoiz8B4ecWFRHO7MFdePX4Pko9fZyy5eTvGasJeP+WGX+3Jzw0hJioSIpUqEnbAeMA2DB3PN5PHxIRGsLrF4/JnteDRp37s2LyYN6/fkXJavVoN2A8oO414+JWgOeet/B7+5rSNRvRpu8orTjCQ4NZPmkwLx7eISYqkvwlytN+0CSUSiUb503gzN7N6BsaIUkSY1bsw9TCKlXe//JJg6nfsTdXTxyIt/3s/q30nLQYgEwuOXDNV5jrpw9RumYjrXPcu3IWnxdPqNe+B88nfyrU6OnpExUZQUxUJAqFEoCVU4fRsvcI9A0MUiV+QUiv4qLCubekD2HeD1Ao9TFxcCV/j0VEBb7j7oK/iIsIQRUTha1HFXI0Hw7A0+1TCfd5TFxEKOFvnmLu4k7WOj14tH4Mkb5e2BetRY4WIwB1rxmzLPkIfXmXKH8f7IvXxbXpYK04YiNCeLRuFKGv7qOKicI6T2lythqFpFDybPs03l7cgULfEJAo9M8W9E0tU+X9P1o/iiy1u+F7I/GeuT6nNuBYvkXCOyUJVUwUqpgoJElBbGQoxnZZ1LuUeqiiI1DFRCJ9yC2PN4wle+NBKPREbhF+LeFRMfw1dxeer3zR11OQI5Mty/s14m1AKJ1n7SAkPIrImFiqF87B6N+rADBp0ykeefsREhHFk9f+FMzuQJ+GpRm+8givfIOoU9yNMW3VbeuOXE1+l4zcef6W134hNCidh+GtKmnFERwexbCVh7n34h2RMXGUzZeV8e2qolQq+HfzKbaduYehvhJJktg1qg2Wpkbf/N7zZrEHQCElPTev8WfLj8fExREZHcvHxyp9PQXhUTFExcSi/LBxxOqjDG1REQN95TfHKKQd8ZSaThy99oDA0AguLlJP2hkYEg6ApZkxG0Z2wszYkJjYOBoNW8yRK55ULapedeXGYy+Oz+qDmZEh5XtNZ/TyvWwZ25nYuDgKdphA+5olcXWyA+DBy7fsnNCVyOhYqvebTfE8LtQsEf9bnqGLd1LG3ZU5fZqjUqnoPGUtaw5fon6ZAszddpJH60ZjbKhPSHhkvKTw0YnrDxn23+4E32PLKkXp3rDCF/1evN4Hkjmjtea1s701Xu8Dtdp5vnyLvp6SpiOW4OMfjEcOZ8Z1qouVuQkDWlaj75ythEdFM6ZjHc7cfoJCkijj7vpFsQjCj+j6mSOEBQUye89VAEKDAgAwtbBk8PzNGJuaERsTw5jO9bl2+jCFy1UD4OndG0zecgojEzP+blyGNdNHMHyxevWnP6vlo1rTDmRyyQGA1xNPRi3bQ3RUJINbVsbNowRFK9WKF8fySYPJV6ws3cfNQ6VSMXNAR45tXUWpGg3YuWw2y88+w9DImIiwEAwMtQvAN88dZ+WUIQm+x0r1W1O3fQ+t7ddOHSIsJJDSNRpqFWre+3hhlymz5nUGR2d833hrnSMyPIxlEwcxeP4mfF48jrevabdBLBrVm8iIcNoOGMfdS6eRJAX5iolJDIWfn//tk8SGBVJy4kkAYsICAdAzsaBA35XoGZmiio3hxtRW+N06jm0B9YNPyPPbFBu1H6WRKZdH1ODJpgl49F+DrIrjXP8SZKrYBhOH7ACEeT/EY+BGVDFRXB1bF8ucRcngUS1eHI/WjcLKrRR5Ok1DVqm4u7A7r09twL7Yb7w8sJCyc26hNDAmNiIUhYH2g5P/3VM83jAmwffoUKYZWWp20drud/MYseHB2Berk2ihJjroPf73TuPWaXqC+zN4VCfw/nnO9iqIwsAYE8cc5G47AYBs9fviuWIQqqhwcjQfRoDneZAUWLuVTPBcgvAzO3bjCUFhkVyYqe4FHxgaAYClqRHrBjXDzNiAmNg4moxbz5HrT6haSH1/f/OpD8cmdcTUyICKg/5j9NrjbBragtg4FYW6z6NdtUK4OtoA8MDLl+0jWhMZHUuNoSsontuZGkXirzw3bOVhyuTNyuxudVCpZLrM3sGa4zepX9KNebsu8mBpH/UzUkQUxgYJPCPdesaIVQnnixYVC/BXnRLf9Hvy8Q+h+YQNPH8bSNVCrrSrWhiAvxuXpf+S/YRHxjD69yqcvfsChSRROm+Wb7qekPZEoSadcM+WiUev3vH3vK2ULZCD6sXyABCnUjHiv91cvP8cWYZ3ASHcfuqtKdRUKZwbS1P1Q00+l0y4Z3fEUF8PQ309cjrb8czHT1OoaVm1KHpKJWbGShpVKMSpm4+0CjX7L97j6sNXzN2uvvGKiIwmUwYrzE2MyOFkR5cpa6la1I0axfNqlgP/XMVCuTgzt3+a/Z4SExsXx8kbjzg8vRf2VmYMWbKLoUt3Ma9vC9yyOLB/SncAomNiqT9kEetGdGD+jlNcvPcMeytzxneuJ3rXCD8lFzd3vJ49ZPGYvuQvXo4iFWoCoIqLY9WUoXjeuAiyTIDvW5573tIUajzKVsHUXP3Ns0uu/GR1c0ffwBB9A0OcsuXkzatnmkJNxQatUerpYaxnRtnaTbh98aRWoeby8b08vn2FXStmAxAVEYGtgxPGZhY4ZcvJrIGdKFS2GkUq1sLY1FzrfRQsXYnp25Pu+vu5sOBAVk8fwcj/dn35L+0zK6cMpVarLthmzKRVqMmcIw/j1hwCICY6mtEd6zBo7gZ2r5yH5/XzWNna037QJNG7RvgpmWXJS7jPEx6sGoy1W2lsC6q/nUZW8WTDWIIeX0GWZaKD3hHy8o6mUGOTvwJ6JhYAmGbOg3nmvB96vICJoysR715oCjWOZZuhUOqhUOqRsUR9Au6d1SrU+F4/RPDTG7w6oJ6DKi4qEiMbR/SMzTFxcOXeop7YuFcig0dV9Iy1hzba5CtP8bEpn68uJiyIJ5sn4DFwQ5LtfM5swta9EgYWtgnuD3lxmzCfR5SZeQ2lkSmP1o7g0bpR5G47AVOnXBQZuh0AVWw01/9tToHey3h1cAmBjy5jYJGBnK1Gid41wi8hv0tGHnr7MWDpAcrky0r1wup7jziVipGrj3LpoZf6GSkwlDvP32oKNZULZsfiQ6+WfFnsyeeS8cMzknqo0LM3AZpCTcuKBdBTKjAzNqBRmbycuv1cq1Bz4Mojrj32Yd7uCwBERMeSycYCc2NDcmSyoeucnVTxcKVGkRyY/98UDQAVC2Tj1NTOafZ7crQx59TUzoRFRvPn7J3svuRJ4zL5cMtsx94xbQGIjomj4di1rBnQlAV7L3HR8xX2lqaMa1dN9K5Jh8STaTrh4mjLxUUDOXnjEUeuejJm5T7Ozf+bedtOERgawdEZvTEy0Kf37M1ERsdqjjM0+PS/UKmUMPysgqtQKIiNUyV4PVmWkRLoRifLMuuGd8DFUfvG4siMXly495xTNx9RsdcMtoztTP5smeK1Se0eNc52Vrx6G0AGS/XNlde7AMoVyKHVLou9NeUL5sDBRn3z17RiYXrM1B7HPWPzMdrWLEFgaDj7Ltxhz6S/mLDmAJuOX6NN9eJfFJsg/AgcMmdjzt6r3Dp/gmunD7F2xmhm7LrIrhVzCA0O5N+NJzAwNGLBiB5ER0VqjtM3/FSIVSiVGBh+uulQKJSoYmNJiCzLkFAXXVlm0NwNOGTOprVr0objeF47z+2LJxnQpCzDl+zAJXf+eG2+tEfNy0f3CHj/hkHNKgIQEujH5eP7CQ0MoFn3wdg5OvP+9SssbdSFbF8fL9xLlNc6t+e181w7dYhN8ycREx1JaFAgfeuXYMbOi/HabV8yjSpN2hMWHMjlY3sYs3I/G+aM49SejVRp9HuCcQvCj8zYPislJp4k4N5p/G4d58mWSRQfd5SXBxYREx5IkRF7UBoY4blsAKqYKM1xH4syAJJCqfVaVn1hbkGmQO9lGNtn1dpTZMQegh5dJuDeGS6PrIlH/7Va88V8aY+aMG9PogLfcmW0evh4TIg/vtcPExMWSLYG/TTtfE5vJEeL4Qme9+N+6zxlNEWrjKUb47m0n1a7F3vmkqlCK2LCgnh/7SCFB2/h6bYpvDm3jUyJDasShJ+IS0ZrLszsyqnbzzly/Qnj1h3nzLQuzN9zkcCwSA5P6ICRgR59Fu4lMiaRZySFAqPPChFKhUScKpFnJEjkGQnWDGyCy2c9/T86NKEDFz1fcerOcyoPWsbmoS3IlzVjvDZp3aPmI1MjAxqUycuW03doXCZfvH0zd5zj9yoeBIZFsv/yQ3aNasPEjSfZfOYOrSsVTOSMgq6IQk064e0biLWZCXVKu1O5cG7cfh9NQEg4QWERZLSxwMhAn9e+Qey7cIeOtUt/1TU2HrtKo/IeRMXEsuPMTYa31Z6jplbJfMzYfIzp3RujVCrwCwolJCIKWwtTwiKjKevuSll3Vy7ff8H952+0CjWp3aOmftmCLN9/nkK5MvPE+z3XHr1i6aA2Wu0alPOg2cilhIRHYm5ixJGrnuTP5hivzRPv91zxfMGgVtW58+w1EuokrJAkwiKjtM4pCD8D3zfemFtaU6JqXTzKVKFThZyEBgUQFhKEtZ0DBoZG+L19zaVje6nR4o+vusbJXespW6sxMdFRnDu4nda9R2q1KVbpN7YvmUaXkbNQKpUEB/gSERaKhbUtEWFh5CtejnzFy/HgxiVePrqnVaj50h41eYqUZsXZ55rXcwZ3xTV/IWq3/hOAUjUbcmjjMnLkL8zr5495fOcq/aYt1zrP5wWZO5dOsXLyUKZsOR2vzevnj3l48zLNug/m+YM7modJSaEgMjw0xTELwo8k0v81+qZW2BWphU3+CpztU5jYsEBiw4MxtMyI0sCIKH8f3l8/iFPltl91jTfntmBfoh5ybDTvL+8he5NBWm0yFKrOiz1zyd1+EpJCSXSIH3GRYeib2RAXFYa1Wyms3UoR9Pgqod6eWoWaL+1RY5WrBOXmfpqr6t6SPli4FMC5WkfNtqBHl4mNCNGaaPhzxnZZ8L9zksw1uqDQ08fv5lFMnXPHaxP+5inBT66RrUE/9cpRH3OLpCAuKizFMQvCj8zbLxhrM2N+K56bSgWzk7fLLAJCIwgKiyKjtRlGBnq89gtm/5VHdKhe+KuusfHkbRqWzktUTCw7z99nWMuKWm1qFs3JzO3nmNa5lvoZKTic0IhobCyMCYuMpky+rJTJl5XLD725//K9VqEmLXvUPH8bQCYbCwz0lUTHxLH/8kPN/DYfPfHx58ojbwY2LcfdF2/5WIpSKCTCIqPTJC7h24hCTTpx75kPo1bsBUClkunXrAqOtpZ0rVeW9hNXUa7HNJzsrKhQMGcyZ0pcQVdn6g9ZhI9fEA3KFtQa9gQwsUt9Ri7bQ9ke05AAA309Jnatj76ekrbjVhIRHYMsyxRwdaJuGfevjuVzW05cY8R/ewgMjWDfhbvM3HSMbeO74JbFgV5NKvLX9A0U6jQBpULBzJ5NNUOuxq8+gKONBR1/K01me2t6NalE9f5zkCSJrA42zOrZNN51hizeycQuDQDIny0TLg42lOo2BRsLU9YOa58q70UQ0puXD++yerp6ck5VXByNOvfHxt6R39p0Y2rf3+nfqDS2Ds4UKFnxq6+RPa8HozrWwf+tD6VqNtQa9gTQcci/rJoyjH4NSiJJEvoGhnQc/C9KPX2m9G5NdGQEKpWK7Hk9KFmt3lfHklINOvZhzpCu/FWjAAqFkm6j52iGXK2fPRYbe8cUF66WT/qHjoP/BcAld34yOmejd91iWFjbMmjO+jR7D4KgS2GvPHmyWT2niqyKI2udHhhaO+BcrRN35nbh0vBqGNlkwibv18/ZZJ7VnRuTmxMV8Ab7YnW0hj0B5Gw1hicbx3FpWFWQJBR6BuRsPRpJqcedOZ2Ji44EWYV5Vnfsimh/QZUWXp/eiEOZJpqJgD96um0yhlYOOFVui1OV9oR5P+DSsCpISj2MbJ1waz85XvtH60aRs/VoQD3UzNguCxeHVELf3Ab3Xv99l/ciCLp27+U7xqw9DkCcSqZvw9I42pjTtXYxOkzbSoUBS3GytaB8fpevvkbB7A40HLMWH/8Q6pfKozXsCWBCh2qMWn2McgOWIgGG+komtK+Onp6CdlO3Ehkdi0qWKZjNgTol3L46ls9tPXOXEauPEhQWyb4rD5m54zxbh7XELbMdEzacxNHGjA7Vi3DpgRezdpxHoZCIU8mUyZuFvxvHz71DVxxmQnt1Ds2XNSNZM1pRut9ibM2NWT2gSarEK6QuSZZlXcfwQ5MkSQ7cN03XYSTrt0Hz6dmoYoLFGSF1WdXujyzLSU/PLgjJkCRJ3nY//ffGGN62JvU79E6wOCOkrkZ5zERuEb6ZJEly5ZWvdR1Gsq5NbEyWWn8mWJwRUtexdplEbhFSnSRJsv/moboOI1l1R66mR72SCRZnhC9n03S8yCepRKHrAARBEARBEARBEARBEAQ1MfTpF7H33790HYIgCD+hsasOJN9IEAThCxUevFXXIQiC8AvYPVpM+C+kT6JHjSAIgiAIgiAIgiAIQjohCjWCIAiCIAiCIAiCIAjphBj6lE6kh8l+u01fz8nrj6hTxp3JfzYEYP/Fu4z4bzexcSo8cjgzr28LTIwM4h0XHRNL5b6zNK8jIqN5/safx+tHY21uwruAELpOXcfLt/4YGeozq2dTirplBaD/vK2cv/sMhUJCX6lkVIfaVPDIlWysSZ3zcysPXGDRrjMgyyBJ9G5SieaViwAQGhFF/3lbuf3Em5i4ONrWKEHPxpUAGLV8D0euPtCc59Grd4zuWIc/65dj55mbTFh9kPdBITzdMPYLf8uC8H2lh8l+5wzuys3zxylZrR5/DJ0KwOXj+1g1ZShxcXFkz+tBzwkLMTQ20Tp20eg+eF47j6RQoNTT5/d+oylQqhIx0dEMal5B0y4qIoK3Xs9YfuYZphZWTO3ThpeP7qNvaIiljR1/jpqFQ5bsycYa6PuWWYM68877JQZGRnQbPYdcBYsl2Pb2hROsmjqc6MgIAPpMXU42N3cOb1rOvrULkWUZSZJo0KkvFeq1+BBnOPNH9OC5522QZTLnzEv3cfMwNjXn3MHtbJgzjiC/96w8//KLf8+C8D2lh8l+7y3pQ8Dd09gVrUWuNuMA8L1+iMcbxyLHxWHu4k6eP2agNNTOLdFB77m7qCeRvl4oDYzI3WEylq7xl/b1ObOJ+0v6UKDvSjJ4VENWqbgzrwthXp4o9I3Qt7Ald7t/McnokmysKbkeQGxkGA9XDibk5R3kuBgylW9Fltrd1PGc3sijdSMxyuAMgFGGLBTovQyAuKhwPJcPUC/jLcuYOufGreM09IzNeHd5D0+3TSEm2Jdy8+5+0e9YENKT9DDxb/e5uzlx+xl1S+RmUscaABy48pCRq48RG6eiYHYH5navi4mhfrzjomPiqDp4meZ1RHQsz98G8HBpX6zNjak7cjVevsGYG6ufs7r+VpzWlQomG8+7wFD+nLOLV++DMDLQY0bX2hTN6aTVbuWR6yzZf0Vzb9KrfkmalVev4Lvu+E2GrDhMFjtLALLaW7F6oHr13J3n7zNx4yl8g8N4vKzfV/zGhK8lCjVCPH2aVaZLXfVybqERUfSevZn9k7vj6mRHz5kbmbPtBINaVY93jIG+Hmfm9te8nr/jFCevP8TaXH1jNHrFXkrnz8728V05f/cpnaes5drSwUiSxIj2tbE0NQbg9tPX1B+ygCfrxyBJSU8WntQ5P5c9Uwb2/fsXVuYmePsGUq7HNErmy0bWjDZM33gUAz0lZ+f/TXhUNNX7z6FkvuwUc8vKqA51GNWhDgC+QaG4tx9Hw3LqZFm/bEE8cmamUu8Z3/CbFoRfS6PO/ajd+k8AIsJCWTCiB+NWHyKTSw7mDevOzmWzaNZ9sNZxbfqNxtRcfePwzPM2ozr8xopzL9A3MGD69vOadrtXzuPW+eOYW9mgUqmo2KA1RSvWQqFQsG/tQhaM7Mno5XuTjXPNjFHkLVqGkf/t4v7Vc8wc2Il5B25q5Ra/t6+ZN6w7w5dsxylbLqIiI4iLjQHA0cWVsasOYGZpje8bb/o3LEWeIqWwd8rKoU3LiY2JZuauSwBM6dOGA+uX0vCPvpSu0ZAc+QszoEm5r/slC8IvKOtv3XGu1hFQFzk8lw+g8JDtmDhk5/5//Xm5fyHZGmg/XDzZPAGr3CXJNrAPgQ8vcm9hD0pOPqv5W4/0f4338dVYuBaJd5xDmaZk8KiGpFDgdXgZD1YMpNCgTcnGmdz1PnqxezaSnj7Fxx1FFR3B1bH1sMxVHMsc6jis85bDvecSrfO/PrEWVWwMxccfA+DO3C54H1tJ1t+6Y1+sDuYuBbkyqmYKfqOCICSnT4NSdK6l/hInNCKaPgv3sXdsW1wdbei1YA9zd11gYNP4/5Yb6Cs5NbWz5vWCvZc4eesZ1ubGmm2TOlb/4iLUmHXHKf1hOe4L91/RddZOrszpppVbXB1t2DO6DVZmxnj7BVNhwFJKumUmi70VABXcs7Hy78Za569fKg+FXB2p/M8yrX1C2hJDn1LZ5HWHGbx4p+a1f3AY2ZoPJywyipM3HlKt32zK9ZhG6W5T2HryeoLn+G3QfA5cvJfg6zf+wbQdv5LKfWZSutsUpm08kmbv5cgVTwrlcMbVyQ6AjrVLs/3UjWSPW3v4Eq2rF9e83nH6Jh1rlwKgVL7sGBnoc/3RKwBNkQYgOCwCiZSt5pbUOT9XrkAOrD4UjJwyWOFgbcFr30AA7jx7TZUibkiShKmRIWXcXdl0/KrWOTYcvUoFj5xktLFIUWyCkBY2zZ/EsomDNK9DAvxoWzILkeFh3Dp/nH9aVKZ/o9L0qVecM3s3J3iO4W1rcuX4/gRf+797w+TerRnYrAJ96hVny6IpafZerp8+hGu+wmRyyQFAjRadOLs/4YlDPxZpAMJDghIt4h7bvpoqjdQTAioUCopX/g2FQv1PXG6PErx/rZ0fEnLuwDZqtOgEQJ4ipdE3MOTxnWta7Q6sX0yFei1wyqbuAWhoZIyJmTpH5C9eHjNLawAyODhhbeeA3xtvACRJ3fsnNiaG2JgYoiLCsXXQ/uZLEL6XZztn8GjtSM3rmFB/Tv2Vj7iocPzvnubKmLpcGl6Ni0Mr8/bCjgTPcW1iY3xvHE7wdVTgW27P6czlUbW5OLQyz3fPTrP34n/rGOYuBTFxUPeec6rclncXdyXY9t2l3ThVVucMq1wlUOgbEvLspmb/g+UDydlqNAr9T72IJYUCu8I1kD7kFoscRYn09UpRbMld76PQV/ewda+IJEkoDU2wcivJ2/Pbkr+AJKGKjkCOi0GOiyEuKhxDG8cUxSYI39uULacZsuJTzvAPCce1w3TCIqM5efsZ1YesoMKApZTpt5itZxPuBVZ35GoOXn2U4Os3ASG0m7qVqv8so0y/xUzfdjbN3suRG0/wcHXE1dEGgA7VC7P93L1kjlL3YmldOfkeM8nZee4+Haqpe+eVzJMZQwM9rj/x0WpXNl9WrMzUz11OthZktDLjtV/IN19fSDuiR00qa1m1KFX7zmJspzroKZVsPnGN2iXzYWpkSEFXZw5M6YFSqeBdQAgVe82gSuHcmkJCSvw5dR0DWlajjLsr0TGx1B+ykMI5M1OpcO547TxfvuGPyWsTPEelQrkY26lustd69T6AzPbWmtfO9lZ4vw9M8pjrD1/x1j+EWiXyAepClSyDraXZp/PYWeH1PpDCubIAMH71ATYfv0ZgaDirh7VPtjdNSs6ZkNO3HhMUFoFHjswAFMzhzM4zN/mtVH6CwyI4dvUBOZzttI5bd/gSQ34X30IJulWpQWsGNa9IuwHjUerpcWrvJopX+Q0jE1Oy5/Vg/NrDKJVKAn3f8neTcniUraopFqTE7H8607TbIPIVK0tMdDSjOv5GjvxF8ChTOV67V4/vM2NAxwTPUbB0ZdoNGJ/std77eGGXKbPmdQZHZ3w/FDISsn72WE7t2URYcCADZ6/VyhGP71wj4P0bilaqneDx+9Yuolgi+z4XEuCHLMtYWGfQbLNzzIyfjxc53eN/q/7qsSf2TlkZ0b42YcGB5C9enjb9RqNvYBiv3Z1LpwgLCSJ7vkIAVG/eiQc3LtGxnPpB0qNMFcrXaZZsbIKQVhzLNuXK6Dq4thiOQqnHm/PbsStcHaWhCeYu7hQZtgNJoSQ66D2XR9bExr0i+qZWKT7/vcW9cKnXF2u3kqhio7n+bzMsshXEJn+FeO3CvB9yd2HCK1Ta5CtPjhYjkr1WpJ83Rhk+FT6NbJ2I9H+t1S4m1B9ZljEwt9Vqa5HdA6+jKzF1ypXg0KTPeR1ZRoZC1ZNsk5Lrfc7cxZ13l/eQoXBNYiOC8b99AhMHV83+wAfnuTS8Kkojc7L+1p0MHlUByFSxDUGPr3Cmp/rBz8a9Ag6lGiUbmyDoQssKBag2ZDljfq+CnlLBljN3qVUsJ6ZGBhTM5sD+sW3Vz0uBoVQatIwqBbNrigwp0W3ObgY0KUvpvFmIjomjwZi1FHJ1pFLB+EOgPV+9p8usHQmeo2KB7IxpWyXZa3n5BpHZ7tOXSs4ZLPH2C07ymOtPXvM2IJSa/9d7ZsTqo4xZe5z8LhkZ2boSmWyT/pLYPyQcGbC1+PQs6ZzBAm+/YArnyJTocWfuviAoPJKC2R00287de0n5v5dgbmJI7/qlqK7D4WWCmijUpLLM9tbkzpKRQ5fvU7tkftYducLELvUB8A0Ko/vMjTx97YtSqSAgNJxH3u8plsDcKgkJi4zizO0n+AaHabaFhkfx4NU7rUKNWxaHeMORvpc1hy/RrFJh9PWUKT5m6O81Gfp7TU7eeMTIZXs4MKUHBvqp+9H0fPmGbtPWs3RQG4w/jBnt27QyI/7bTcXeM8hgaUbZAq74BYXFO+7qg5e8DwqlRnHdzR0kCAB2mTKTOYcbV08dpHjl3zi+fS0dB/8LQLC/L3OHdsPnxROUenqEBgXg/ewRuT2KJ3NWtcjwMO5ePk1wgK9mW0RYKN5PPbUKNZlz5Ik35Oh7aNlrOC17DdfMCTN+zWH0DT59y3106yoq1G2Bnr6+1rE7/puJ15MHjFmR/LCnL6GKi8Pz+gVG/rcLA0NjZgzowPYl0+MN33r1+D6z/+lCv6nLMTRS32DeOnccgP9OPQZgxt8d2LFsFg069k7V+AQhpYxsnTF1yoXfzaPYFa7Bm9ObyNl6DAAxIX7cX9qPiLfPkJRKYsICCPd5ohmGk5y4qHACPc/zKMRPsy02Ioyw14+0CjWmTrkoPjbtegmnVMT7l7w+uZYiw3Ym2e7FvvmE+zxO0bCnL5H1tx483jiWK6NqoW9ug5VbaWJC/QGw9aiKfYl6KA2MCXlxmxtTW1N48FZMM+Uk4N5pAMrMUvfWvrewOy/3LdDMbyMI6YmznSW5ne04fO0xtYrlYv3xW0zooJ7vyjc4nJ7z9/DkTQB6ConA0AgevfanWK6U9T4Ni4zm7L0X+C377HkpMpqH3n5ahRq3zHbxhiN9L2uP3aRpufzxnpcW9KyPcwYL4uJUzNhxjk4ztrN/XLtUv7bnq/d0m7OLpb0bap6JahTJScPSeTE21OfWszc0Hb+BXaPakNs5QzJnE9KSKNSkgVZVi7H+yBVcHGwJDougdH51Uug3bwu1SuRjzYdeI0X+mEhkdIzW8XpKBSpZpXkd9aGNSqWe/On4zD7JFkJSo0dNZjtrztx8rHnt9S4QJzurRNtHRsew9eR19k3urtlmY2EKgF9QqKYHjNf7QJwTOE8Fj5yEhEdy77kPHjkza+3/mnMCPPF+T9MRS5nRowml8n1K0CZGBkzt/mksZv95W8mdOWO8Y9ccukTzykW+qPAkCGmlUoM2nNixlozOLoSHBpO3aBkAFo3pQ7FKtRk0Zz2SJNG9pgcx0ZFaxyuVevFyS3RUFACyrEKSJCZvOpVgseNzqdGjxs7RmTsXT2le+/p4kSEFw3/cS1YkIjSYl4/u4vqhh0p0VCRn929l7KoDWu33rV3I6b2bGLVsT4ITFf8/c2v1t93BAb6aXjXvfV5h6+is/R4yZSZH/sKaoVllajbixM71mv2vnz9mXNfG/DlqNnmKlNZsP7jxPyrWb4mBoZH6uFqNObFzvSjUCDrlULYZb85uxtg+K7ERIVjlLgHAg5WDyVCoOu69/kOSJM4PLIsqJkrreEmhRFZ9yi0f26i3SRQduR+FXtK5JTV61BjZOhFw/5zmdaSfN0Y22t8q65uphyhEh/hperl8bBv0+ArRgW+5OFhdSIoOes/9//rj2nQwmcq3BMDr8DLent9OoUGbEpyo+Euu9/+UhibkbjtR8/rBysGYOKq/2f68R455VneschUn+Ol1TDPlxPvYahzKNEFpoM4t9iXq8ebsFlGoEdKtlhULsP7kLbJmtCI4PIpSedS94v9ecoCaRXOyakATJEmiWK8FRMXEah2vp1SgUsma15Ef2qhkGQk4Oqlj8s9LqdCjxjmDJWfuvNC89vINwimJnjCR0bFsO3uPPWN+/7/zqI9RKhV0rV2MfzedQqWSUSgSH2lg82FUhl9wuKZXjZdvcKLXf+LjT/OJG5netRYl83x61vq8R06BbA6UcHPm2uPXolCjY6JQkwbqlSnA0CW7mLPtBK2qflotJCgskiwZbdTFlmsPeOrjl+Dx2RxtufbwFbVL5sfz5RtuP1V32zU3MaJUvmzM2HSMga3UVWev9wHoK5Va86ekRo+aKkVyM2DBNp54v8fVyY5l+87RoFziYyl3n71N9kwZyOsSf0x0/XIFWLbvPANaVuP83adERMXgkcMZWZZ55PWOXB+KI9cfvuJ9YCguDuobkdHL9+KYwVIzuXFKzvn/nvv40Wj4Yv79swHViuWJty84PBJ9pRJjQ33uPHvNnnO3OTG7r2Z/RFQMW09d59C0nin/pQlCGipVvT4r/v2HXctnU6lBa832sOAg7J2yIkkSN84e483LJwkenzFLNh7fvkrxyr/x6vF9nnveAsDY1Jw8RUqzbck0mv31D6Aunij19LG2i1+8TI0eNYXKVWPJuP68fv6YTC45OLjhP0rX0u6iL8sy3s8e4pxd3WPw8Z1rBPn7ktHZRdPmwuFdOGTJTtZc+eIde2jTMg5tXMboFXsxt7KJt2/N9JHYZHTUTG78udI1GnJww3807TaI+1fPER0VqSkKfa5cnWasnTGKhp37o6evz40zR3Fxyw/Am1fPGNu5AZ2GTqFw+fjDIuyds3LjzFFK12yELMtcP3OELDlFjz1Bt+yL1ubx+lG83L8Qh7KfhuLFhgVhlMEZSZLwv3OSiHfPEjze2N6FkGc3sStcgzDvh4S+VM8poWdshlXuErzYO5ds9dX/vkb6eSMp9TG0so93jtToUWPjXokHq4cS/uYpJg7Z8T62CvviCX8xZV+8Lt7HVpOtvnpy37joSMxdCmCR3SPekKH/X93K+/gavE+sodCgzeibxR9e+mTTBAytHTSTG6fkev8vNiIESamH0sCY0Jf3eH91P8VGqwvRUf4+mnlnIny9CHp8DZd66iKvsV1m/O+cUL9fWcbv1nFMnXJrnV8Q0ou6Jd0YtvII83ZdpGWlT38LQWGRZLG3VD8v3XzK0zf+CR7vktGaa09eU6tYLjxfvefO87cAmBsbUipPFmbuOKeZnN/LNxh9pYKM1mbxzpEaPWqqeGRn0H8HeeLjj6ujDcsPXaNB6TyJtt9z0ZPsDtbkzfIpB8bGqfAPCcfeSh3f1jN3yZvFXlOkGbP2OI42ZpoJjD9Xv2Qelh++pplMODI6Bo/s2vNTPX8bQJNx65nUoTrVCuWIt++1X7BmmNWr90FcfejN3421n7+E70sUatKAiZEBtUvmY+2Ry9xcNlSzfVT72vSfv42Zm4+RL5sj+bIlPMlbnyaVaTdxFUeueJIvmyMFXD9907xkQGuGLNlJ6W7qiT7NTAyZ26d5mkx0a25ixMyeTWk+6j/iVCoKuDoxqXFFAHz8gmg6cmm8YtDaw5doU017qMWo9r/RZeo61h+9gpGBPov+bolCoUClUtF79hYCQ8NRKhUYG+izYnBbzZw9d5/74JFTu/iS1DkBes7cSK2S+ahdMj8jl+8hIDicCWsOMmHNQQBGd/iNKkXceO7jR4eJq9BTKjE00GPxgNY42n4aY7r73C1yOdvjlsUhwRgE4XszNDahWOU6HN++mgWHP02u16bfGJaM6cu2JdPJmjsfWXPnT/D4hn/0Y2qf37l++jBZc+cnW55Phdc+k5exfNIg+tRT/w0bm5rTffx8rUJNajA2Nafb6DlM6NYUlSqObHkKUL/DZAD83/kwrmsjpm8/jyzLLBzRk5CgAJR6ehgYGtN/+qp4c+8c2/ZpEuGPIsJCWDSqN3aZsjC6Uz0A9A0M+XfjCQCeP7hD9nweCcbWpt8YZg3sxIkd6zAwMqL3v0s0uWXesO4Uq1yb4pV/w61QSQqXr0H/RqVQKJRkz+tB4y4DAFg9bTghgf5smDOODXPUSwb/3n8shcpWpXn3wSwY0ZM+ddU3Wy5u7jT5c0Dq/GIF4SspDU3IUKgGPqc3UnraBc1212ZDeLBqCC/2zMMscx7MMif88JH1t+7cmdsFv1vH1O2yfMpBebvO5dG6kVwcqh5GqTQyJU+n6VqFmtSgZ2yGW4fJ3JrRFlmlwixrfk2PkqiAN9yc3kZTDHJtOoR7i3pw/uxmFPpG5Os6WzNJcGJiI0J5sHIQRrbO3JjSHACFniFFR6qHVoZ63cc8m3bxJbnr3f+vPxkKVceucA0i3r3gzrw/kZRKFPqG5P1zLobW6vsQr6Mr8L12EEmp9+Gc/2CeVb28rkuDfjxYPpBLQyoBYJYlr6aIIwjpkYmhPrWK5WTd8VvcmPepN/6I1pUYsPQAM7efJ19We/JlSThX9G5Qig7TtnH0+hPyZrXH3eXT/fqiXvUZuvIwZfotBsDM2IA5f9XRKtSkBnNjQ2Z0rUXLiRuJU8m4Z8vIxLolAfDxD6H5hA3xikFrj9/SmkQ4KiaWFhM3Eh2rQpZlHG3MWdqnoWb/3Rdv480n87kRrSvx55ydbDhxCyMDfRb0rK8p8PRasIdaRXNRq1guRq05hn9IBBM3nmTixpMAjGxTmSoervx38Cr7Lj9ET6nOScNaVaJANvH8o2uSLMvJtxISJUmSHLhvmq7DSBXdpq+nUM7MCfZg+d5UKhXV+s3h8PSemoek9OTFW38q9Z7B0w1jtfZZ1e6PLMspW75KEBIhSZK87X6orsNIFXMGd8U1f6EEe7B8byqVisEtKzNx/bF0mVveeb9gQJNyrDz/UmtfozxmIrcI30ySJLnySu0Jdn9E95b0wcKlQII9WL43WaXi6ti6FBm+O9mCjy5EvH/FlVE1KTdPewWdY+0yidwipDpJkmT/zUOTb/iD6T53Nx6uDgn2bkkLKpVM9aErODS+fZLDoNLSy3eBVP5nGY+X9Uu2rU3T8SKfpJL09y+JoDMWJsYs2nmagQu36zoUFAoFR2f2TpcPUjvP3KTlqP+wtzLXdSiC8EMwMbdg7+qFLB3/t65DQaFQ8O/GE+kyt5w7uJ0J3ZpiZZv6PQ0E4WekZ2zOq8PLeLhmmK5DQVIoKDpyb7os0ry7vIdbM9thYKG9sqUgCF/G3MSQxfuv8M+yg9/legqFxJGJHXRWpNl5/j4tJ23CztJUJ9f/lYkeNd/oZ+pRI6QO0aNGSA1p2aOma5W8DFmwWWteF1165/2Cv2oUIEvOvMgqFYbGpnQdOZNseRIeRpBSw9vWpH6H3hStVOurjj+2fQ1uHiXIlE09meelY3u5f/VciiZNTm2iR42QGtKyR825/sUp0HcVZs5uaXL+rxHx/hUXBpbG1Dk3skpWT9bbbiLmWRMeIppS/z93zZfyOb0Ry5xFNUtvv792kKCHF1M0aXJqEz1qhLTwJT1qCv41l/X/NIs3b4uunbn7ghGrjnDs306abfdevqPlpE3cnN9DZ3HZNB3Py1UDMDM2SL5xAiZtOkW/hmUw0FdPtDxhw0ncMtvRqEzqzJcnetSknvRX9v+FuLcfx73nProOI57Ttx5TsdeMeNvuPffBvf04HUWkZlW7P6ER2itNpNTENQeJ/mzG+PGrD7Dt5PXUCE0QhFRiam7J9O3nmbHzImVrN2buUO3VSuJitVd+SEvHt6/h9fNPq98Vr/ybToo0giB8PT0TC4qPPUKJ8UfJWLI+9//T7r6vivu+ucXnzCbC3zzVvLYrXEMnRRpBEHQrNk6VfKNUNHnzaaJj4zSvh7SokGpFGiF1icmEBZ2IjYtDT/n9lrz+d90hejauiIG++iM/9Pea3+3agqArD65fZOXUYUSEhQDQbsB4PMrEX2py5/LZnNm3BVVcLPoGRppeLFER4cwe3IVXj++j1NPHKVtO/p6xGu9nD5kz+E+iIsNRxcVRqWGbNFlaumDpyqydORpQ9wCq0rgtdy6eJKNzNjoOmczS8X/z+PZVACrUa0mjzuoHr1eP7zN3aDdiY2LInMNNswT5x/N83pPo89deTzz5b8JAAn3fIssy9Tv2RqVS8eTudf6bMIB1s8fQbsAE/N56c+XEfgbOWsvIDr/xW5tuFK9SB4DLx/exe8Ucxqzcj/+7Nywd3x9fHy+iIyMo+1tTmnQVkwYLP4egx1d4vGEscZFhALg2H4ate8V4bV7uX8jbizuR42JR6BtperHERYVzb0kfwrwfoFDqY+LgSv4eiwjzecz9JX1RRUcgq+JwLNssTZaWtslXnieb1ctfn+tfHMfyLQm4dxZj+yzkbD2Wh6uHEvLsJgAOZRqT9Tf1N+dh3g+5v7QvqrgYTDPlirdM+f/3JPr8ddjrRzxcM5zooPeATJZafyKrVIQ8u8nDNcN5uvVfcrQYQZS/D743juDecwnX/22Gc7WO2BVW36v4Xj/EywOLKTx4C1GBb3m4ehiRft6oYiLJWLIBLnV7pfrvSRDSwqUHXoxcfZTQyGgARv9ehcoFs8drM3f3BbafvUdsnApDfT2mda6JezYHwqNi+GvuLjxf+aKvpyBHJluW92vEI28/us/bTUR0DHEqmZYVC9CzXsk0fy8f521pX7UQh68/ISIqhtnd6lAyT2bNvpYVC3D+3ksiomOZ2rkmpfJk0ez7o2ZRTt56RrPy+angno1+i/fjGxyOnlJiWMtKVC2k7m23+6In49adwMrMiGqFc2hd/+O8Mf//+uDVR/y76RQxcSoUksT8HnVZcVj9JXXNYStRSLB79O8MWX4YD1cHWlf2oEC3OVyc+admue5hK49gbmLAoKblufLImzFrjxMSrs59g5uXp3qRnGn+e/6ViULNd3Dp/nNG/LebkA89QsZ2qkvlwvGXTJyz7QTbTt4gNi4OIwN9pnVvTAFXJ8Ijo+k2fT2eL96ip6cgp5M9K4a05ZHXO/6avoHwqGhUKplWVYvSs3GlNH8vHyfR7VCrFIcu3yciKoY5fZpRKl92zb5WVYtx7s5TIqNimNq9MaXzf9rXuU5ZTt54SLNKRahYKBd95mzGNygMPaWCEe1qU7Wo+iZn19lbjF25D2tzE6oVzaN1/Y+T+P7/6wMX7zFp7UFi4uJQSBIL+rdkxT71UsLV+89BoZDYM+kvBi/eQaGcmWlTrTj524/l8qJB2FqqZ4IfumQX5iaG/NO6Blc8XzBqxV5NUhrSpgY1iouqs5D+hQT682+vlgycvQ63QiWJi4sjIjRYq13F+i2p30F9k3/z3HEWjurNvxuPc/3MEcKCApm9R10MCQ0KAODA+iUULl9ds4z3x+3/b3Lv1rx5+TTBfRPXH8PQyDjJ+M8d3B5vVaqA928Ys3I/AKumDkdWqZi56xIRYSEMblEZl9z5KVy+OrMGdea337tRqUFrHty4xNDWVZO8Dqh76Uzs3oLWfUZQuqZ6Wd6QAD/MrW05sWNtvKFTx7av0RxXqUEbju9YqynUHN++hkoN1StQzf6nM027DSJfsbLEREczquNv5MhfBI8ylZONRxDSs5jQAG7P7oR7z6VY5iyGrIojNiJEq51DmaZkqaWeQNz/7ikerPyHoiP24H/7JLFhgZScqF51JCYsEADvoyuxLVhZs4z3x+3/7/aczokuE15k+G6UBknnlneXdscb9hQd+I7Cg7cA8HjjOJBlio8/RlxkKFfH1MXMOS+2BStzb1FPnKt3wrFsM4IeX+XquPpJXgfUvXRuzeyAa5NBmmXCY0L90Tez4c3ZzfGGTvmc3qg5zqFsM96c2awp1Pic2YRjOfUqU/cW98KlXl+s3Uqiio3m+r/NsMhWEJv8FZKNRxB0KSAkgrZTtrByQBNK5HYmLk6leTb6XIvy7vT4sGrSiVvP6LdkP4cndODYjScEhUVyYWZXAAJDIwD47+BVqhV21SzF/XH7/2s3dSvPElnq++D49hgb6n/xe/IPiaBYbmeGtarE5tN3GLX2GAfGtdPsy5fVnrFtq3L27gv+mLmDa3P/0uzL5ZSBf5qVB6Dq4OW0q1qI36t44PnqPXVGrubCjK7IQJ+F+zgwrh05nWyZvfN8iuJ6/NqP3gv2sndsW1wdbYiKiSU6No4pf9Tkv4NXOTCundbQKRNDfWoVzcWWM3fpWrsYsXEqtp29y4Fx7QgKi6T/4v1sHNIcB2tz3gSEUOWf5ZybnhlLU6Mv/r0JKSMKNWksICScNuNWsHpoO0rkzaZOSuGRWu1aVilKz0YVAThx/SH95m7hyIzeHL32gMDQCC4uGghAYEg4AEv3nKNa0TwMbFUt3vb/13b8Sp76+Ca47/C0Xl+XlILDKebmwvB2tdl0/Cqjlu3l4LSemn35smVi3B/1OHP7CX/8u4bry4Zo9uXObM/gNjUAqNJnFu1qlaRtjRJ4vnxD7YHzuLRoELIs03v2Zg5N60lOZ3tmbT6Worgee72n1+xN7J/cHVcnO3VSiollavfGLN17jkPTemJmbBjvGPVS6vnZfOI6f9YvR2xcHFtPXufgtJ4EhkbQd+4WNo/pjIONBW/8g6nceybnFgzAyizpG0FB0LUHNy7h7OqGWyH1zY5SqYy3rPVHT+7eYNuiKYQEBaBQKDTDfFzc3PF69pDFY/qSv3g5ilRQPzDkLVqGlZOHEhsTjXuJ8uQvkfDDwcBZa7845rCQIPo1LIUsy2R0dqHnhIWafRXrt9L8fOv8cToNmYwkSZiYWVD2t6bcPH8ct8IlefnoHhXqtQQgt0dxsqRgHh7vZw9RxcVqijQA5ta2yR5Xqnp9lk8aRHCALxISdy+fodekJUSGh3H38mmCAz7l3oiwULyfeopCjfDDC3p8FZNMubDMqV7xRFIo0Te10moX8vwWz3fPJjYsECQFEW/VhVuzLHkJ93nCg1WDsXYrjW1BdS8/q9wlebxhDHJsDFZ5SmOdp0yC13fvueSLY44ND+bS8Kogg5FdFvJ0nqnZ51CmiebngLunydlmDJIkoWdsjn3JBvjfO41lrmKEej/AobS6rWWOIphlTn4ennCfJ8iqWE2RBkDfzCbZ4+yL1ubxupFEh/ghSRKBnufJ22U2cVHhBHqe51GI36f3FhFG2OtHolAjpHuXH3qR2zkDJXI7A6BUKhK8n77x9A0ztp8lIDQShSTxxEf9ec/vkpGH3n4MWHqAMvmyUv1D75LSebMwYtURomPjKJfPhXL5syZ4/ZV/N/6ieBObZOXz7WZGBtT40KukaE4nhq88otlnoKekWTl3AMrky4qxgR6PX/thbmyIkb4eDUurv4gOiYjizvO3tK6k/nLKLbMd7i4ZufLIG1mGAtkcyOmkvidpV7UQo9Yk/1x04tYzqhZ2xdVRnW8M9fUw1E/+sb9VpQIMXn6IrrWLceT6Y3I5ZSCLvRWHrz3mxbtAmo3f8On3IMHTN/4Ucs2U7HmFryMKNWns0v3n5M6ckRJ5swEfkpK5iVa7G4+8mLbxKIGh4UiSxBPv9wC4Z8vEo1fv+HveVsoWyEH1Yuo/6tL5szP8v91Ex8ZSrkAOyhfMoXVOgFVD231RvJKUcFr6fLuZsSE1S6h7lRRzy8qwpbs1+wz0lDSvVBiAsu6uGBnq88jrHeYmRhgZ6NGwvAcAIeGR3H7qTZtq6hs9tywOuGd34rLnC2RZpqCrEzmd1ROKtatVipHL9yYb+/HrD6hW1A1XJ/WqBilOSlWL8c+iHfxZvxyHr3iSK7M9WTPacOjyfV689afJiE83hZIEz177UihX5mTPKwg6lYKJ4mOio5napw1jVx3ENZ8H/u98+KOC+obDIXM25uy9yq3zJ7h2+hBrZ4xmxq6LlKregNweJbhx9ijblkzn6LbV9Jn8n9a5v6ZHzcc5ahJiZPJptQFZltV/jJ/5mKMSy2EASj09Pp9APyY68tP5voKhsQnFK9fh9N7NABSvXAcjE1MiwkKQJInJm06hp//lxXBBSN+S/3tRxUZzZ25nCg/ZhrlLAaIC3nC2j/rewNg+KyUmniTg3mn8bh3nyZZJFB93FPtiv2GZowj+d07yYs9cfE5tIN+fc7XO/TU9aj7OUZMQpdFnuQWZxB7PksotkkIPVJ/mmfg0LOrrcovS0IQMhWvw9sIOADIUroHS0ITYiFBAoujI/Sj0RG4Rfiwp+WuIjomjw7St7BnzOwWzO+LjH0K+rrMBcMlozYWZXTl1+zlHrj9h3LrjnJnWhXol3SiWy4njN58yc8c51h6/yaJe2j3evrRHja2FCf4h8Xvn+IdEkOGz1Y8+TsgLoFRIxKoSn29GlkH6kF9MjPQ1OSWxWxBJklDJiZ9PqVSgUn06OPKzuTi/9r6mVJ4shEZEc+/FO9aduEXLigU058uX1Z69Y9p+1XmFryMKNWksJX8n0TGxtJuwkr2Tu+ORwxkfvyDy/D4GABdHWy4uGsjJG484ctWTMSv3cW7+39QvW4DiebJy7NoDZm4+xtrDl1g8oLXWub+0R00GS1P8/693jl9wGHYfhgVB/KSkUCiIjYsjMbIsf5aUDD4lpUTaS0iokvil6f1fUoqKjvl0rUSPSlrp/NkJjYji7jMf1h2+TKuqxTSx53PJxP4p3b/yzIKgO7kLlcBrRHceXL9I7kIlNEOfPu9VExMdSVxsLBkcnQA4sG6xZp/vG2/MLa0pUbUuHmWq0KlCTkKDAoiKCCdj5mxUbtgGx6yuzB2S8BwSX9OjJqUKlq7MkS0rcStUksjwUM7s20K7gRMwMbMgS868nN6ziQr1WvDo1hVePryrOc4hczYe376KS+783Dp/nEDfdwA4Z8+NQqnHuQPbtIY+GZtZEJbAkLGPKjVszbKJgwDoNGQyAMam5uQpUpptS6Zphoj5+nih1NPH2i5jmvxOBOF7scxRlPDXfxP0+AqWOYpqhj593qtGFROFrIrD0EadW7yOrtTsi/R/jb6pFXZFamGTvwJn+xQmNiyQqIAIjO2y4liuOcYZs3F/qfaEv/B1PWpSyiZfeV6fXIdlzmLERYbx7uJOcrQYgZ6xOaZOuXl7fjsOZRoT/OQ6oa88NccZ22cl+NkNzLLkxf/u6Q/z0YCJYw4khR7vLu3WGvqkZ2RGbLj2kLGPHMs259Fa9eTCOduo7wn1jM2wyl2CF3vnaoaIRfp5Iyn1MbRKP6vlCEJCiudyprfXXi498KL4Z0OfPu9VExkTS6xKhZOtBQDLDl7V7PP2C8bazJjfiuemUsHs5O0yi4DQCCKiYnDJaE2rSgXJ7mhDz/l7Erz+l/ao+dgb5eiNJ1TxcCUuTsXKw9epVDBbio6Pjo1jy5k7NCvvzvn7L4mMiSVHJlveBMT/u7cwMSS/S0bWn7xF60oFeejty53n7yiSIxMy0GvBXp74+OPqaMOqozc0x2W0MiM2TsVTH3+yO9qw5fSn+53KHq5M23pWc9zHoU/mxoaYGRsQHB6Z6KpRzSu4M2/3Rc7fe8XCnuqCV/Hczjz18ef0neeUy+8CwLXHrynk6phkEVv4NqJQk8ZK5HWh1+xNXLr/nOJ5XDRDnz7vVRMZE0tsnApnOysA/ttzTrPP2zcQazMT6pR2p3Lh3Lj9PpqAkHB1UnKwoXW14rhmsqP7jA3/f2ngy3vUuGZS90Y5etWTKkXc1Elp/wUqFc6VouOjY+PYfOI6zSsX4dydp0RFx5LT2Q4f//gPOhYmRrhnd2LdkSu0qV6ch6/ecufpa4q6ZUGWZXrO2sgT7/e4Otmx+uAFzXEZrc3VSem1L9kzZWDziU8rN1UpnJupG45ojvs49MncxAhzY0OCwyK1hj591KJyUeZuP8G5O09Z9Ld6iEWJPC48ff2eUzcfa3osXXv4kkI5M4ukJKR75lY2DJy9juX/DiYqIgxJoaDdgAkULP1pLisTMwta9BzGwKYVsHN0plD56pp9Lx/eZfV09UOCKi6ORp37Y2PvyJZFUzi9eyN6BgaApClOfE9Nuw1i6bj+9KlXHFBPJly4nHoYaK9Ji5k7tBu7VszBNV8hchYsrjmuZe8RzBnchcObV+BWuCQZHNU945R6egyet4El4/qzaf4kJIWC+h16U7F+S6o37cDKKUPYtXwWbf/WXu0pb9EyRISqb7ryFCmt2d5n8jKWTxqkidHY1Jzu4+eLQo3ww9M3s8a951IerRtNXFQ4kkIiR4sR2OQrr2mjZ2xOtoZ/c2V0LQxtnLAt8GnIX9grT55sngCArIoja50eGFo78Hz3bN6e24akpw+SRK7WY777e3Op35eHq4dyaag6XocyjbEtoM6ZebvM5v7Svrw8uAhzlwJYuhbWHJe98SDuLemtKfIY2qoLVAqlHgX6LOfh6qE82zkDSVKQudafOJZpQqZKbXi8YQwv9y8gR4vhWrFY5S5BbGSo+udcJTTb83ady6N1I7n4IUalkSl5Ok0XhRoh3bM2N2blgCYMW3mE8KgYFBKMaVuVigU+FT4sTAwZ3LwCVQYvxzmDhWZCXVAvjT1m7XEA4lQyfRuWxtHGnOnbzrL59B0M9JRIEkzoUC1V4tXXU7LqQ7yj1xxDJUPpPJnp1zDhYZn/z8bcmCc+/lQdvJyIqBiW9mkQ78vuzy3uVZ9+i/ezYM8l9JQSC3rW0/TcmdG1Nq0mbcLKzIgGpT/Nk6mnVDChQzUajV1HZjtLyn425MvV0YaZf9am04xtxKlklAqJ+d3rkTerPd3rlqDB6LUYGeixe/TvWrG0rFAAj+7zaFWpACYfvtC3MjNm7aBmjFx9lCErDhMdG4eLvRXr/2n+/x2chVQkfW3XKEFNkiQ5cN+0JNtcvPeMYUt3ExYZjUIhMa5TXSoWyoV7+3FsHNWJvC6OzNp8jKV7z+FsZ021om6MWbmPwH3TOHz5PqNWqIf9qFQyzSsXoU/TykzbeITNx6+hr6dEkiSGt61FtWJ5kowjpW4+8WLokl0EhkagUsmUyZ+dMZ3qYmyon+Rkvh9//qNOGY5eeUBEVLTWZMIfjwN4+to3RZMJNyjnwZDFO/HaOgEzY0NWH7rIlPVHyGxvTbkCrizefUZz3v0X7zJxzUHiVCqUCgUL+rUkXzZHJq09yJYT1zEy1I83mXCXumUBePUugIIdx9O6ajHm9GmuifHaw5cM/28PgaHhxMTG4eJgy4aRHVEoEl/Z3qp2f2RZFmlL+CaSJMnb7ofqOgwhHWmUx0zkFuGbSZIkV175WtdhCOnIsXaZRG4RUp0kSbL/5qG6DkMn/n8Fpl+JTdPxIp+kElGo+UYpKdT8KhIqxvyKRKFGSA2iUCP8P1GoEVKDKNQI/08UaoS0IAo1olAjfJvEuwUIgiAIgiAIgiAIgpBiWeytfskijZC6RKFGSDVZM9r88r1pBEEQBEEQBEEQBOFbiEKNIAiCIAiCIAiCIAhCOiEKNYIgCIIgCIIgCIIgCOmEmEz4Gxkb6r+JjI4V660KGkYGem8jomIcdB2H8GMzNDJ+Ex0VKXKLoGFgaPQ2KjJC5BbhmygNjN6oYqJEbhE0FPqGb+OiI0VuEVKVsYH+m8gY8Yz0qzHS13sbES2eg1KDKNT8YiRJmgVYyLLcQdexJEeSpDLAJiC/LMsBuo5HEITEidwiCEJaELlFEIS0IHKLkN6JQs0vRJKkUsBW1H/k/rqOJyUkSZoHGMiy3FnXsQiCkDCRWwRBSAsitwiCkBZEbhF+BKJQ84uQJMkAuA6MlmV5k67jSSlJkiyAu0BbWZaP6zoeQRDiE7lFEIS0IHKLIAhpQeQW4UchJhP+dfwDPAE26zqQLyHLcjDwF7BEkiRjXccjCIIWkVsEQUgLIrcIgpAWRG4RfgiiR80vQJKkvMBJoJAsy166judrSJK0AXguy/I/uo5FEAQ1kVsEQUgLIrcIgpAWRG4RfiSiUPOTkyRJAZwG1siyvEDX8XwtSZIyAreBmrIsX9N1PILwqxO5RRCEtCByiyAIaUHkFuFHI4Y+/fy6ATKwSNeBfAtZlt8CA4GlkiTp6ToeQRBEbhEEIU2I3CIIQloQuUX4oYgeNT8xSZIyA9eA8rIs39d1PN9KkiQJOAQclmV5sq7jEYRflcgtgiCkBZFbBEFICyK3CD8iUaj5SX34A94FXJJleayu40ktkiRlBy4BJWVZfqzreAThVyNyiyAIaUHkFkEQ0oLILcKPSgx9+nk1A1yAf3UcR6qSZfkpMBFY9CHxCoLwfYncIghCWhC5RRCEtCByi/BDEoWan5AkSbbATOAPWZajdRxOWpgFWAIddB2IIPxKRG4RBCEtiNwiCEJaELlF+JGJoU8/IUmSVgCBsiz30XEoaUaSJA/UYzMLyLL8RsfhCMIvQeQWQRDSgsgtgiCkBZFbhB+ZKNT8ZCRJqgYsAfLLshyq63jSkiRJEwFXWZab6ToWQfjZidwiCEJaELlFEIS0IHKL8KMTQ59+IpIkmaJecu7Pnz0hfTAG8JAkqb6uAxGEn5nILYIgpAWRWwRBSAsitwg/A9Gj5iciSdI0wF6W5d91Hcv3IklSBWAN6mp5kK7jEYSfkcgtIrcIQloQuUXkFkFICyK3iNzyMxCFmp+EJEnFgN2o/zh9dR3P9yRJ0mIgTpblbrqORRB+NiK3iNwiCGlB5BaRWwQhLYjcInLLz0IUan4CkiTpA1eAybIsr9V1PN+bJElWwF2ghSzLp3UcjiD8NERuEblFENKCyC0itwhCWhC5ReSWn4mYo+bn8DfgDazTdSC6IMtyINADWCJJkpGOwxGEn4nILSK3CEJaELlF5BZBSAsit4jc8tMQPWp+cJIk5QbOAkVkWX6h63h0SZKkrcA9WZaH6zoWQfjRidzyicgtgpB6RG75ROQWQUg9Ird8InLLz0EUan5gkiQpgOPAVlmWZ+s6Hl2TJCkTcBOoIsvyLV3HIwg/KpFb4hO5RRBSh8gt8YncIgipQ+SW+ERu+TmIoU8/tj8AQ2CergNJD2RZfg0MAZZKkqTUdTyC8AMTueUzIrcIQqoRueUzIrcIQqoRueUzIrf8HESPmh/UZ5XSSrIs39F1POmFJEkScAzYKcvyTB2HIwg/HJFbEiZyiyB8G5FbEiZyiyB8G5FbEiZyy49PFGp+QB/+8LYBt2VZHqHreNIbSZJyAueBorIsP9dxOILwwxC5JWkitwjC1xG5JWkitwjC1xG5JWkit/zYxNCnH1MjwA0Yr+tA0iNZlh8BU4GFHxK4IAgpI3JLEkRuEYSvJnJLEkRuEYSvJnJLEkRu+bGJQs0PRpIka2A28Icsy1G6jicdmwZkBNroOhBB+BGI3JJiIrcIwhcQuSXFRG4RhC8gckuKidzygxJDn34wkiQtAaJlWe6u61jSO0mSigD7AHdZlt/pOh5BSM9Ebkk5kVsEIeVEbkk5kVsEIeVEbkk5kVt+TKJQ8wORJKkSsBLIL8tysK7j+RFIkjQFyCTLcmtdxyII6ZXILV9O5BZBSJ7ILV9O5BZBSJ7ILV9O5JYfjyjU/CAkSTIGbgN9ZFneo+t4fhSSJJmg/r31lGV5n67jEYT0RuSWryNyiyAkTeSWryNyiyAkTeSWryNyy49HFGp+EJIkTQJcZFluoetYfjSSJFUF/kNddQ/RdTyCkJ6I3PL1RG4RhMSJ3PL1RG4RhMSJ3PL1RG75sYhCzQ9AkqRCwEHU4wrf6jqeH5EkScuAUFmWe+k6FkFIL0Ru+XYitwiCNpFbvp3ILYKgTeSWbydyy49DFGrSOUmS9ICLwBxZllfoOJwfliRJNsAdoLEsy+d1HY8g6JrILalD5BZBiE/kltQhcosgxCdyS+oQueXHIZbnTv/6Av6oJ8wSvpIsy/5AH2CpJEkGOg5HENIDkVtSgcgtgqBF5JZUIHKLIGgRuSUViNzy4xA9atIxSZJyABeA4rIsP9V1PD86SZIkYCdwRZblMbqORxB0ReSW1CVyiyCoidySukRuEQQ1kVtSl8gtPwZRqEmnPvwBHQH2ybI8Tdfx/CwkSXIGrgMVZFm+p+t4BOF7E7klbYjcIvzqRG5JGyK3CL86kVvShsgt6Z8Y+pR+dQAsgVm6DuRnIsuyFzACdXc/8fkXfkUit6QBkVsEQeSWtCByiyCI3JIWRG5J/0SPmnRIkiQH4BZQXZblGzoO56fzIRmdAtbLsjxP1/EIwvcickvaErlF+FWJ3JK2RG4RflUit6QtkVvSN1GoSYckSdoEPJFlebCuY/lZSZKUBzgNFJJl+ZWu4xGE70HklrQncovwKxK5Je2J3CL8ikRuSXsit6RfoptTOiNJUn3AAxATO6UhWZbvo+5COf/D2FdB+KmJ3PJ9iNwi/GpEbvk+RG4RfjUit3wfIrekX6JQk45IkmQJzAU6y7Icoet4fgH/Ai5Acx3HIQhpSuSW707kFuGXIHLLdydyi/BLELnluxO5JR0SQ5/SEUmSFgBKWZa76DqWX4UkSSWAHUB+WZb9dByOIKQJkVu+P5FbhF+ByC3fn8gtwq9A5JbvT+SW9EcUanTowwROFWVZPiZJUjlgA5BPluVA3Ub2a5EkaSZgJctye0mSXFD/w/BEt1EJwtcTuSV9ELlF+NmI3JI+iNwi/GxEbkkfRG5JX0ShRockScoLbEM9/vIGMFiW5e26jOlXJEmSGXAH6AzkB7LKstxHp0EJwjcQuSV9ELlF+NmI3JI+iNwi/GxEbkkfRG5JX8QcNbrlBHgDQ4G7IiHphizLocCfwCLAD/X/F0H4kYnckg6I3CL8hERuSQdEbhF+QiK3pAMit6QvolCjW85AGOo/iCWSJJ2XJKm3jmP6pUiSZC1J0hsgF3AOqIVISsKPT+QWHRO5RfhJidyiYyK3CD8pkVt0TOSW9EdP1wH84pyBksA9YDkwGFil04h+MbIsB0iSVBmYAzigTkiRuo1KEL6ZyC06JnKL8JMSuUXHRG4RflIit+iYyC3pj+hRo1vVADvUYzHzyLK8QpZllW5D+vXIsnwPqAqMAuKAjB8mNROEH5XILemAyC3CT0jklnRA5BbhJyRySzogckv6IiYT1iFJkloDb2RZPqrrWAQ1SZJMgWGyLA/WdSyC8LVEbkl/RG4RfgYit6Q/IrcIPwORW9IfkVt0TxRqBEEQBEEQBEEQBEEQ0gnRlUkQBEEQBEEQBEEQBCGd+KLJhI0N9N5ExsRlTKtghB+Lkb7ybUR0rMO3nkfP0PhNXHSk+Fz9YJQGRm9joyK++f8/gL6h8ZtY8RkQPtAzMHobk8hny9jI8E1kVLT4rAgaRoYGbyMio5LNReKz82tK6edDaWD0RhUTJT4fgoZC3/BtXHRksp8dI33Fm6hYWXx2fjGGetLbyBjVN90Hi/vfn1dS97Ip9UVDnyRJkt8t6fgt1xN+IvadlyHLsvSt55EkSf5rn29qhCR8R/NrZ0iV//+g/gxMOB2QGqcSfgJDylkn+tmSJEkOu7Hve4ckpGOmHrVTlIskSZLD74rpD341JvmqpPjzUXHl6+8RkvCDONEuU4o/O96jS32PkIR0xGnk+W++D5YkSR56zD+1QhLSkfGVbb758yGGPgmCIAiCIAiCIAiCIKQTolAjCIIgCIIgCIIgCIKQTvxUhZpKo3cQER2bbLuWsw7x7F1wql132p4bFBuymWJDNjNtz40E2zx5E0TDqfsoPXwr5Uduo9fy0/FiXXfmIRVGbafS6B1UG7eTCw/faPYFhEXRdfFxSg7dQrkR25i6+3qqxS6obexRkdioiGTb7RnRgiCfZ6l23SvrprKmY1HWdCzKlXVTE2wjq1Rs7VeTjd0rsLF7BXYPb0bw25cABHo9Zsc/9VnXpSQbupXl2PSeKXofwpeZ06EcMSn4va4Y0BQ/79T7fBxbMYWpzQsxtXkhjq2Ykmz7rRN7MKScNVHhoZptL+9eZnb7skxrWZRl/RoRGvA+RccJX69ksx5EREYl265h9xE8feWTatedtHgd+et0JH+djkxavC7Z9n+OnIGpR21Cw9Wf7Qs37lGyWQ/Nf67V2lC6Rc9kjxNST4lGXVL02Wnw52Cevky9YToTF6wmX8025KvZhokLVifbvuuwKZjkq0Jo2KfPwMpt+ynW4A9KNOpCmWbdOHv1VqrFJ6hdHl6VuOjk/+5uTWtDxNvnqXbd5ztncOHvUlz4uxTPd85ItF3Q46tcHlaViwPLcnNyC6KDPw1rjwkN4N78blwcWJZLgyvyfMd0zT6fU+u5PLQyl4dX5crImgQ+uJhqsQvaqi24SURMXLLtfl9zn+f+kal23RknvCg98xqlZ15jxgmvRNtdfRVC1fk3KTv7Oi1X3cM3NCbVYhAStqRz+RTd5274pxkBqXife3r1FOa1Lsy81oU5vTrh+1xZpWJFj+os+aMcS/4ox/pBTQh8o34O8rpzkSWdy2v+m9U0L0u7VNQcO76yDUv+KKvZ/+7pvVSL/Xv4osmE07vjIxukqN363tVT7ZrnH75h15VnnBrVEICaE3ZTOpcDpXLFnztIX0/BmGYlcM9ii0ol03XJCeYfukP/Oh74h0YybONFLoxvgr2FMQduvOTvNec4M6YRAL2Wn6KsWyYWdakEwLtgcXOc2prPPZGidnXGbEi1a76+fY7HZ3bRYsFpALb0rUEm99Jkci8dr52kUFBn7CYMTS0AuLljEWeXDKfWsJUo9A0o03ksdq4FkFUqDv3bmRtb51G01d+pFqcAPZefTlG79lM2p9o1n904y53jO+i96hwAC7pUJZtHabJ5lEmw/f2z+0GKPxRWlmU2je1KkyHzcClQimMrp3Jw4WgaD56b5HHCt7mwaW7yjYDt88ak2jXPXL3NtsNnuLxlAQAVfu9L2SLulC3inmD7fScvIv3f//eSHnnjxd68zxhKFcqX7HFC6rm4bXGK2u1YODHVrnnmyi22HzrJlR3/AVChZXfKFStI2aIFEmy/9/g5rZThFxjEwEnzubVvJRkz2LDn2Dl6jprBtd3LUy1OAYqNPZKidgX6r0m1awZ6XuD9pT0Um3AMgGuj62CVuxRWbiXjtZNlmfuLeuLWeQZWuUrwfOdMnm4aj9sf6sKO55I+WOUtS96/1DkqOkj9pUFMqD+P146kxOSzGFja4XvtIA9XDKT4xJOp9h6E+A53K5iidqvb5Em1a154Hszee34c7a6+dt0ldyjlYkFJF4t47WRZpte2R8xokIPiWS2YedKLCUdeML1BjlSLRdDWecmpFLVrMWlTql3z5c1zeJ7cSZdlZwFY0b0aWQuUIUtB7eegFpO2YGSm/qxc2rqQI/OH0WTMKpzzl4gX++bhbcicv0S849vNOYCBsVmqxf09/XA9anZffU7p4VupPGYHM/fexL7zMkIj1ZXWz38u8s8mJu28Rq2Juynyzyb+O/apglbkn03c906diUt3XH5Ks1I5MDbQw9hAj2alcrDj8lOtdlkymOOexRYAhUKiULYMePmpv73+OJ/zx9iDwqNwtDYB4OnbIO55BdClSl7NuewtjFMl9l/NkzO7WdelJJt6VOLqxhnMr52BmAj1/4PPf17dvhCXVk9ka7+arG5fiNu7l2rOsbp9Ifye30+VeB6f2kHuKs3QMzRGz9CY3FWa8fjUjgTbfizSAMSEhyBJ6j9di4xZsHNV30xLCgUZcxcm5N2rVInvV3PnxC6mty7OnI7lObFqWrweJp//PLlpAQ4vncCCP6szuWkBzm/99GA1uWkB3qRStf7Wse0UqtkCfUNj9A2NKVSzBbeObU+wbXiQP8eWT+a3HuPibff2vI6egSEuBdSTHJao34Hbx3cke5yQvB1HzlCoQRdKNe/BlKUb4/Uw+fznPLXaM3b+aiq17UeeWu1ZuGG35hx5arXn7uPnqRLP1oOnaFWnCsZGhhgbGdKqThW2Hkz4xssvMJgJi9YyqX/nRM/3zj+Qoxeu07JO5S86TkjejkOn8KjTnpKNuzJ58dp4PVM+/9mtWivGzFlOxVY9cKvWigVrd2jO4VatFXcfpc63mlv2H6dVveqfPjv1qrNl//EE2/oFBjFhwWr+Hdgt3nbNfcyH2INCQnFysEuV+H417y/v5eI/5bgyvBovds/mRLtMxEaGAcT7+Xz/4jzbNplrY+pyvn9xvA4v05zjfP/ihHp5pko87y7tJGOZJigNjFEaGJOxTBPeXdqp1S7k2U0U+oZY5VI/JGWq/DvvLqnzXfibp4R63ce5+h+a9gaW6s/Hx0VNYiPV/8bGhgdjaO2YKrH/yvbe86P8nOtUX3CT2ae8cBp5nrAodS+az38uMeMaU469pO6S25SYcY3lFz/18iwx4xqeb8NTJZ5dd3xpUtAOY30lxvpKmhS0Y9cd7YVEbr4Ow1BPQfGs6vvetkUzsvuuX6rE8KvzPLWLhe1KsLRLBc6unc74yjZEf3j2+fznuS0LcnL5BFb0qM7clgW5vH2J5hxzWxbk3bPUuc+9d2I77tWaa+5z3as1596JhO9zPxZpAKLCQ5AU2l8YhQW85+mV4+Sv1jxV4ksPfqgeNe+DI/h79Vn2D65D9oyWLDx8J8n2EdGx7B9cl5e+IZQftZ3mpXNiZqSfaPug8CgaTNmf4L7cmaxY2Lmi1nZv/zDK5P70D4qzjSkXHr3Ravf/ca0/84ihjYoCYGtuxOTWpakyZgdWpoaoVDLbB9QG4IFPII7WJvRdeYbbr/yxtzBmZJNiuDlZJ3kNIb7wwPecmNOPxtMPYOXkys3tC5JsHxMVQePpBwh++5IN3crhVrUF+klUY6NCg9jxT/0E99lkyU21gYu0toe89yJTgU+9I8ztnPG5cz7Ra+wZ0YL3T25hbGFD3XHaPTdioyK4f2gdJdsPS+qtCQkIDXjP9il96LbwMBkyu3Jm4/wk28dERdBt4SECfF4yq11pCtdqhaFJ4p+PiJAglvaqk+A++2xuNB+xRGt70Fsvshcqq3ltmdGZZzfPJXiOndP/pkqHQRiZWcbbHvjWC+uMmTWvTa1skVUqwoMDMLGwTvQ4IWnv/APpOXYOx1dNJ0dWJ+asTvjG4qPwyCiOr5rOC++3FGvSjTb1qmJmknjBPTA4lJp//JPgvjyuWVg+caDW9ldv3lPusx4QmR3sOHst4X8j+02cz9A/W2NpbppoDOt2H6VKyUJktLX+ouOEpL3zC6DHqOmcWD+XHFmdmbNyS5LtIyKjOLFuLi+831C0fid+b1ADM9OkPzs12vdLcF/eHC4snzxEa/srn3eUL+6heZ3Z0Z4zVxIettR33GyG/tUWS/P4+S6DtSWzRvSmVJOuWFmYo5JVHFw+PcFzCImLDvblwfKBFB6xGxOH7Lw6kHQPq7ioCAqP2E3E+1dcHloJh3LN0TNK/O8zJiyIG5MaJ7jP1Ck3ef+cp7U9ys8bK7dP33Ab2ToR9OBCgu2MMjhrXhuY24KsIiY0gPDXDzG0duTBsv6EvriDgaU9rs2HY+qcGwNzW3K1m8TVEdXRM7FElmU8Bif9dyEkzTc0hoG7nrK7c36y2xqz+FzSwyQjYlTs7uzOq4BIKs+/STMPe0wNlYm2D4qIpcmKuwnuy21nwtwmObW2ewdFUyrbp3uNTJYGXHihPQ2Fd1AUTpaGmtc2pvqoZAgIj8HaJPFnOCFpYQHv2Te9L+3nHsLG2ZWLm5O5z42MoP3cQwS+ecnijmUoWLNlkr1SIkODWN23boL77FzcaDBUO5cFvfUia8FPz0EWGZ15eSvx56AN/zTjzaNbmFja0HLyVq39tw9tIHvRSpjZ2MfbvrpvPVRxseQoXpVy7QahZ2CodWx69UMVaq4+fY97FluyZ1T/obcqk4sRmy4l2r5hseyAujeLlYkhPgFh5HS0SrS9pYlhiodPfa3YOBVdF5+grJsjNT2yABASEc2yE/c5PKw+ORws2Xn5KR3mH+XEyAbExslcffqeYQ2LMjOXA3uuPef3eUe4PKFpmsb5s3nreQU71wJYObkC4Fa9NWeXDE+0fc7y6qFsFhmzYGhmSaivD9aZtf/h+cjQzDLFw6e+Vp0xG5BVKq5umsmVDdOp0P3TWE5VXCyH/u2Mc8FyZCtZK03j+Bm9unsZp1wFyZBZ/fko+ltr9s0dmmj7AlXUwxKtHbNgbG5J0PvX2GfNlWh7Y3PLFA+f+lK3j+9AT98AtzI1v8txAly+5UlBN1dyZHUCoG2D6vwzTbvY9lHTGuUByOqUESsLM7zf+pI7W+ZE21tZmKV4+NSX2nboNPr6etQqXyLJdmt2HmZ0r/ZffJyQtEs37+ORNyc5sqofaNs2qsmgyYl/cdCklnrIc1YnB6wszfF++57c2bMk2t7KwizFw6e+1LaDJzHQ16d2Re1liINDw1i0fidnNi0gV7bMbD1wgha9R3Jp+xIxVO4LBD++irlLfkwc1PevjuVb8GT9qETb25dsAICxXWb0TS2J8n+NXqbE71X0TS1TPHwqNclxcQQ/uUb2pkOw6jSd91f2cXtme0pOPU9sRAjeR5dTZNR+TBxz8O7iLu7O7kTRcUfFZ+crXfMKwd3RlOy26qJui8L2jD74ItH29fNnACCztRGWRnr4BEeTwy7xgrClsV6Kh08J6YP3vSs45CyAjbP6PrdgrTYcWZD4F7t5K6vvc60csmBkbknw+9dkyJL4fa6RmWWKh099rRaTNiGrVJxdN4Mza6ZRq0/8uT1vHlhHpT9GxNvWc8MtLOydiQoLZufEbpxZPZWKnRK/v09vfqhCjYz8RVMpGOp/qgYrFRKxKjnJ9l/To8bJxpRXfp8m4PTyDyOTdcLfZsSpVHRbehJLEwMmtPw0tvfEPW8sjQ3I4aAuQNUvlp1eK07jFxpJZlsznGxMKflhzps6hV3o/t9J/EIisTU3SvL9CJ+R5S+ah0Np8Ol3q1AoUcUlPUn11/SoMbdzjjdMKeS9F2YZnJK8jqRQkLd6a9Z2Lq4p1Kji4jg8uSuGZlaU/TP15i34lcgyX/T5+LwaL6Xg8/E1PWosMzoT+ObT5yPorReW9tqfj6fXTvPk2mkmN/3Um2JW21K0m7IZq4zOBLz9dI6wQD+QJEwsrJM8LmM2tyTfz69OluUveoAwNDTQ/KxUKIiNS3oSx6/pUZPZwY6XPu80r1+9eY9zxgxa7U5dvsXJSzfJU6u9ZlvRxn+yfe5Y8riqCwCXbnniFxRCjbLFvug4IXnq+5iUf3aMvuKz86U9ajI72vPy9VvN61c+73BOYNjSyYs3OHHxOm7VWmm2FanfkR0LJ+L55AWW5mbk+lCAbFyzIl2GTsY3IAg7G6skYxY+JwMp/3wo9D/7ZlihRFYl/fn4mh41hrZORPp+mvg10s8bQ9tMybaLDvEDJPTNrDHM4IyRrRNWudWFXruitbm/qAfRIX4Eep5Hz8QSE0f1HCT2JerhubQPMSH+GFjYJvl+hIR94S0NhnqfZsJI0fPSV/SocbI0wDvw00Tpr4OiyWRhkEA7Q7yDPrXzD4tBAtGb5hvJX5hbPr/PTclz0Nf0qLHM6EzQZ/eowW+9sEjgPvdzkkKBR+02LPi9WLxCjfe9y0QEB5CjZLV47S3s1V+KGJpa4FH7dy5tSbonUXrzQxVqimS3p8+KMzx9F0x2ews2nHuUquf/mh419YpmY8j6C3SspJ5wa9P5x0xsWVKrnUol03P5aZQKiZnty8a7UcuSwZzbr/x4HxyBnYUxZzx9MDMywNbMCFszI0wN9fH0DsDNyZrzD99gZWKIjdmP020rPcjoVpRjM3sT9Poplpmy43l4faqe/2t61LiWq8fphUNwr9MJgAdHN1Gum3ahJSLIF0lSYGRhA8DjM7uwcVHPWSSrVByb3gOFQkml3rPEt09fKXO+omyd1AM/r6fYOmfn6v7U/Xx8TY8a90oN2DNzECUbqcf0Xz+wgTp9Jmu1q99/GvX7T9O8HlLOmt6rzmNoYoZKpSI2KpLnt87jUqAUF3cux71Sg2SPE5JWrIAb3UbN5MnL17hmycSaXYdT9fxf06OmYbVy/D15IV2bqwuC6/YcZdqgblrtZg7tzsyh3TWvTT1qc2XrwnhDsVbtOESrOpXR01N+0XFC8ooXyEO3YVN48sIb16xOrNlxMFXP/zU9ahrVqMDfE+fStaX6y4Z1uw4xbYj2al+zRvRm1ojemtcm+apwdecyzEyNiYiK5ub9x7zzC8De1pqTF69jbmpCBmsxrPJLWLgWwXNpf8LfPsMkYzbenEm9iTvh63rU2BWry+M1w3Gq2h6At2e3kPN37XnNzF0KoIqOJPDhRaxyleD1sdXYF6+r2ac0NCHM6wGmzrkJ9LyAnqk1+mY2GGfIQuiLO0QH+2JgkYGA+2dRGpujb27zze/3V1XY2Yx+O8J45hdBNltjNl3XXu3xW3xNj5o6+WwZsf857YpnBGDLzfeMre2i1a6AoymRMSouvQimeFYLVl15S918omD3rZzyFGXvlJ74ez/Fxik7tw4mvzLkl/iaHjV5KtTn0Nx/KNJAfZ97+/BGqvf8V6tdWKD6OcjEUp0T7p/YiV22+BNd39i/FvfqzVEoP5U2IkIC0TMwRN/QGFVcLJ6ndpHRNf+XvjWd+qEKNfYWxkxpU5rWsw9hY2ZEjYKZ0VcqMDHQ3dsok9uR3wpnpfyo7ciyTLNSOSj9Yc6aAzdecvDmS2a0K8vRO15sufCEPE7WVB27C4DiOez5t3VpCmbNQPfq7jSYsg99PQWGekr++7OS5qF7Vvty9F5xmqjYOIwN9Fj+VxXxQP6FTKztqdBjKntHtsTIwhaXEjVQ6OmjZ2iis5icCpQle+nf2NCtHCCTq3IznNzVYzWfXdjP8wsHqNRnFuH+7zg2owdxsbEgy1g4ZKHq3+qu8i+uHOHh8c3YZM3D5t5VAHDMU5zy3bUf6IXEmdvY0+Dv6awc2BwTSxvylKmJUk8ffSPdfT6yFypL3gp1mdW2NLIsU6hmC7IXUn8+7p/Zx/0zB2j0z+wkz6FQKGg6bCE7pvYlNjoKa4csNB2u3btL+DIZba2ZNbQHjXuOxNbKgloVSqCvp4eJke4K6OWLFaB+5dIUa9INWYZWdSpTrqh6xae9Jy6w9+QF5o/sk+x5IiKj2HboNMdWTUu2rfDlMmawYfbIvjT6awi2VpbUrlhK/dkx1uFnp7gH9aqWo2iDTurPTr1qlCumfgjbc+wce0+cY8GYpFcSLJwvF307NKNG+34Y6OlhYKDPuhkjxb3KFzKwtCNX+0ncnv47+mY22BaqhqTUR2mgu4KodZ7SZChai8tDKgMyGcs0wcpNPfzN99pBfK8fwq3TNCSFgjxdZ/NwxSBUMVEYZXAmT1d1wVmSJHL/MQPPpX1RxUajNDAmf8+lSJKEebYCZK7djRsTGiHpGaDQMyBfj8Xis/MN7MwMmFQ3O23XemJjok+13NboKyWM9XW3hkzpbJbUymNDlXk3kYEmBe0o5aIu5B7y9OfQgwCm1ndFoZCY1Sgn/+x+QmSsTGYrQ+Y0Fis+fSszG3tq9ZnGxsEtMLG0IWepmij09NHX4XNQVo+y5C5bh8UdywAy7tWaa+aseXh2Pw/P76fO37MJ83/H7n+7o4qLQZZlrByyUn/Ip3vZmKgI7p/YQfu58b/48Hv5kP0z+gESqrgYnPIVp0JH7V6l6Zn0cbb1FDWWJPndko5pGE7yQiNjNBMCrz/7kLVnHrJnUMJDCoS0Zd95GbIsf/O/pJIkyX/t0575PbVFh4dgYGIOwP1D67h/aC2Npu5N8+v+rObXzpAq//9B/RmYcDp1VmL7WlHhIRh++Hxc3buWK3tX03X+AZ3G9KsaUs460c+WJEly2I193zskLSFh4Zibqm9wVu04xKodhziyYmoyRwlpwdSjdopykSRJcvjdo98jpCTF++xsP8DKrfs5umaWjqP6eZnkq5Liz0fFlUlPuvo9xEaEovdh0k6fUxvwObWewsO0V1kS0t6JdplS/NnxHq09d5MuhUbFYfZhQuCN19+x/to7dnT6sXoTpHdOI89/832wJEny0GP+qRVSkj6/z725fy039q+h3eyEp/wQvt34yjbf/Pn4oXrUACw5epddV54Tp1JhZWrI9LZlkz9IEIBbu5bw5Mwu5LhYDM2sqNhrhq5DEtKRc1sWcef4TuLiYjGxsKbhQPHgJCRuwbpdbDt8hti4OGwszZg7opeuQxJ+EPPXbGfbwZPExcVhbWnOvNEJzykj/Jq8D//Hu8u7kePi0De1IndHUQAWvtx/F3zYc8+POJWMlbEeU+pl13VIgo5d3raY+yd3IsfFYmRuzW/9Z+o6JCEZP1yPGiH9+NF61Aip62frUSOkHz9Cjxoh/fjRetQI39eP1qNGSD9+5B41Qtr70XrUCN9XavSo0d1gRUEQBEEQBEEQBEEQBCGeX7pQ02DKPg7dfKmz6z95E0SDKfuoNHoHZYZvZfKuawm2O/vAh6zdV1Jp9A4qjd5BzQm7NPtuPPel0ugdlB2xLd4qWBvOPmLG3htp/RZ+GTsG1eP5xdRdneNLnJo3kHVdSrKxewW29a/Nu4fXE2wX6uvDjn/qs7RJNjb3qhJv37uH19nYoyLru5bG88gGzXbPw+u5smF6msb/s1vSsw6eZ3U3n83O6X8zvXVxZrcvy8JuNfDy/PT5eP/yEUt712N2uzLMbleGR5ePJ3mumKhIZrQpybw/Kmm2eXleZ06HcsxoU5Jrn62IdXXfOo6vEt3yv1TNToPYf+qizq6/fu8xijf9C4sidVi4YXeK933u9Vtfav3xD45lm1C2VfxhX9fuPqRksx4UadSVNbs+rTCzeudhJi/Z8P+nEr5Ajfb92HfivM6uHx4Rye/9x5K/5u941GmfaCynLt3AtkhtSjTqQolGXSjf4tOKYVfvPKBEoy4Urtsh3qpXq7cf4N9Fa9P8PfzMrk9sjO+N1F2F7msE3D/HifbOeB1eptl2499mXB5elcvDq3JpSCVOtMtE6Mt7Wsf6XjvAlRE1uDSkEpcGV+TV/oWafcHPbqqPH1wh3opYPqc38mKXGK78LZosv8vhB7rr2RwRHcefmx5SZtY1ys+5nmgsKpXMiH3PqDT3Bv9j7yyjo0i+Nv4biStJCAnEhRCiuAR3h8VtF3d3d10Wd3d3d3d3jwARICHuMxl5PzQ7ITuDw8L+X55zOKS7bkl336m6detK5QW3abXuIa+T5QDciUql6qI7VJh/m623YzR1ttyKYc6ZSJ3t/cLnY12/ugRf+nF7oqzMdHaOb8/C1kVY3KbER8eikGeypF1JVnStpLn38sktlnUqx5J2Jbl7JFuuvXN4I+fX/zzJFP5zMWr+lzBuxzXqFnGhQ6WCpGZmUW7MTqr4OVLYNbcWbX57S46NrK91f+6hu0xuURJ/Z2vKj91F89KexKdmsvHCU7b3r/FvPMYv/AtwKlqZoC6TkEj1eH7lCEendqL1yutadHpGJhRvNQR5egrXNuTM/HRz21zKdplMbs8AtnQvR4EqzclMjufR0Q3Um7zz33qUX/gO8CpRhTq9pyCR6vH4wmE2j2nPwC2CsmbHlB6UqN+eQjWaExsRyvI+9ei/8Rr678lodWzZRJx8i/E65L7m3pn1s6nTZyr5vAKZ0yaIwjVbkJ4Uz42D62k/a/e/8Yi/8A3h7+XGmqlDmbFKO/Xvh8reGbYGFgAAhC5JREFUhYmxESO6tSIlLZ1Ji3Nurmes2sb0IV0oVNCT4o2707peFeISk1m35yj7l0z+ps/yC/8uZq/aiqmJEfcPryPkRSRVfu/L/UPrMDXRzkpUwN2ZC1sXad2fsXwTM4b3pFBBT4r91onWDaoTl5jE2l2HObD8r3/jMX7hO0KRkUrY1klY+VfKcT9wSPac8ubGIZ7tmIapU0Gt+voWtvj1W4NBLjsU6clcH1MDM7dCWHqVIHz/fDxbTcTM1Z9rIyphV6YpWanxvD67mYAhW777s/3C98Piiy8xNZBwoU9hwuIyaLjyARd6F8LkbUDkv3H0SQI3o1I51i0AqUTE2MPPmXM2kil13Jh/PooJNV3xz2tC5YV3aBpoS3x6FltuxbD5D21e+4X/Ji5vnY++sSnd198gPjKUtX1q0339dfTfBmH/J06vmEi+gsWIDn2guXdp02yq95yKXf4AlnUsg391Qa69c2gDrabv+rce5aP44YqadJmCXqvO8uRlIlKJCI88FizvWonopHS6LjtNSkYWsiwlVfwdGdO4GADT9t4k5HUSKRlZhEYnEeBsQ++a/ozZepWI+FRqF3JmbJPigGA14+toxf2IeF4mpFG/qCsjGhbVGkdKhpzRW6/yMDKezCwlZQrYM75pcSRiMX/tvcWua2EYSCWIRLBrYE0sjL8+laYISM4QtMAZcgUikQgbM8PPakNPIiJDrkCWpUQiFgykxm2/xrAGRdCXSj5S+7+FrMx0Ts7sSfyLx4ileljm86D68BWkx0dzdFpnstJTUMhlOBerSukOYwG4uv5PEiODkaenkhgVSm4Pfwo37cPFZaNJiYnELag2pTuMAwSrGRs3P2LD7pEa+wqPsvUp2Xak1jjk6SlcWDqSuOcPUchl5PMvQ1CnCYglEq5tmEbwmZ1I9A0RIaL+1N0YmFp89bO7lKiu+dvOuxipsS9Rq1SIxDmN4gxMzMnrV5qou+e12hBLpShkGSjlMk29iyvGUuKP4Uj09L96jD8a8sx0tk/qTvSzx0ikUmycPGk5fhUpcdFsHtcRWZrAH16lqlKz+3gAjq+cypsXT5GlpxAbEUo+r0DKt+rLwQUjSXwdgU+5OtTsMQEQrGbsPf14FXyPpDcv8avYgOpdRmuNIzMtmYPzRvI67AEKWSauhctSu+ckxBIJJ1b9yZ3jO9DTNwCRiI5z9mFk9vX8USAoWynr5FucpDcvUalUiMViXoU8wLNEFQBsHN0xNrPk6eXj+Faop9XOszsXiY0MpUyzHhx6R1EjkUrJkmWgkMsQS4R55dDC0VTtOALpf5R30jMy6TxqJo/CXiCVSsnvnI91fw3ndWw87YZOIzktHZlMTvWyxZjUrwMAkxat5+nzSJJT0wkJj6KQtwf92zdl2IxlRLyKoV6lICb3F2hrdBiCn5cb956EERUTS8OqZRnXu63WOJJT0xk6Yyn3nz4nUy6nXFF//hzYCYlEwuTFG9h2+AwG+vqIRHBo2VQszXULIp8DHw8XAMQibaPaD5W9CwszE8oU8ePstbtaZVKplPRMGZkyuWZdGjFrBaN7/IG+nt7XDf4nQHpGJp2G/8mjkOfoSaV4ujqyfuZoXr+Jp+2giRreqVGuBJMGdgFg4oI1PH0WLvDO80gK+eRnQMfmDJu2mPBX0dSvUpbJb2mrt+2Pv5c7d5+EEvX6DQ1rlGd8345a40hOTWPItEXcfxKGTC6nXPFA/hzcDYlEwqSFa9l28ORb3hFxeNWMb8I7Ow6fZunkIQB4ODtQ2Dc/R89fpWH18p/chp5USnpGJpnybP4YPn0pY3q3R1//v88fSlk6j5f1JS3qCSKJHsZ27vj0XIIsMYZHi7qjyEhBlSXDOrAy7s1GAfBs13TSX4WgzEgl/XUYZi5+ONXpSeim8WTGRpK7aE3cmwvrza0pjTB18iE1/AGy+FfYFq+LW5NhWuNQZKQQsnEsaRGPUGXJsPQujUfLsYjEEp7vmkH0ld2I9QwQISJg6Hb0TL5+LQII3TQWx1rdiLt9/L00r89uxr5cc51l5u6FNX9Ljc0xyetBZmwkeJVALJGilGegyspEJBbWotDNE3BtNASx9L+5Fr2LDLmSPrtCePomA6lYhLuNEUua5icmRU737cGkypTIFCoq58/FyGrOAMw4FUFIbAapMiVhcRn42ZvSs2w+xh15TlSijJreVoyq7gIIVjMF7Yx5+DqdV8ky6vjYMKyKk9Y4UjIVjDvygkfRacgUakq7mDOmhgsSsYiZpyLYfT8WA6kYEbCtrQ8WRl+/ndx7P47ZvwlpuN2sjfDPa8LJkETq+ljnoBOJQK5QIVOoEIvEpMmUOOYS9mR6YhEZWUoyFSrEb9O7Tzz6gsGVnNCX/m85kWRlprN3andiXzxGLNHD2tGDhmNWkRofze6Jnd7KvJl4lKxG5S7CPufs6qnERQQjS0shPjIUu/wBlG7Rl+OLRpEUHUGBsnWo3FWQj9f1q0sed1+iQ++T8uYl3hUaULHjKK1xyNKSObZoJDGhD1FmZeIcWIYq3QSZ9+yaP3l4cicSfQNEIhGtZ+7F8BvsiR6e2kXdoQsBsHJwx94rkNArx/Gu0ECLNvzuJeIjwyjRpDvRodkyu1iiR5YsHYVcpplLTiwZTYX2I36qPdEPV9ScehBJYrqM8+MbApCYJgPAwlifdT2rYmqoR5ZCRbPZRzh5P5JKvg4A3HkRx7ER9TAxlFJ5wh4m7LjOpj7VUKhUFBu2jT/KeeGWR2CGJ68S2d6/BplZSmpP3U8xd1uqBeScmEZvvUqp/HbMalMGlUpNt+Wn2Xg+mLpFXFh49B4PZ7bESF9KamYWhnraCpAzD6MYu+2azmdsVtqDrlW1U+JNbF6S1vOOser0Y5LSZYxuXAwnGzOdbYRGJ1N5wh70JCLaVvCmeWlPAPrXCWTQ+oukyxSMaVyMi09eIRaJKJXf7lNe/38KETdPIUtNpMWSiwBkpiQCoG9qQe0xG9AzMkWpyGL/yCaEXz+BU1HB9edNyB0azzmBnqEJ23pX4vKqCdSZsAWVUsH6dkUoWOMPLPO5AxAf/oR6k3eilGeyo39N7LyL5VCSAFxYOpK8fkFU7DsHtUrFsb+68PjYBtyC6nF75wLabXyM1MAIeXoKUgPtU8aIW2e4uGKMzmcsULkZAb91++B7uLdvOc7Fq2opaT6Goi0GcmbeABSydEq1H0fUvQuIRCLy+pX+rHZ+VgRfPUlGSiL91l8GIOMtfxiaWvDH1E0YGAv8sWpAI55eOU7+t8qLl0/v0GPZSfSNTJnfoTxHFo+j7V/bUCkV/NU0kGL12mLjKPBHzPMntJ+1G4U8k8XdquHsWzyHkgTg4LyRuAaWpuHQuahUKraO78SNA+vxrVifc5vmM2LfU/QMjJClpyDV1+aPkOunObRAezEEKFSjBWWadf/ge7i0cxlepaohfssf+bwCuHN8O0FNuhL15DZvIkJIfB2hVU+ekcaBucP5fepG4iLDcpRVbDOIPTP6I89Ip2a38YTduoBIJMY1MOiDY/mZcfzSTRJSUrmxcwkACckpAFiambJt7hhMjY3IylJQr/tIjl64TrUgQcF/62EI5zbOwdTYkNItejN6zip2L5iAQqmkYK12tG9UAw/nfAA8Dgtn/5LJZMrlVPyjPyUDvalZrkSOcQydsZQyRfxYOKYvKpWKdsP/Yu3uYzSoGsSctTt5fnIjRoYGpKSlY2SgfUBw8vIths9cofMZW9WtTK/ff/tm7+xTMbRTC/pMmkdahoxJ/dpz7vo9xGIRZYr4/etj+R44duE6icmp3Ny3CoCEpLe8Y27K9gWTMDV5yzudh3D03FWqlRUOjm49COb81oWYGhtRunFXRs9czu4lU1AolBSs3pr2TWrj4SzIOI/DXnBg+V9kyuRUbNWLkoE+1KqQM1jpkGmLKFs0gEXjBwq8M3gya3Ye5rdq5Zizaisvzu34MO9cusGwv5bofMbW9avRq01jrfsRr2JwyptHc+1ol4fIVzFadAAhzyMp1bgLelIpnZvXo3UDYS0d2rU1vcfPJi0jk0kDO3Pu2h2BP4r6f/C9/1cQf+8MWWmJFJ9yBoCstERAUDr49luD1NAElSKLu9NbEnf3FNb+gptp6vN7FBl7CImhCddHVyds62T8B6xHrVJyeUAJ7Cu0xthOyNyTHvWUgMFbUGXJuDWhLuaeRbEJrJpjHCEbx2JZoBQFOsxArVLxaHEPXp3dTO5itYk4vJjS8+4i0TdCkZGKWF/7kDD+wVlCN4/X+Yx2QU1xrNFZ637cnZMo0pOxLVbnvYoaedIbEh6ew6vDx12u014Gkxx6k/xtBQth5/r9eLp6CEpZOm7NRpL4+BKIxFgWKPnRtv4LOB2aSFKmktM9AwFIzFAAYG4oZU3LApgYSMhSqmi57hGnghOo6JkLgLsv0zjUxQ8TfQnVF99l8rEXrG/tjVKlpuTsm7Qqmgc3a0HeCH6TweY/CiJTqKi3/B5FHc2o6pUrxzjGHXlBSRdzptd3R6VS03NHMJtvxlDbx5rFF19yZ3BRjPQkpMqUGOpQgJwNTWTC0Rc6n7FJQG46l86rdT8qSYaDZfY8lc/CgJdJMi26qvlzcfFZMoHTr2OkJ8bDxohJtV0B6FvegaH7w0iXqxhVzZlLz5MQi0SUdDH/2Kv/zyH02kkyU5Poskpb5m06aSP6b/dEmwY3JvTqcdyLCzLvq6d3aL/oJPpGJqzoUoFTy8bRfOpWVEoFC1oVolCdNlg5CDJv7IsntJq+C4U8k9U9q+PgUxzPUjn3RMcWjcTZP4g6A+eiVqnYPakzdw6tp0D5+lzZuoC+O59oZF49HXuiZzdOc3yx9qEngH+15pRooi3zJsdEYZHHUXNtbutA8psoLTp5RhrHFgynycQNJETllGvL/D6QQ7MGkJWZTuUu43hx5wIisRingJ9rT/TDFTU+jlaEvEpiyIaLBHnZU8VPePFKlZpx269xLTQatRreJGdwPyJOo6ip6JMPc2NB41XQwQofBysM9CQYIME9jwXP36RoFDXNSnkilYgxlYhpUMyVc49faSlqjtwJ5+azNyw6KpwiZ8gV2OcywcxIDw87C7qvOEMlHweq+Ttiaqh94lO+YD5Ojcn3Wc++9sxjmpTyoGd1P6IT02kw/SCBzjYUcbPNQefvZM3tP5thbqzPizcpNJ51GHtLY8oXzIdX3lzsHVwbALlCSeOZh1nTowpLjj/gakg0uc2NGN+0+P+EdY21qw8JEcGcXTCYvP5BOBcThBK1SsnFFWN5/egaarWajIQYYsPuaxQ1joUrYWAiTNLWLgWxdvNBomeARM8ASwcPkl891yhqClRphlgiRWxkikf534i6c05LUfP8yhGin97i9i5Bm6vITMfUJi/6xmZY5vPg+F/dcCpaCefi1dA31la8ORYqT7P5p7/oHQSf2Unw6R00mPb+2BHvg5WTF7/9tR8AZZacvcMbUnP0Ou7sXszrh1cxssxNUKcJP5Um+XNg7+HLm/Bg9swciFuhMniVqgYI/HFo4WjC718FtZqU+BheBd/TKGo8i1fSaPjt3H2w9/BFqm8AGGDj5EH8y2caRU3hGs2RSKVIpKb4V25I6M1zWoqaRxcOEfnoBue3LABAnpmBRe68GBibkdvJg60TupC/eGW8SlfHQAd/eBStQK9V577oHdw5voM7x7bTaf4Bzb3GwxdyYN5wbh7cQG4XL5z9SiKWas9hhxaOpmTDjljkzqulqMnjWoDO84VMS4osOSv7NaD15A1c2LqIF/euYGqVm1o9J/2nrGv88rvy9FkE/SYvoGxRf2qUFSw2lSoVI2at4PKdR6jVaqJjE7j7JEyjqKlSujAWZiYA+Hq64JffDQN9PQzQI7+LA2GRrzSKmlZ1qyCVSjCVGtGkenlOX72jpag5cPoK1+8/Ze5awdQ2IzOTfLY2mJsY4+mSjw4j/qJq6aLUKFccMxNtd7VKJQtxeev87/aevgTe7k4cXSm4sMizsqjTZTibZ41m/vrdXL79EFtrS6YO7PSfta7x93LjybNw+k6YQ7nigdR4+02VSiXDZyzhyq0HqHnLO49DNYqaKkFFsTATrFp8vdzw83LHQF8fA33wdHEgLPylRlHTqn41De80rlmRM1duaSlqDp66xI17j5mzehvwlnfscmNuaoynqyPth0yhapli1KxQUjfvlCrClZ1Lv8s7CizoydMTm7AwM+V55CtqdxxE3jw2VCpVBG8PF46tnQ2AXJ5F7Y6D2DJ3PPPX7uDSrfvYWufiz8Hd/rPWNaZOBUl/FcrTtcOwLFAa64C38eLUKsI2TyAp5Dqo1ciTYkgNv69R1OTyLY/UWJBVTB29MXEsiFhP2Lga27uTEfNCo6ixK9NUkFUkUmxL1Cfx4QUtRU3craOkhN0m4rAQ40Uly8TAyh6pkRlGdu48WtILK7+KWAdWQarDZcDKpxxWE95vFfNPZKUlEbZtMgGDPxyH6vX5rVj5VUTf3PqDdLLEaO7PaYfn75MxyCUcPprky0+hEcJcqVLIufNnM3z7rCTiyDKSg6+hZ26DR8ux/1nrmoJ5TAiJzWD4/jBKuVpQxdMSAJVazYSjL7geISiFY1LlPHidrlHUVPCwwNxQ2NJ55zHGx84Eg7cKFHdrI17EZ2oUNU0CcyOViJBKJNTzteHCsyQtRc3RJ/HcjkplyUUhC1pGlgp7c33MDCS42xjRe0cIFTwsqeKVC1MD7f1FOXdLjnWz/ObvB+DeqzRCYtO5MaAIJvoSxhx6zrgjz5lU2438tsbsbC8cjMsVKpqvfciK5l4su/SKa+HJ5DbVY0x1l/8J65o87r7EhT/l8JxBOAcE4VFSkHlVSiUnFo8h8sFVQE1qfAzRIfc1ihq3opUwNBXmGVs3H/K4+2hkXmtHDxJePtMoavyrt0AskaJvZErBig15fuuslqIm+OJhXj2+yeVtgsyrkGVg/lbmtXL0YM/kLrgXq4xHKd0yr2uRCnRadva7vKMTS8ZQpEEHzHPn1VLU5HYpwB9zBFlZmSVnw8DfaDJhPVe3LyLi/hVMctlStfvEH74n+uGKGpfc5lyY0Iizj15y4n4kk3bd4MzYBiw+9oCkdBmHh9fFUE/KgLXnycxSauoZvGPVIhGJcli5SMQiFEqVzv7UasFsTtf9NT0q45JbW+t6aFhdroZEc+7xK6pM3MPmvtXxcbDKQfMlFjXLTj7k2uQmAOSxNKZMgbxcCo7WUtSYGWUziXNuM2oGOnE1JIbyBXMqhuYeukurMvlJTJNx+PYLdg2sxZ97brLjSigtgvLrHNt/CRb2LrRYcpHI2+cIv3GcK2sm0mzhOe7sXIQsNZFGs44g1Tfk9Nx+KOSZmnoS/WwNvUgiQfrOyZFILEalVOju8D3MolarqTlqLRb2LlpljWYd4dXDK0TdOce23pWpM2ErNq4+OWi+1KIm7OIBrqyZTL0pOzHOZauT5lNxc9scvGv8jiw1kWeXD9Fg6h6urp/K01Pb8a7W8qva/lGwyutCv/WXCb1+lidXjnF06QR6r77A+S0LyUhJpNuS4+gZGLJrWl+y5NmnNO/yg1gsebtgZV+rFLr5Q2AP3fzResoGrPK6aJV1XXyMF/euEHbzLAs6VqTt9G3Ye+ScG77UoubB2f0cWzaRDrP3YGaVzR9WeV34fcpGzfWs1iWxddGeD17cvcyTy8c4uXoaCrmMjJRE5rYJoveaCznozqyfTdE6f5CRksjD8wfpNHcfx1dM4c7RbRSp3Urn2H5GuDrYc3PXEk5fuc3RCzcYO28NV7cvZN66nSQmp3Jm3SwMDfTpOX4uMplcU8/AIHs+loglGOa4FqNUKtEFNWqd/AJqtswahauDvVbJ6bWzuHT7IWeu3qFMy97sXjABv/yuOWh+RouadzFj5Tba/FaDxORUDpy+zKHlU5m4cD2bD5zijwbVfujYvhSujnm5tW8Vpy7f5Oi5q4yZvYJru5czd812EpNTOLN5AYYG+vQYM5NMeTbv/JNXDPTfuZZIULyPd9S6eUetVrNl7nhcHbVPp89snM+lW/c5feUWQU26sWfJFPy83HPQfIlFjaO9LeEvo8ltZQlAxOtoypcI1KIzNzXR/O3iYE/dSkFcuvWASqWK5KCbvnwTbRvVIjE5lf0nL3B49UwmzF/N5gMn+OO3/2acPSNbZ4pPOUPCw3PE3z3Fs+1TKTrxBBGHl5CVnkjh0fuR6BvyZOUgVFnZa9HfShnhQqJ1rVa9by16j2CLGt8+KzGyddYqKTx6P8nB10h4eJ4bY2rgP2CDVryYz7WoSYt6jDwxmhvjagGQlRJP3K1jKNIScWnQX0P3+twW3JrrXuP+hjw5ljt/NsOxZjdsS2i76QKE75+PffmWKNKSiLt5hMBh23m28y+iL+58r1vVzw5nK0PO9AzkfFgSJ4MTmHo8nBPdA1hy8RVJmQr2d/LDUE/M4L2hyBTZ+xyDdxQPErEIA6kox7VC95YINUIYBq37aljR3AtnK21Lq30d/bgWkcyFsGRqLrnL+tbeFLQzyUHzJRY1+SwMiEyUYW0iKGijkmSUdtV2k9l6O4Yg12zFVMMAGwbsDtWiW3A+ihaF85CUqeTI43i2t/Nh+skIdt2LpVmhr5OhfwbkyutCl9WXeX7zLKFXj3NqxUQ6rzjPle0LyUxNpN3CY0j1DTkwo2+OPVEOGVciQZJjTyRB9Z51iPesQ6jVNB6/nlw6ZN52C44Scf8Kz2+dZWXXSjSfuo087jn3RF9iUWNum4+k6AhMLG0ASI6JxCWwjBZd5P3LhF45xvm1f6GQy8hMTWRZxzJ0Wp4zPMTFTbMJrP07mSmJPL14iNYz93Jm9RTuH99GQM0fK9f+cEXNy/g0LE0MqFXImQoF8+E/aDOJaXKS0mXksTDGUE/Kq4Q0Dt0Op22FAl/Ux7bLITQo5opMoWTvjWcMb1BEi6Z6gCPzDt1lWuvSSMRi4lIySc3MwtrMkLTMLEp72VPay57rYTE8jkrQUtR8iUWNs40ZJ+9H0qy0J6mZWVwJfk2NAEctuujEdGwtjBCJRCSkyTjz8CVDGxTOQRMWncSNsDcMrFuIB5HxiN5OvWKRiLTM9ygi/mNIjX2JgaklbqVr4Vi4Amt+90WWkoAsLQljqzxI9Q1JjX3Fs8uH8anV9ov6eHJyGx7lfkOZJSP0/F5K/DFci8alZA1ubZtDuR7TEUskZCTFkZWRiqG5FVmZaeTzCyKfXxCvH10n/vkjLUXNl1jUPL9yhAvLRlFv0nbM82j7E38OEqNCiX58g2ItBxH77IGGV0QiMVmZaV/V9o9EUkwURua5KFiuNh7FKzL1N28yUhLITE3C3NoOPQNDkt685OH5g5Ro0P6L+rh1ZCt+lRqizJJx/9RuqnXSjmHkXaYmZ9bPpv6AGYglEtIS45Clp2JiaYUsPQ23QkG4FQoi/ME1op890lLUfIlFzeMLhzk4fwTtZ+4il31O/khNeIOJpQ0ikYgbBzci1dfHvYh2PIl3FTJht85zaMEoeizPmSEqNiKUiIfXqNxuMK9C7msWbZFYjCzjv8U7UdGx5DI3pW6l0lQuVRiPqr+TkJRCYkoaeWysMDTQ52V0LPtPX6ZTk1pf1MemAydpXL0csqwsdh47z9ief2jR1CpfkhkrtzFnRA8kEgmxCUmkpmdgbWlOanomZYv6UbaoH1fuPuJhyHMtRc3PaFHzN0JeRHH17mOGdWnJvafPNDsCsVhEWkbmhyv/xIh8/QYrCzPqVS5DldJFca/YlPikZJJSUrGzscbQQJ+o6DccOHWBjs10bzI/ho17j9O4RkVkcjm7jpxhTB/tOatWxVJMX76ZuaP7ZPNOWjrWuSxITc+gbLEAyhYL4OqdhzwMfq6lqPkSi5rfqpdnxdb9FPH1IuRFJDfvP2HNX9rz4Ks3cdjZWCESiYhPTObExRuM7t0uB03Ii0iu3n3E8O5/cO9JqGY+EYvFpKVnfNa4fiZkxr9Ez8SS3EVqYuVbnot9C6NIS0SRnoyBRR4k+obI4l8Re+sIeStpzwmfgtcXt5O7RD3UCjlvru3HtfEQLRrrQtUI3z+f/G2nIhJLkKfEocxMQ8/UCqUsDcsCpbAsUIrkkBukRT3WUtR8rkWNZf4SBM2/p7l+tKwvZi7+OFTN5t2k4GsoMlKw/keg4XeRlRrPnWnNyVelHXkr6N4kpb8OIzn0Ji4N+guZo0TZcoxS9t9ai97FyyQZuYyk1PC2ory7BYVn3CAxQ0FypgJbU30M9cS8SpZx5HECfxTL8/EGdWDHnTfU87FBrlSx/0EcQypry5TVvHKx4HwUU+q4IRGLiE/LIlWuxMpYjzS5klIuFpRyseBGZApPYtK1FDVfYlFTx8ea9dejCchnSlhcBnei0ljYWLsNR0tDzoYm0qmUPXoSMSefJuJlm9NiMCwug5uRqfSr4MjD12kaPaZYBGmy9ygi/mNIfhOFkVkuvMrUxq1oReY0KUhGcgKy1CRM3+6Jkt+8JPjiIQrXbffxBnXg3rEtFKz4Gwq5jEdn9lChg/Zc71m6Bhc3zaZmX0HmTU+KQ56eipGFFfKMNJwDgnAOCCLqwTXePH+kpaj5Eosa7/L1ubVvNXm9ChEfGcqrJ7doMHKZFt27CpkXt89zfPFoOiw+mYMmPjKUqIfXKfvH4LfBhrPnEvlPINf+cEXNo6h4JuwUsteoVGp61/THztKYTpV96Lj4JJXG7yaflQnlvLW1r58KfydrGs88zKvEdOoVcdFyewIhXsy47deoOG43IpEIfamYCc1KoCcR037xCTLkStRqNX5O1tQurH068SWY264swzZdZtGx+yiUahoUc6XyW9evqXtuYmdhTNsKBdh/8zmrTz9GKhGjVKloUsqDmoE5xzBqy1UmNhPMr30crHDObUa5MTuxMjVkdffKWn3/FxH37CGXVwuBXdUqJYWb9sXE2h7/ep05MqU9W3tWxDR3XhwCyn5xH7nd/dk7vCFpca9wL1Nfy+0JoEzniVxaOY6tPcsDIiR6+pTpMgmxVI/DE9sKmmu1Cht3f9yC6nzxWN7FyVm9kejpcXhytsBTf/JODM2tuLpuCsZWdvjWbodKqWRd20CUWXLk6cms+d0P7+qtKd46W4i7sHQkZTpPBMDG1QdzO2c2dyuDobkVNUau/Sbj/RF4HfaQI4uFgGkqlZLyrfthbmNPqcad2TS6HfPal8PCNh/uRcp9cR958/uzsl8DkmNf4VuhvpbbE0Cd3pM5tHAMc9uVQSQSIdUzoHbvyUikUjaMbINCloFKrSJf/gB8ytX94rG8i+1TeiLV02fjqDaaex1m78HYwopH5w9xduMcQIR1PhdaT1qv2RAdWz4Zcxu7T1ZcHZg3nDq9pgCCq5mVvQuz/yiFiYU1rSev/ybP8m/hfvAzRs9dDYBSqWJAh6bY21rTvUU9Wg+aQqlmPXGwy02F4gFf3EdgAXfqdBnOy5g4fqtaRsvtCWDaoM6MnL2SEk17IhKBgb4e0wYJcT1aDphIhkyOSqUm0Nud+pW/TUygrYdOM2LWCo2Vy4yVW9m7aBLe7k4fLJuwcB32ua3o2KQ2SqWSAjXbIs/KIiklHc9qv9P2t+qM6NZa08+Q6UuZNlg4dffL74qrgx1FG3XDxtKcTbO0Bb7/Ch4EhzF65nJAcJUb2LEFeW1t6N66Ia36jaNkoy4C75Qo/JGW3o/Agh7U7jiIl9Gx/Fa9nJbbE8BfQ3swYsZSSjTsLMgt+nr8NaQ7UqmUln3HkimTCbxT0JP6Vb98XXwX/do1pfOIafjW+B2JRMy8sf01blXj563C3taGTs3qsvvoOZZv2YtUKkWpVNKyXlXqVsrJv4P/XMhfQ4XTUj8vd1wc7SlavwPWuSzYPGfcNxnvj0BaxGPCtgnZzdQqJc51emKQyw6Hqh14ML8z10dVxcAqL7kKap8AfyrMnP24M60Z8oTX5C5WR8vtCcCj5XjCtkzk2sgqiEQiRFJ9PFqNQySR8mBeJ1TyTNRqFWbOftgU+TJl9Ofi9bkt5AlqrAne+Tee7ZyGvqUd+Sr9Qfj++WS8DuPl6XW8PL0OAIeqHXNYyYRsHItHK4FHTJ0KYpjbiavDK6JnZoVvb90Whv8FPI5JZ/KxcEBwd+pZJh925vp0KGlPl61PqLboDnktDCjj9uUxV3ztTWm+9iGvkuXU8bHWcnsCGFfTlYlHX1B10R1EgL5UzLgaLkjFIjpveUqmQoVKrcbX3oSa3h92YftUdAvKS99dIQTNuYlYJGJaPTeNW9VfJ8PJY6bPH8XsaFvcjqdv0qmy8C5SMeS1MGBaPbccbY09/JyxNVwAKGhngnMuQyotuI2VsR7Lm3t9k/H+aMSEPeTUMsHiTa1SUrplP8xs7Cn2Wxd2jGvH8s7lMc+dD5dCXy7z2nkGsGHgb6TEvsK7fH0ttyeAqj0mc3LJWJZ3KgsiERI9A6r1mIxYKmXHmDYo5JmoVSrsPAMoUPbb7IlKNuvFvj97sLB1EURiCTX7z9K4VZ1ZNRlTa3uK1Ps05dSxhSOo2kOYr/O4+2CZ15ml7UtjZGFN4/Hrvsl4vwYitVr96cQikTpm2ZedRP8oNPjrIN2r+epUzvzC18G200rUarUuq8nPgkgkUnc/GPsthvRV2D2kHoENe+hUzvyCNhbWsvkm3x8EHph8LuFbNPXdsKxXHco276lTOfML3xbDy+Z6L2+JRCJ12u2D//aQPhs1OgyhT5uGOpUzv/BtYRJY65PmIpFIpE5/cOLfGNJXoXrb/vRp20SncuYXPh/GPpU/mT8qrHn5bwzpq3BrSiMca3bVqZz5hW+L023yfjLvRI37+X+vjVc9oEvpvDqVM7/w+cg35tJXy8EikUg94mT8txrSN8O6fnUp2bSnTuXML3waJlWy+mr++O9HU/qFX/iFX/iFX/iFX/iFX/iFX/iFX/iFX/gfwQ93ffre2D3o3zHn/IX/Phr8ufdHD+EXfmJ0mrf/Rw/hF/5DOLzizx89hF/4j+LI6o+nLf6F/78oNGzHjx7CL/xHsb2dz8eJfuEXgN9nfX522V/49vhlUfMLv/ALv/ALv/ALv/ALv/ALv/ALv/ALv/CT4IdY1PwMcWN6rTzL2UcvqV3YhcktSgJw5E4447ZfQ6FUEeBsw5y2ZTE20H5F10NjGLnlMnKFiiyFig6VCtK2QgFUKjUdlpzkcVQCBnoSbMyM+Kt1aVxtzZErlFSflK2dzJAreBGbwsOZLcllYqDVx7uISc6gx4ozRMSmYqgvYcbvQVopvAHuhccxdOMl7kfEUdnXkZXdsqPqT9hxjZP3ozTXIa+TGN24KJ0q+3DyfiTjd1xDhJDWvGYhJ4Y1KIJIJGLfjWf8uecWsSkZPJ7130m9+zPEmzkxsyeRt87gFlSHsl2FAKzPrxzm4oqxqJRKcnv4U6nfPPQMc0arV6tUHJncnvgXj5DoG2JkYUP5XtOxsHfV1U0OpCfEcHx6d1Kiw5EaGFGh10zyFNDOcpaVmc7puf2Ie/YAtVqNlXMBKvaZjb6xGaHn93J13VQykmJpv/npt3kZ/xJ+hjgy2yd1J+TGGXzK1aFuX8Gq4tGFQxxaOAaVUkE+r0AaDZuP/j++u0qlYtPotkSHPUKqb4BprtzUHzgT63zCdw9/cI39c4ahVMhRZmVRqlEnTRDgc5vmcW3fWuIiQ/l9ysZPfv6U+Bi2TexKwqtw9AwM+W3QbBx9imrRHV48luAr2bE93oQHU6PbOEo37sLL4HvsnTmQV8H3yF+yKq0mrtHQydJT2TtzIC+D76JUKChW53fKtugFwL1Tezi+YgppiW8YuV87teb3xs8QQ6bzqJmcunKL+pWDmD6kKwAHz1xhxKwVKJRKCnl7sHhcP4yNtFOkqlQqJi5az44jZzEw0MchT252zheCa85es4PVOw8TEv6SbXNG53jGvpMWcPH2A8QiMXpSCeP7tKOijvTK/0R0XAIdR0wn/GU0hoYGzB/Vi2J+2pkYj164zqg5q4T1RKGgTsVSjOn5ByKRiPSMTHqMnytkgFKrKejhzIIxfTAzMWbUnFUcu3BD087T5xFM7Nue7i3rs+vYeSYuWseb+CTCT2/+3Nf8Q/EzxJvpPPxPTl6+Sf0qZZkxvCcAB05dZMSMpSgUSgr55GfJxEHv5bMJ89ew4/ApDA30yWdny65Fkz/aZ3RsPB2HTeVF1GuMDAyYN64/xf2930v/Jj6RYg06ULqwHxtnjwVg15EzTJi/mjfxiURc2PVlD/8D8DPEkHm0rC8JD86Ru2hNPFsLyQNibx0ldMsE1EolZi5+FOg4C4mBsVZdedIbHi3pRWZsJGJ9Q7zaTcPcXQiM/XTNMJKeXgWxCLFED7cmw8nlIwSqvjWlEbK4KCRGpoB2AOD34UP9vQtFZhrBa4aRGn4flTIL+3ItcarVTVOe8PA8oVsmonqbirhgtwWYOvnw6twWQjaOwdDGAQAjGyd8+6wEIObafp7v/At5cixlFjz45Pf7M+BniDfTd1cI58KSqOVtxYRarsgUKtpvesydl0K2nPtDir237ptUOb13hhCRKMNQKmZaPTcKO5h9tM/PqTfrdCTbbscA0CTQln4VBB7Y/yCO6aciiE3L+uAY/0v4GWLK7PuzB89unMarbF2q95oKwNOLhzm5RJB/7fIHUHfwfJ37nh3j2vLm2WOk+gaY5LKhZt+Z5Hor/67rV5fkmEj03wYMLt6wyyelzU6Nj2HvlK4kRUcg1Tek1oBZ5PPWlnFPLh1H6LVsGTcuPJjKXcZSrGEX7hzeyLEFw7GwE3QWlnbONJkgBBl+dGYPZ1dPIS0hlv67Q77gjX0c//OuTx9C75r+dKgkpCNMzcyi/9oL7BtcC7c8FvRbc56FR+8xsG4hrXqD1l9kWIPCVAtwIjoxnRIjt1OrsDM2poY0K+VJNX9HxGIRK04+ZOC6C+wYUBN9qYRTYxpo2lhy/AFnH778qJIGYNLO65TytGNbv0AuB7+m2/IzXJnUWCuffW5zI8Y3Lc79iHjOPMwZEG9Uo2KMaiRMRrEpGRQZupV6RYUfQHGPPJwYVR+JWEyWQkWdP/dT2NWWGoFO1C3iSoCzDdUm/XIL+hIUbtoHv7odAcjKSOXU3P78Nm0flvncOTW7D7d3LqBYy0Fa9byqNMOleHVEYjH39i3n9Nz+1J/ycUH18uqJ5PUtRdFJ23n14DLH/upKq+VXtXjl4eG1qBRZNFsopIE+Mrk9Dw6solCT3riXqUduz0C296nyDd7A/0+Ub9WHUo2EbDey9FR2TetL5/kHsXF0Z+fU3pzbNJ/K7QZr1StcozlepWsgFou5tGMpu6b1peOcPQDsmd6fqh1HUCCoBsmxr5nZsigFy9XBzMoW18AgCpatzc4/e3/WOI8uGY9LQGnaz9zJ87uX2DKhMwM23dDilxpdx1Kj61gAUhNi+auJP34VGwBgmsuG2j0n8TLkHiHXTueod3rdTCRSfXqvvkBWZjqLu1XH2b8kTj7F8KtYH4cChVjQqeJnjfl/DQPaN6VrcyH7V2p6Bj3Gz+XYyml4OOej+7jZzFm7k2FdWmrVm79hN8HPI7m+YzF6elKi47KDcZct4kfdiqXoMW6OVr1xvdtiYSakUr37JIw6XYbz4tQmrW/+T4yZu5oyRXwZsngSF289oP3wv7i7d7lWvdKFfLi4aS4SiYSsLAWV2w6kmJ8XtSuUZOWOw2RlKbi2fSEArQdNZtnWA/Rv14QJfdoxoY+QpeFNfBLetdrSsJqwAfytahkKF/SkbKs+n/paf+EfGNChBd1aNQAgNS2DHmNmcnzdbDycHeg2ejqzV21leHftVNHz1+4g+HkEN/asFPgs9tOCXo6evYKgIv7sWzaNizfu0X7wZO4dWvtePus7YQ7VypYgNS1dc++36uUp7OtFmabddNb5hQ/DqXYPTWpsRWYaT1YNotDwXRjbufF4xQAiDi3GpUF/rXph2yZj4VWSgMF9SXx6hYeLe1Ji2gVEIhFuTYYhNRYyDqWGP+D2n00Jmn9f8109Wk/4bAXVh/p7F+H75iKS6lF04glU8gxuTqiHRf7iWHgUQRb/iicrBuA/cAPG9h4o5RmolQpN3VwFy+LbSzt9r22xOpi5BHBj7K8kAV+KnmXy0q6EPQASkYgupfNiZaxH87UPP1hvyvFwSjibs+kPB66+SKbXjmDO9y700bXoU+tdfp7MgYdxnOghZG6su+w+pVzMKeliTh0fawLymlBz6T1dXfzCV6BUi74U+60TAPKMVA7O6Msfcw5g5eDO/um9ubx1PmX/0JZ//au1wLOUsO+5tmsZB2f2o9WM3Zryaj2nfrYS6tTy8Tj5l6bM7wOJuHeZPZO60G3ddS1eqdR5DJU6jwEgLTGW+S0C8K7QQFPuWqQ8jcau4Z/wLl8fe69CrOxaSavsW+GrXJ9m7L/NqC1XNNfxqZl49d1AmiyLs49eUnPKPiqN3035sbvYdTVMZxsN/jrI0TvhOq+jE9Npv+gk1SftpfzYXcw+cOdrhvtBnLwfSaCzDW55LABoU74Ae64900krEkFyRhYAabIszAz1MNaXIhaLqBHohFgsMEBRd1si4lJ1trHpwlNalPH8pLHtuf6MNuWFk8uSnnYY6km4/Vw7S5KdpTFF3GwxkEq0yt7FtkuhlPPOSx4LQaNpaqiHRCywgkyhRK5QIf4muXy+Htc3Tuf80hGa68zkeFY08yQrM43I22fZ0b8GW3tWZHO3sgSf2amzjd1D6vH8yhGd12nxrzk8qR3b+1Zlc7ey3Ngy67s9y4vrJ7D1CMAynzsAPrXaEnJ2txadSCzGtWRNRG+/SZ4CRUmJifykPkLO7cGnVlsA7H1KItU3ICb4lg5KEVmydFSKLFSKLBSZ6ZjY5P2Sx/ouOLn6Lw7MHa65Tk+KZ0JtN+QZaYRcP8OirtWY174cc9qU5s5x3f76y3rV4fGFwzqvk2Nfs2FkGxZ2rsycNqU5vXbGd3uWp1eOk88rEBtH4bsXb9COeye1lW5isRjvMrUQv/3uTr7FSYyOyCYQichMSwZAnpGGgbGZxirHwbsw1g5uWm1+DPdO7aZEfWFz7OJfCqm+AVGPdfFLNm4f2YJ70fKYWecBwNzGHkefokj1tJXOr0Pu41mikpA62MgE18Agbh/d9tnj/BCmLt3I4L+Waq7jEpNxLN+MtIxMTl25TcU/+lOqWU+KNe7GtsNndLZRo8MQDp29ovP61Zt4Wg2cRLlWfSnWuBt/Ld/yTcf/Lo6ev07hgh54OOcDoGPjWuw4clYn7dy1uxjfpx16esJ5Sx7r7FPVIr75cXfS/Xv+W0kDkJyaxkdkYg12Hj1Hh8ZCzLfShXww0Nfn5oNgLTpTYyMkEmENypTLkWcpNGuiSATpmTKyFAqyFArSMjLJl8dGq41NB05QsUQgdjZWnza4fwFTFq1j8NSFmuu4xCQcSjcgLT2DU5dvUqFlT0o26kKxBh3ZdvCkzjaqt+3PwdOXdF6/ehNHy75jKdusO8UadGTa0g3f7VmOnr9KYd/8eDgLp8sdm9Zlx+HTOmnnrNnGhH4ds/nsE7/JzsOn6dhMUECWLuKHoYE+N+4/0Um7ef9xbK1zUbao/2c+yffF8z2zCNkwRnOdlRrP+e4+KGXpJDw4x83xdbk+qirXRlQi+vJunW3cmtKI2NvHdF7LEqO5P68TN8bW4tqISrzYN/e7PUv83ZOYuQRgbCesE3kr/UHMFd0HcDFX95G30u8AWOYvgVjPgJRngvz9t5IGQJGe8tFN9afgQ/29i9SIh1j5VUAkEiExMMayQEliLglyX9TJNeQJaoSxvQcAEn0jpEYft874GTDrdCRjDj3XXMenZ+Ez9RrpciXnwpKou+we1RbdofKC2+y5pztDauNVDzj2JEHndXSKnE5bnlB76V0qL7jN3LOfJk9+CaQSEeXcLbEw/PA+BGDfgzj+KCrIEcWdzTGQijWWON+i3t77sTQOyI2RngQjPQmNA3Kz9/6PzzD7MZxb9xfHFuSUf2c2cEeekcazm2dY3bMayzuXZ2mHIB6c1C3/rutXl+BLR3Rep8S9ZsfYNqzsVoWlHYK4sOH7xUQLvXIce69ArBwE+bdw3XY8PKUt/4rEYvIHZe97HHyKkfSu/PuFeHR6D4Xfpul29BP2RK+efFjGvX9sC66Fy2Nqleer+/8W+CqLmmalPKgxZR9jGhdDKhGz80oYNQKdMDHQw9/Jmv1DaiMRi4lJzqDqhD1U9MmH5SdYkPyNHivPMqBOIKXy2yFXKGk04zCBrjZUKJgvB92Tlwl0XaZbAC9fMC9jmxT/aF+R8ak4WGcLsPmsTIhK0D1hzGlbljYLjjNp13US0mQs7FAeU0M9LboVJx9RXYd71+3nscQkZVDd/+OuX/GpmaAGa7Nsk+R8VqZEJaRRyDX3R+vrwuaLwQypn9Os9PbzWPqsPsezmGTalC9AVX/HL2r7W8OrSnN29KtG6Q7jEEukPD29A9eSNdEzNMHG3Z/f/jqAWCIhPSGGbb0r41i4EoZmlp/c/onpPSjaYgB5/UqjzJKzd3hDbD0L4Vi4Qg66+PAnHJvWRWcbjoXKU7rDuI/2lfomEjPb7PdqautA6puoD9QQcH/fClw/wYUrMzke1GqMLKyz+8jtQOqbl+TJn/N7+9RqQ/Tja6xuJZiiOxauSP6KjT/ax7+FwjWbs6hzVWp0H49EKuX2se0ULFMLfSMT8nkF0GXBIcQSCSnxMSzoWJH8JSpj9BnfffukblRsMxDXwCAUWXJW9K1PPu/CeBbLad0R/ewxW8d30tmGR9EK1Owx4aN9JUZHYmmX/d0t8ziQFPPx735pxzK8g2pqrhsNW8D6YS05smQ8GSmJNB25BANj04+28z6kJ8WjVqsxsczmF8s8DiTGROHgrW12/jduHNpA1Q4j3lv+LvJ6BXL/9F4Klq1NZmoywVdPYuPk8cVj1oVWdatQ/vd+TO7XAalUwtZDp6ldoSQmRoYEertzfNVfSCQSouMSKNOiN1VKFyaX+acL8J1GTmdo5xaUKeKHPCuL2p2HU9jHk8qlcr6jR6HhtBs2TWcblUoWYnL/Dh/tK+L1G5zss91aHextiYx+o0WXnJpOXGISO46eY9/Ji4jFYga0a0Kdip/mXjNh4Tq2HDxFYnIqG2eM/OhmKy4xGbVajU0uC809R7vcREa/oYhvfi36mw+e0nXsbELDX9KxSS1qlBXW4A6Na3H17mNcKwkmy1VKF6ZZLW2LqnV7jjG6+++f9Cz/FlrXr0a5Fj2ZPLCLwGcHTlK7UhAmxkYEentyYt0cgc9i4wlq2o0qQcXIZfEZfDZsKkO7/k6Zov7I5VnU6jCQIr5eVC6d00z7Uchz2g7W7XpUuXQRJg/UvU69i4hX0TjZZwuhjva2RL7WxWdpxCUks+PwGfaeOI9YLGJAxxbUrRT0wfbjEpNQQw5+cXjbR9F/uMu9jIll7prtHF09i11HdctxPwp2ZZpwc1wd3JqPQiyREn1pFzaFqyExMMbUxY9CI3cjEkuQJ73h+pgaWPlVQM/E8pPbf7y0N871+mFZoCQqhZw7fzbFzDUAK9/yOejSop7ycHF3nW1Y+ZTDvfnoj/Yli4vC0CZbdja0zocsXjsVeVaqIEfom1lr07oFAvBs5zSiL+5CkZ6ET6+cVnVhmyfwbNsUTBwL4t50BAZW9h8c16f09zfMXPx4c20/NoVroMhIJv7eaYzthA1getRTDG0cuT21CYq0RCy9g3BrMgzx2wOEpCeXuDaqClJDM5xq98A68OexGG4amJs6y+4xqpozUomI3XdjqV4gF8b6EvzsTdjdwReJWMSbVDk1ltyjvIcllkafvn3rszOEvuUdKOlijlyhotmahwTmM6Wcu2UOuqcx6fTYoa18ByjnZsGo6i5f8ZQ5EZ+ehVoNVibZe6d8Fga8TJIRmO/9cs3n1ItKklPKNXsOymuhz+UXyd/sGb4X/Ku1YFWPqlTuOh6xRMqDE9vxLF0TfSMT7DwD+GOOIP+mxsewsmtF3Ip9nvy7b2o3yrQehFOAsO/ZMLAB9l6FcCuacy1+8/wxuyd11tmGW5EKVO46/qN9JcVEYpEnW/61sHUg+RP2Pdd3LcOzdE4rtxNLRnNq+XjyuPtSsdMYzHN/+HA5PSkeUGP8zp7I3NaB5Jgo8hZ4v4x75/BGyrcbnuNe+J2LLOtUDgNjM0q16INnyWoffYZvha9S1DhYm+Jlb8nxe5HUCHRi88VgJjYTfOHjUjI1G3+JWExiuoyQ10kUddeOraILabIsLj59RdymTM29VFkWwa8StRQ1Xnlz5XAr+t5YcOQeYxoXo34xN0JeJ9FoxiH8naxxsM6eJOYfuUfwq0R2DKipVX/jhac0KuGOnvTfj+V889kb3iRnUNUvpyIm0MWGM2N/Iy4lk/aLT3I5OJpS+e3+9fH9E2a2DuRy8uLFtWO4lqzJk+ObCOo8CYDMpFhOze5N0sswRBIpstREEqNCsCug7X+oC1mZaby8d4FzyXHZ99JTSYh4qqWosXLyotn809/qsT4Zt7bPIyHiKfU+we3pcxB5SxCI26wXfLKPTevCrR3zKdSo5zft50thmceR3C5ePL18FO8ytbh5aCO1ewubk7SEWHZM6UlsZCgSiZSM5ATehAfj5PNpfsbyjDTCbp0nLTH7ZEWWnsqbF0+1FDV5XAvQa9W5b/dgn4izG+fy5sVTOrx1ewI4t2kuNbqPx7/Sb7wJD2ZF3wbk9fLHMs+/p1SNeHiD1IRYvEp/2iJVvnVfDi0czYKOFTGxtMG1UNDbxfPbwdHelgJuThw5f43aFUqyfu9xpg0ShIvYhCS6jZlNSPhLpBIJCcmpBD+Pori/dmwVXUjLyOTcjXvE/pkt3KWmp/PkWYSWosbb3YnLW+d/uwf7ALIUCuRZCtQqNWfWCwqRKu0GUdDDBTfHD2+MAEZ1/51R3X/n9NXbjJy9kuOr/0JfT/uw4UtR2Cc/V7ctJDYhiVYDJ3Hh5n3KFPHj1BXhJCv0+HoA2g2bxuw1O+jbppGm7vV7T3gTn6RR7vwscMybB293Zw6fvUKdSqVZt/sIfw0VNs+xCYl0HfUXoS+ikEgkJCSlEPw8guIBBT+p7bT0DM5eu8Ob+CTNvdT0dJ6EhWsparw9XLiyc+k/m/guEPgsC5VaxdnNCwh9EUXl3/vg4+GK23sstj4XPcbMZNKAzpiaGH2T9r4lDK0dMM6Xn/g7J7ApXJ3X57bi0UrYnGSlxPFkeX/So58hkkhQpCWQ/ioUCw/tmHC6oJSlk/j4EvKUbPlDmZFG+stgLUWNSb78FJtw/Ns92FfCteFgXBsOJuHhecK2TKTQyN2Ipfp4d56LoXU+1ColL/bN48HCrhQeuefjDX4inGr3JHTLBG6MrYmemRWWBUoLih5ArVKQFHyNgMGbEesb8nBRD8IPLMClQX+sA6tgW6IeEn0jUl7c4+70VgQO24FJ3k+zav/eyGdpgGduI04GJ1CtgBVbb79hXE0XAOLSshiwO4Rn8ZlIxCISMxSExmZQxPHTlMDpciWXnicTl57tIZAmUxL8JkNLUZPf1phj3QK+1WP9whfCIo8DuZ29CLl8jPxBNbl7ZBNVewjyb3piLPun9SIhKhSRREpGSiLxEcHkK/jp8u+L2xdIS8yed+TpqcSFP9VS1OR2KUCnZboter8nLm2eS2z4U1rPyJ476g9bhLmtAyqlkosbZ7FrQgfazD30zfuOenSD9MRYPN5RxHiWqk7Bir+hZ2DE6+C7bB7ahNYz92Lj7PXN+9eFr45R06y0J1suBeOc24zkDDkl327uB2+4SPUAJ1Z3r4xIJKLkiO3IFEqt+hKJCJU6+1qWJdCo1SBCxNER9T6q0PgWFjUOVqZcePxacx0Vn0a+XCZadHEpmRy6/YLFnSoA4GFngbdDLm4+e6NR1Kw4+ZCdV0LZMaCmVjDizCwFu6+GsWdw7Y+OCcDK1FDT799WNVHxqTrH9inYeP4pTUp5vPedWpsZUtk3H3uvP/spFDUABaq04MnxLZjbuSBLSyGvr3BqfGbBIFxK1KDGyDWIRCI2dCyOUp6pVV8skaJWqzTXSrkMEIJXIRLRePYxJNIPb1K+hUWNaW4Hou6c11ynxkRimjvfe+nv7VtO8Omd1JuyUyvwli4Ymgsm6RlJcRqrmtQ3kZjq0Do/OLgar8rNkOoLPOVRtgFPTm75aRQ1AEVqtuDm4c3kyutCZloyrgGlAdg9YwDeZWrSatI6RCIRM1oURfH2m76Lf373v2nUahUikYjuy05+9Lt/C4sayzwOhN3MVvYkRkdiYfv+735px1LuHN9Oh9l7NK5NaYlxPDx7gGajBR/73E6e2Ll5E/HwxhcraowtrDRt/21VkxgdieUHxnbj4HoKVW/20ff2N/QNjanff7rmes+MAeR21rbA+Fq0rleFDfuO4+JgR3JqGkGFfQHoM2kBtcuXYNNMwWokoF5HMmVyrfoSqQTVOwtRplygUalUiBBxbsNsjevH+/AtLGoc7XJz9lq2yX/kqxgc8mhbTlpbmmNqbETz2oJg5e6Ul8AC7tx5HPpJipq/UaF4IClp6TwIfk6hgu/ftFhbCu4OsQlJGiuJiNdvdI7tXdjksqBqUFF2HTtPmSJ+LN92kJZ1KmNooA9Ao+pl2bjvZA5Fzdo9R2lRp9JH3/ePQOsG1dmw5yiujvYkp6QRVERw1ekzfg61K5Zi85xxiEQi/Gv9oZPPpJJ/8NlbGpVajQgR57cs/DiffQOLGkf7PJy5eltzHfEqBgc7XXxmgamxES3qCNYH7s75CCzoyZ1HwR9U1FhbCjzyLr9EvqePq7cf0i1EmCPS0jPIkMlp0HUYuxdP+ehz/BuwK9OU1xe2YWjrjCIjBUsv4TDy6Zph2BSqhk/vFYhEIq4MLoMqS3sdEokloMpeh/6mUatUgIgiYw4h/sh8+i0sagys85Hw6KLmOjMuCgMr7W+oZyqsC/KUOI2Vy/tocxUsgyIzhbSIx5i5+mNoLawdIrEEh2odeb57BmqVSuPOoAuf05/EwJj8f2TzxdM1wzC293z7fA6YuQZqXLNsi9fl9YXtADmsdcyc/bDIX5yUsFs/jaIGoGkhW7bdfoNTLkNSZApKOAvPMWx/GNW8rFje3AuRSESZubeQKVRa9SViEWr1O3PLWxqVWnA5PdjZDz3Jh/dS/6ZFjZWxwPPxaVka65ioJBl5LT7sdfE59fJZ6BOVmP2bfJkkJ6+5/jcZ//eGf/UW3D26Ccu8zsjSknHyF/Y9h2cPxLN0DRqPF+J9Lfqj2PvlX9W78q+wN1KrhX1P+0UnPirHfQuLGgtbB17czt73JMVEYv6Bfc+1Xct4cHIHrabvzrHvMbd1ePtcEoo16sLZNX9+dG75W8ZNT4rTWNUkx0Ri/gEZ987hDfhWaZrj3bxrkWPn6Y+DbwlePr7531HU1CnswpitV1l45B7NS2dPeknpchxtTBGJRJx+GMWzN7rNzVxym3P7+RtqBDrx5GUC9yME7bipoR4lPfMw9/BdBtQJBAQFhVQi1sRW+RvfwqKmkq8DQzdeIiw6Cbc8Fqw581gTbPddWJrooy+VcOnpa0rltyM6KZ37EfHkt7cEYO3Zx6w9+4QdA2roDBR84OYLXG3N8c6XM0r7xJ3Xsbc01gQ3fhd1i7iw5sxj+tcRgglnZCkJcNb26/8YMuQKdl97xoGhOZVEoa+TcLU1RywWkSbL4sT9KBqV+Px4F98LbkF1uLBsFLd3LqBAlewMAvK0JMzzOCISiYi4eZqkV7pjCpnbuxDz9DauJWsSH/6E2LD7AOgbm2HvU5JbW+dQtOVAAFLeRCGRSDH+h2/it7CocSpSiXOLhpIYFYplPnceHFyNR9n6OmkfHFrDg4NrqD91F4ZmOXnl0qoJmNrYa4IUvwv3svV4cHA1RVsM4NWDyyhkmdh6BGrRmds5E37zFO5l64NaTcSNk1g7vz8jx4+AT4V6HJg/kvOb5lO4ZnYw1czUJHLZOSESiQi+dor4KN3xr6zyuRD5+BbeZWoR/ewxr0KEoHEGxmY4+5fizPrZVGorBHJOjI5EItXTxF35G9/CoiZ/icrsnTWY2IhQbBzdubp7FX6VGuikvbp3NVf3rqbD7L0Ym2d/dyMzSyR6+jy7fQHXwCBS4qJ5FXwfW5ePLxRHFo/DPLe9Jrjxu/CrUJ8re1ZRqc1Ant+9hEKWSV6vQJ3tZMkyuHtiJ10WHtFZrguZaclIpHroGRjxKuQ+D88eoMeKU59c/1PRoHIQw2YsY86anbSul23SnpSShnPePIhEIk5cukloxCud9d0c7Lnx4Cm1K5TkUWg4d58IPGVmYkzpwj7MWLWVoZ0FHox8/QapVKIVP+VbWNRUDSpC/6mLCHkRhYdzPpZvP6gJqPtPNKlRnmMXbtC+cU1i4hO59/QZBT2cP9i+Wq3m6fNIvFwF5d7NB095E5+Ii4OglB89dxV5bW00wY3fxW9Vy7Ji+0GGdGrBxVsPyJTJKFRQ240t+EUk7o55EYvFpGVkcuzCdZrVFBRKLvnsOH7pJg2rlUWtVnPswo0cY87IlLH98FlOrPl+MaO+Bg2qlmXotEXMWbWV1g2y3VETU1Jxymcn8NnF64SGa7uUALg62nPj/hPqVCrNo5Dn3H0sZIkwMzEmqIgf05dvYlg3weUr8lUMUqkUu9z/4LNvYFFTtUwx+k+aS8iLSDycHVi+dR8Na1TQSdukViWOnr9Gh6Z1iIlL4N6TUAp6CrLR6FnLsbe10QQpfhcNq5Vj+ZZ9DO3amos37pEhk1HYR1tJG3Vpt+bvdbsOc+jMZU3Wp58BuYvWInTTWCIOLcauTFPNfUVaEoY2DohEIuLvnyEjRrf8YWTrQsqzO9gUrk5a1FNSwwUrVqmRKRZeJQg/MB+X+v0AQUEhkuhhYJnT8vxbWNRY+VUkeN0I0l+HYWznxsuTa7Etrv07B8hdvC4vT67Dpb4Q3Fclz8TMxR+1Wk36qxCNgiP52R2ykuMwtHVCpVSgSE1A30JQxsVc3o2pQwHNRips62T0c9lpght/Sn//hCIjBZFEikTfiNTwh8TeOESRcULcuTylfiNs+1Sc6vREJNEj/v5pTJ0EeVoW/0rjgpUZG0lyyE2c6/1cgclre1sx7vBzFl98SZPA7O+fnKnEMZcBIpGIs6GJPI/XPowEcM5lwO2oVKoVsOJpTDoPXwuhG0wNJBR3MmP+uZeajEdRSTL0xCJszXIqLf5ti5o6PtasvR5N3/JCUODMLBX+9sIh9JRjL7Az19cEKf7Uev+kG33oOW2KC3Ld9jtvmFDL5bs+07dCgXJ1Ob5oJFe2LsC/egvN/czUJCzeyr9h198v/+bK68LLJzfJH1STN88fEx0i7HsMjM1w8ivFxU2zKfu7IP8mx0QiluppxWT5FhY1bsUrc2TeEOIjQ7FycOfmvlU5gvS+i5v7V3Nr/2pazdiD0Tvyr0qpID0pHlMr4Xfx4OQObN0KauaWU8vGY2pjrwlg/C68y9fn5t5VmmDCWbJM7PMH6uw/S5bBw5M7aTPvcI77yW9eatyskl5HEPXwBmVaD/zcV/HF+GpFjbGBlBqBTmy6EMz1KU0090c2KsqQDZeYe+guBR2sKJhPdwC6XjX86Lj4FCfuR1LQwQpfp2y6hR3LM3rLFcqPFdw+TAz1mNOmjJai5lvA1FCPGX8E0WreMZQqNX5O1kxsLpycvE5Mp8Wco5wa0wCJWMzSzhUZueUKSpUKlUrN4HqFKJAvF6mZWQxafxFHK1OazBQ2MwZ6Yg4Pr6fpZ9OFYFoEaQsrDyPjCXC21roPwrvsvuIMW0aEYKgnYUH7cprgjP3WnKd6gBM1Ap0Ij02h7p8HyJArkCmUBAzazOB6hWlVVujvwM0XeNpZ4JU358b/0J1wtlwIFqybVGpqFXKmdZl/R1P4KdAzNMa1ZA0eH99E65U3NfdLth3N2YWDuLltLtauBbF29dFZv1Dj3hyd0p7w68exdvXBxt1PU1Z10GLOLxvJ5m7CZkjP2JRKfedqKWq+BfSNzajQawYHx7ZEpVKR292PwEY9AEiLe8X+MS1oNv808vQUzswfiJmtI3tHCHFjJFJ9Gs8+CkDc8wfYeupeTEu1HcXx6d3YcGIzEn0jKg9cmD2Zze6DS8kauJasSdGWgzg9rz+bu5UBwMbVhyLNtbM//EjoGxpTsEwtbhzawKCttzX3q3cdw96ZAzmzYTZ27gWxc9f93cu36svGUW15evk4du4+2HtmC37NRi/lwLzhzGkjWOkYGJvScOh8LUXNt4CBsRm/DZrN2iHNUamU5PX0p05z4VQwOfYVawY1pdeqc8jSU9gzvT+Wdo6s6v8bABI9A7ovPY5YIqHFuJUcmDsclUqJSqWkcoeh5HEVlGtnN87l4vYlpCXGsn1KD6T6hvRddwlDE3Nehz54r/KletcxbJ3QhRmHN6Gnb0iTkYs1wYx3Tu2Nd5kaeJcRAsg+OLOP3E75yeOa020o4VU4S3rUJCszHYVcxtSGPlRpP5SidX4n/uULNo1uh1giRU/fgKajl2Ju8+kWH58KYyNDalcoybo9x3l4YKXm/vjebek3eSEzVm3D19MVX0/dKe77t2tM60FTOHrhOr6ergQUcNeUrZw8iCHTl1GssZB5xszYmEXj+n6XQLdmJsbMH9WLxr3HolSpCPByp89gwdrkVUwcv/Uco1EGje3Vhq5jZrFw015EIuH6bwXMrNXbWbhxD7EJSXQZPQsDfT1u7FyCqbEhvSbMJT4pFalEgpGhPmunDdPE7Ln/9DmFvHWfMo/v05YOI6azYe8JDA31WT5xoIZXuo+bTe3yJaldoST7T11mw97jSKQSlEoV9SqVom1DQakxrEtLek2YR7FGwrv0ze/K4I7Zyvc9Jy6S39UBb/ePx2/7ETA2MqR2pdKs23WER0fWa+5P6NeRvhPmMmP5Jnzzu+GbX/dBx4AOzWnVfzxHz1/FN78bAd7Ziq6Vfw5nyJ8LKdZAUMCbmhixeMIgLUXNt4CZiTHzxvanUfcRKJUqArw96DtUkN9exsTyW9fhGmXQuL4d6DJiGos27EIkEjGuTwe83ITvc+9p2Hstscb360SHoVPYsOcoRob6rJgyTMMv3UZPp3aF0tSpVPqbP9u3hsTAGOtC1Xl9bgslZ1zW3HdrOpzgtcMJ378AE0dvTBx1H3Q41e7Bg/mdibt7ElNHb8ycfDVl3l3mE7pxDNdGCBlDJIYmeHWYqaWo+RaQGpni1W4a92b9gVqlwszZF8e3qa1lCa+5O7O1Rhnk1mQ4j5b05MqFbYj1DPHuMheRWIxapeLpqsFkpSUikkiQ6BlRsMdi9EwsUcrSuTvzd9SKLECNfi47CnZfpOk/NfIRdq66g0W/rz+AxysGYFOoGjaFq5MR84KHC7oikkgQ6xng3XU+BrkEJbOFZzGs/StxfVRVRGIJps5+ONcVsiBGnVhN7M0jiCTSt/0NxczZT+dYfhSM9CVUL2DFllsxXO6b7VY7vKoTw/Y/Y/65KLzzGOOdR/f+p0eZfHTZ+pRTIYl45zHGxy5bcTG/kSdjDz+n8oLbAJgYSJhZ3wPb7xRrudaSu7xKlpOUoaDIjBtU9LBken13XifL+X3DI40yaHgVJ3rtDGHb7VsY6YmZ09BTs7d5GJ2OX17dsWo+VG/gnlCqeeWiWgErSrtaUNPbisoL7qAGGgfkppSLhc42fzboGRrjGVSTu4c30mPDbc39ip1Gc3jOIC5tmo2tmw+2brrl31LN+7BzXDtCr57A1q0gdp7Z/F5/xBKOLRjB0g5CrDF9I1PqDJ73XYLnGhibUbP/LLYMb4FapSSPhx8lewjyb0rsKzYPa0anZWeRpadwaNYALPI4snFQQwCkevq0W3gchVzGluHNUSnkqNVqzGzs+W3kck0f0WEPsMuve09UsdNo9kzuyt2jm9EzMKT+sEWauWX/9N7kL1WT/G9jQT45tx9rJ09yu+SUcW/sWcHTCwcRv50/KnYciZ2n7rnse0D0rqncR4lFInXMMm1t+H8RvVaeJdDFRqcFy78NlUpNran7ODi0rmay+ZkQHptCtUl7eTwrZ856204rUavVXz1gkUik7n7w54/E/rk4MbMntp6BOi1fvhRqlYod/WvQaObhD5r8fS2So8PZ3qcK7Tc/fS/Nwlo23+T7g8ADk88lfJzwP4Dtk7qTr0CgTguWfxsqlYrFXavRdfFRzSbpZ0LCq3AWdKrIyP2hOe4PL5vrvbwlEonUabcP/ivj+97oPGomhX08dVqw/NtQqVRU/KM/p9bO/Cl55UVUNGVb9SH89GatMpPAWp80F4lEInX6gxPfZXw/MzoP/5NCPl46LV++FCqVigote3F647zvyi8vol5Tpmk3Ii58eZw2Y5/Kn8wfFdbotob6r+HRsr6YufjrtGD5t6FWqbg5oS6FR+37rnLLlyLjTQQ3xtagzIIHWmWn2+T9ZN6JGvdpwdz/l9B3VwgBeU10Wr58KVQqNfWW32dvR9/vuieKSMik5tJ73B/yafFddCHfmEtfLQeLRCL1iJPfNnbfj8K+P3tglz9Qp3XL94BapWJ1z2q0nX/0h80tia/DWdm1Ev13h2iVTapk9dX88fPNmP8SzI31WXbiIcM3Xf448XeGWCzi8PB6P6WSZt+NZ/w+/zi5zX6+QH8/O/SNzbm7ZynnFg/7Zm2KxGIaz/6+E1Lo+b0cHNsKI8svyyr2/x0GpuZc3L6UfbOH/OihIBaLBYucn1A4vndqD2uHNsc017c/Pf6vwNzUmEUb9zDwz8U/eiiIxWLOrJ/9U/LKrmPnadxnLLZWlj96KP9JmJuZsGjDTgZM/nbBrsViMWc3L/iu/LLryBka9xiJrXWujxP/Qg5IjcyIOraS4PUjf/RQEInFFBlz4KdU0sRc28/92W3QN/8l73wJzA0krLjymlEHdbv+fQnEYhH7O/t91z3R/gdxtN34mNwmH47T8gufBwMTM67vWsqReUP/lf5EYjHtFh7/YXPLozN72DqiBSa5vt/88f/WouYXvh6/LGr+f+OXRc0vfC/8f7Go+YVvg18WNb/wIfx/tKj5hW+DXxY1v/Ah/LKo+YUP4T9jUVNk6FYeRf1cm7ALT15RdWLOtIGPohIoMnTrDxqRANtOK0nNzPri+tP23kT+TnatqXtusvua7mBT/0Wsa1uIuOePfvQwciA5OpxFdfKwpWcFNncvx47+NYgNvffV7e4eUo/nVz49cOs/8fjYJhIjs03xnl0+xMUVY756XP8lTGviz+uwhz96GDmQ8CqckRVsmNeuLHPbBLGoazVeBn89vyzrVYfHFw5/nPA9uHFwI7Hh2fzy6PxBDi0Y9dXj+pngXbMtD0Ke/+hh5MDZa3cp07J3jnsPQp7jXbPtjxnQW5gE1iI1PeOL609atB55VvZaNmHhOrYf0Z2d8WdEgaoteRD87U6JvwXOXr1NUNNuOe49CH5Ggaot31Pj34GxT2VS076cVyYuWINcns0r4+etYvuhbx90/Efh0oDipEY+/tHDyIGMNxGcbufItVFVuDaiMjfH1yXlxf2vbvfWlEbE3j72xfVfndtC+utsV9jYm0cI3fzx7DL/JZSYdZPH0ek/ehg5cPFZEjWX3M1x73F0OiVm3XxPjX8H+cZcIk2mnTH4UzHjVATyd7Jk/XUynD33/3cOhue3CCDm2c8l4ya+Dmdyldws61SOZR3LsLpnNV6HfL2Mu65fXYIvffme6M7hjcRFZMu4Ty8c4sTij2fM+9H4+ewQ/8egUGqn0fuemL7vdo5JaWj9wjQo9vNkcPpfhYGpBc3mn6b5wrN4lPuNk7N7a9GolIp/dUyPj28iMSpb4HEtWfOT0oj/wveHoakFvVado/eaC/hXbsjOKdpp0ZWKf5dfbh7aSOw7i5h3mVqflH78F/4bUCi+XNj9EkxeshF5VjYPj+r+O42rl/9Xx/ALX4Z/nVcWrs3BK6N7taPx20xhv/D9IDU2p9iE4xSbdALbkvV5skI7ocC/Lbe8Pr+V9NfZh4s2hat/UvrxX/hvQKH8dC+Ob4GZpyPJeqfPQZWcqO/7+Vlzf+HzYGhqQadlZ+m0/DwFKzZk/7ReWjT/9txy98gm4iOz90T5g2p+UorxH42vzvr0Lq6FxjBu+1WNRciYxsWp6JMzX/nCo/fYffUZCpUKAz0J01qVxs/JmnSZgl6rzvLkZSJSiQiPPBYs71qJkNdJ9Fp1lgy5ApVKTbPSnvSo/v2jtf8dQPePcl4cvxdJhlzBrDZlKOlppylrVtqTy09fk5ml5M+WpSiZP7usfUVvzj56SeMSHpQrmJdB6y4Qm5KJVCJmxG9FqOQrpMnbf/M5k3fdwNLEgCpv773b/98BfP95ffROOH/tu0WWUoVYJGJe+3KsPSOc2NSeuh+xSMTuQTUZufkKgS42tAjKT+GhW7gwvhHWZoYAjN56BTNDfQbVK8SNsBgm7rxOSobw7YbUL0xVf8fv/p7fh9ePrnFxxViyMlIBKNVhLE6Fcwput3cuIPjMLtRKJRJ9A8r3+Asbdz+yMtM5ObMn8S8eI5bqYZnPg+rDV5AQGczJmb1QyDJQq5R4VWlOoUbaG+SvhWPhClxZMwkQLIC8q7Ui8u45zO1cKNtlEucWDSMm+BYA+Ss1pXATQakTH/6EkzN7oVJmkcvJC6VcpmlzXdtC1Bq7EWsXb63r+PCnnF8ynPSEGFCrCWzUA7VKRUzwHc4vGc6VdVMo3WEcabEveX71KDVGrGLPsN/wr9cJ11JCRp/nVw5ze9ciGkzdQ1r8a84tGkbqm0gUskw8KzSkSLN+3/w9fUuE37/KoYWjkaUL/FKz+3g8i1fKQXNu83zuntiJSqlAqm9I/QEzyOvphzwzne2TuhP97DESqRQbJ09ajl/Fm/Bgtk/uQVZmOiqVkiI1W1K2hfZi87XwKFqBo0sFhci0Jv4Urf07oTfPYpXXhTq9p7Bv9hAiHwunWoWqN6N8q74ARD97zI4pPVEpsrB18ULxDr9Ma+LPH39uxs6toNZ1zPMn7J87jNS4aNSoKdu8F2qViqgnt9k3ZyjHlk+iZo8JJMW85PHFI7SauIblfepTunEXCpYV+OXRhUOc37KQTnP3kRz7mn2zh5AUE0mWLIOAyo2o8MeAb/6ePgdX7jxixKwVpLy1CJnUtwNVShfOQTNn7U62Hz6DQqnE0ECf2cN7EFDAnfSMTDqPmsmjsBdIpVLyO+dj3V/Defo8ki6jZ5KeKUOpVNG6XhX6tmn03Z/l7yC67RvV5Mj5a2Rkylg4ti+lC/loylrVq8KFG/fJkMmYPbwHQYV9NWVdmtXh1JXbNK9dkYolCtFr4jxiE5KQSiSM7dWGakFFAdhz4gJj560hl7kZ1csW1er/7yC+/7w+dPYKkxZvIEuhRCwSsXTCAFZuF1zTKrUZgFgk5vDyqQz+aymFfTz5o35VCtRsy81dS7DJJWTgGDpjGeYmxgzv2opr9x4zes5qktOEE+dR3VpTo1zx7/Z+r9x+wPDpS0l929+kgV2oElQ0B82c1VvZdvD0W17RY86ovgR4e5CekUmn4X/yKOQ5elIpnq6OrJ85mqfPIug84k8yMmQoVSpaN6hO33ZNdXX/TfF34N32Tetw5OxVMjIzWTR+IKWL+GnKWjeozvnrd8mUyZk9qjdBRfw1ZV1aNuDUpZs0r1uFSiUL02vcLGITEpFIJIzr04FqZYXvsPvYOcbOWUEuCzOqly2h1f/fgX//eX3w9CUmLVyLIkuBSCxm2eTBrNi6H4BKrXshEok5snomg6cuoJCPF20a1sCrSgtu7V+dzSvTFmFmasKI7n9w9e4jRs9cls0rPdtSs3zJ7/6e34ekkOuEbp6AMlNIjezebCRWfhVy0EQcWkzMlT2olQrEeoZ4tpmCmbMvSlk6j5f1JS3qCSKJHsZ27vj0XEL6qxAeL+uHUi7ILXZlmuJUq5uO3r8OuXzKEbZNyMZyaUBx7Mu1IPHhBQxtnfBoNYGQdSNIfnYHALugRjjVFmSntKinPF7eD7UyC+O8+VFlZa9DlwYUx6/fWkwdCmhdp70MJmT9KORJbwA1jjW7olapSHl2h5D1o3i240/cm49GFv+KuNvH8e21jNt/NsWhantsCtcAIPbWUSIPLyVw2HZkidEErxuJLC4KVVYmtiUbaLI+/Shcj0hh4tEXpL61CBlVzZnyHpY5aBZfeMne+7EoVGoMpGKm1HHD196EDLmSPrtCePomA6lYhLuNEUua5ickNoN+u0LIyFKhUqtpGmhL16C83/1Z/g6827pIHk4GJ5CRpWJGfXeKO5trypoG5ubK23TZk+u4UeKdsnbF7TgXlkRDfxvKulkwZF8Y8ekKJGIRQys7UtFTiEN18GEcU0+EY2kkpZJnLq3+/w78+8/rY08SmHk6giylGrEIZv/mwfrr0QDUX3EfkQi2t/VhzOHnBOQ1oXkhW4rNusnZnoFYvY1TM+7wc8wMJPSv6MjNyBQmHwvXfLuBlRypkv/HxcqKfHCVE0vGIH8r41buMg63Yjll3Mtb5/Pw1K63Mq4BNfrOwM5D2BPtndqd2BePEUv0sHb0oOGYVcSFB7NvWg+yMoW5xb96C0o2+/YyrmuRCpxeMREQLIACarXmxa1zWNo7U63nFI7MHcKrJ8KeyLdqM0q36APAm+eP2T+tJ0qFgtwuXijk2anp57cIoOnkTdi6FtS6jn3xhKPzh5GWEINaraZk056oVSpePbnN0flDOb1yElW6jif5zUtCLh+h0dg1bBjQgKINO+MVJMi4Ty8e5ur2hbSeuZeUuNccnTeEpOgoFPIMfCo1IqjVv5cl95spahLSZLRdeIJV3SpR3CMPSpVKs+l/F01LedC9mqBoOfMwisHrL3JoeF1OPYgkMV3G+fFCWq7ENGGyX3X6EVX8HBlQJzDH/X+i/aKTPItJ1ll2cFgdjPQ//1HjU2UUdbNl+G9F2X45lAk7rnNgaB1NWcF8uRjXpDgXn7yiy7LTXJ3cRFOW396SwfWEjUGNyXv5vWwBWpXNz5OXCdT/6yDnxzdErYYBay9wYGgdPOwsmHf47nvH8i5CXyfRb+0F9g2uhVseC2RZSrKUKv5sVZpVpx9zYGgdTA1zBsgyNpBSI8CJnVdD6VTZB4VSxa6rYRwYWoekdBmD1l9kU+9q5LE0JjoxnWqT9nJ23G9YGBt89nv7WmSmJHBoYhtqjFiNfcHiqJRK5OkpWnRelZsR2FBIbx1x6wxn5g+k0awjRNw8hSw1kRZLLr5tLxGA+/tX4Vy0CkVbDsxx/584PKkdSa90m7w3mnEIqcGHAyuHntuTIwV4WkI0DaYKbnaXVo5DrVbRbOE5sjJS2dG/BtYuBXEuVoUT07vhV68zBao05/Xj6+waWOuD/YCgkT40vjUl2ozAo2x94bmS4zE0t+LJic0ENuyBSwkhNe7jY5s09QpUacHjE1s0iprHxzZrzOdPTO9B0RYDyOtXGmWWnL3DG2LrWQjHwhU+Op4fgfTkBNaP+J1WE9fi7FcClVKJTAe/FKrenLLNBeEy5Ppp9kzvT7clxwi+epKMlET6rRcCi2e85YvLu1bgVbIqldoOynH/n9gwsg3xUbrdC7suPoreR/jl/uk95H0ndWJK3Gs6zd0HwOFFY1CrVfRZcxFZegqLu1bHzt0Hr5JV2TaxK6Ubd6FwzRaEP7jGku41PtgPCFY664a1olrnkfhVbABAelI8xhZW3Dy8ibLNe1IgSGjnxsGNmnpFarbg5uFNGkXNzUObKFJLUBpvn9SNim0G4hoYhCJLzoq+9cnnXRjPYj/mRDw+KYXm/SeyacYISgYWRKlUajZy76Jlncr0+UNYb05evkWfSfM5vW4Wxy/dJCEllRs7lwCQkCzw0tIt+6lepihDO7fMcf+faDVwEqHhr3SWnVo7AyPDz59T4xKTKRFQgLG92rD5wClGzV7JiTUzNGW+nq5M6d+Rc9fv0Xbon9zfv1JT5uXmyIhurQEo37ov7RvVpM1v1XkUGk71DoO5sXMJatT0HD+XE2tmkN/FgZmrtn3SuIJfRNJ93FyOrZyGh3M+ZPIs5FlZzBreg6VbD3ByzQxMjXPy/9+p1LceOk33lvVRKJRsO3yGk6tnkJicSu+J89k5fzz2ua149Saecq36cG37IizNdadq/RrEJybTrPcYNs8ZR8lCPgKvpOrglXrV6NNWULScvHSD3uNnc2bTfI5duE5icio3960CICHpLa9s3kP1siUY1u33HPe12u07ltBw3TFRTm+c9xW8UpBxfTqwef9xRs5cxskNczVlvvndmDKoK+eu3aHNoEk8OLxOU1bAzYmRPdoAUK55D9o3qU3bRrV4FPKcam36cXPfKtRqNT3HzODkhnnkd3Vk5grtLFy6EPw8gu6jZ3B83Ww8nB2QyeXIsxTMHtWHpZv3cnL9PExNdPBKpdJsPXCC7q0bolAo2XrwFKc2zBV4Zdxsdi2ejH1ua169iaNss+5c373iu/DKx5CVmsD9uR3w7bUcC89iqFVKFBna3z1PUBMca3YFIP7BWZ6uGUqR0fuJv3eGrLREik8R3AOz0hIBiDqxBquASrjU75fj/j9xf14nMmJ0yy2FR+1Dov/hdejN1X2YOmenDpcnxhA4bDsAoVsmolarKTbpJMrMVG6Or4uJQ0GsAyrxaEkvHKp1wK5MU5JCbnBrYv0P9gOC3HJ/djtcGw/BtriQ8S4rNR49UyteX9iGY82u2ARWBQRXqL9hV6Ypr89v0yhqXp/fil3ZZgA8Xtob53r9sCxQEpVCzp0/m2LmGoCV74+x4ktIz6Lj5icsa+ZFMSczlCo1KTpceJoE5tYoWs6GJjJ0fxj7O/lxOjSRpEwlp3sGApCYIVgfrL36mkqeuehXwSHH/X+i05YnPI/P1Fm2t6MvRnqSL3gmBUUczRhaxYmdd98w6Vg4ezr6asq885gwuroLl54n0X17MBf7FNKUeeQ2YkBF4fC3ztJ7tCpiS4sieXgak07DVQ840zMQtRoG7Q1jT0dfPGyMWHg+6pPGFRqbwaC9oexs74ObtREyhYospZrJddxYcy2aPR18MTHI+bxG+hKqe+Vi171YOpS0R6FUs+d+LHs6+JKUoWDovjDWtfYmj5k+0Slyai29x8nuAVgYfVP7hk9CRnIC20f/QeNxa3Dwfb+M61etOSWbCjLusxunOTSrP+0WHCP02kkyU5PosiqnjHtj7wrcS1Sl7O8flnF3jG1DfJTuuaXt/CMflXEfndlDHo9sGTc1LprWM/cCcHLpWNRqNZ1WXECensLqntWxdSuIR4mq7J3SjWINO+NfvQVRD6+xpnfND/YDwtyybVRrKrQfgXeFBkC2jHv36GZKNu2JZylhT3TncLaM61+9BfeObNYoau4e2Yh/DUHW2ze1G2VaD8IpQNgTbRjYAHuvQrgV/Xdk3G/GcddDY/Cyt6S4h5CHXSIWY2miLWTcfRHH7IN3SEyTIRKJCIsWlCs+jlaEvEpiyIaLBHnZU8VP+EGX9LRj3LarZCmUBHnZU6aA7hRwK7tV0nn/fXhfZJ9375sYSKkW4ARAEbfcjNl2VVOmLxXTpKQHAKW97DHUlxISnYSZoR6GehLqF3UFIDUzi/sR8bQI8gTAK28ufBytuBH2BrUa/Jys8bATTor+KOfFhB3XPzr204+iqOLngFseoZ6BngSDT5h0m5f2ZMSWK3Sq7MOJ+5Hkt7fEycaM4/ciCI9Npfmco9nvQSTiWUwKgS7/vqLm9aNrWDnmx76gcHonlkgwNLPUonsTfIcbW2YhS00EkZikt24+1q4+JEQEc3bBYPL6B+FcTFjw8/qW4uKKMSgVWeTzDyJfQFmd/dcYseqzxyxLTWJLzwqgVmNu50zl/vM0ZV6Vm2n+jrx9hjJdJiMSidA3NsOzfEMib5/B3qcEcc8f41VJ2AzYFSiKlcvHU8cnRoagVik1ShoAQ3Orj9ZzC6rDhWUjyUiKQyQS8fL+RSoPXEBWZhov713gXHKchjYrPZWEiKc/raIm/P5VbF28cPYTTnbFEglGOvjl5dPbnF43k/TkBMQiMbFvTSDtPXx5Ex7MnpkDcStUBq9S1QBwDSjNoYWjUCrkuBUqi1th3fzSauKazx5zZmoS89qVRa1WY5XXhcbDF2rKCtVorvk75PoZ6vSZgkgkwtDEHP8qjQi9fgZnvxJEP3tEYHWBt5x8immsZz6E2IhgVEqFRkkDYGzxcX7xqVCPA/NHkJYo8Muz2xdoMmIR8ow0wm6dJy0x2+dblp7KmxdPf5ii5uqdRxRwc6RkoPA+JBIJuczNtOhuPQpm+ootxCelIhaLCHkhCIV++V15+iyCfpMXULaoPzXKCid2ZYr4MnzmCuRZCsoV86d8sQCd/W+YPuKzxisS6V6N3r1vamxEzXICfxf3L8Cwmcs1Zfp6UlrUFt512aJ+GBkY8PR5JOYmxhga6NOoWjkAUtLSufskjN/rC/Oht7sTfl5uXLv3GLVaTUABd/K7CMJ/+0Y1GTXn4/PgyUu3qF6mKB7OguWsgb4eBvofz6LRul4VBk1bQveW9Tl64Tpero4458vD4XPXeBEVzW89sl0dRCIRYREvKeyT/6Ptfi6u3HmIt7szJQv5AG95xUIHrzx4yl/LNpKQlIJYLCL4eSQA/l5uPHkWTt8JcyhXPJAab79RmSL+DJu+BHmWgvLFAylfIlBn/xtnj/2s8X4qr9SqIAQ1Le5fkKHTsjOK6evp0aJuFQDKFgsQeOVZBOamJgKv1KgAvOWVx6H88ZuwIfb2cMG/gAdX7zxErYbAgp7kdxVktPZN6jBy5rKPjv3ExRtUL1cCD2eBxwz09THQ1/9ovd8bVGfglAV0b92QI+euUMDNCed8dhw+e4UXUa9o0CU7q6JIJCI0PIoivl4fbfdbIznkBiZ582PhKcwXIrEEPRNLLbqU53cJ3zeXrLRERCIx6dGCkt/UqSDpr0J5unYYlgVKYx1QGQBLr5KEbh6PWpGFpXdpLL2DdPbv2+vj3+CfUKQnc21UFVCDUW4nCnSarSnLE9RY83fCg3N4tB6PSCRCamSGbckGJDw8h0X+YqRFPSFPaYHWwqMIJo4FPtpvxqtQ1CqFRkkDoGf68XUod9FahGwcgzxFWIcSH1/Cu/NclLJ0Eh9fQp6SLbcoM9JIfxn8wxQ1NyJT8cxtRDEnYT6RiEVY6tjk332ZyrxzUSRmKBCLRITFCVagBfOYEBKbwfD9YZRytaCKpyUAJVzMmXDkBVlKFaVdLQhyNdfZ/7Jmn/cbeM/UknNPpC+mqpdgVVLYwYzxR15oyvQlIhr5Cy5FpVwsMJSKCY3NwMxAgqFURD0fawBSZUoevE6jWSEh22N+W2N87Ey4EZkCavCzN8HDRtj4tyqSh0nHwj869nOhSVTytMTNWqhnIBVj8Am726aFbBl96DkdStpzMiQBDxsjHHMZcuJpAhGJMlqvz46HKQKex2cSkO/fVwJHPryGjbMXDr4flnFfP73NhQ2zyExJQCQWExchyLh53H2JC3/K4TmDcA4IwqOkIOM6+Zfm+OLRKLPkuASWxbmQbhm30dgvk3GXdSoHajWW9i7UHbJAU+ZfLXtP9OzGGar1FGRcAxNzfCo14vnNMzj6luDN80f4VRVo8xUsRm7Xj8u4ceGCjPu3kgY+TcYtUK4uxxaOID0pDhARfuci9YYKMu6L2xdIS8yeW+TpqcSFP/3vKWo+JXuUXKGk/eKT7B1UC39nG14npuM/SDiNccltzoUJjTj76CUn7kcyadcNzoxtQN0iLhRzt+X0gyjmHr7LxgvBLOqoPfF+rkWNtZkhCak5rXPiUzOxMTfUXL+r/JCIRShV7483o1arNROasYFUIzi9772IABXvf2dSsRiVKrtclvWOJv4LXTxL5rcjNTOLh5HxbL4YTLPSnm/HCAUdcrF3cO0va/hb4xN4SZkl5/Dk9vw2bS+5PQJIi3vFmt8Fja2FvQstllwk8vY5wm8c58qaiTRbeA73MnWx8y5KxM3T3Nw2l0fHNlJ1kHZa3C+xqPk7Ro0u6BmavPNoarTUhG955X1COIBIIkWtzuY/xVvz4s/J2pZzTMa4lKxJ8JmdALiUrImeoYlguSQS0Xj2MSTS/0jawk94B4osORtHtaXTvAPk8wogOfYVU38TJn2rvC70W3+Z0OtneXLlGEeXTqD36gv4VqiHk28xgq+e4syG2dw4sJ6mo5dqtf0lFjV/x6jRBX2jbH5BrUb0BfwilkhRvzNf/e0W9aX8om9ojHeZWtw5vgMQ4tfoG5kgS09BJBLRfdnJn4Zf1J8wQcqzsmg9cDJHVk6jkLcHr2Li8KgmWD+4Othzc9cSTl+5zdELNxg7bw1Xty+kQZUylPD35vilm8xYuY21u4+xcvIgrbY/16LGJpcF8Yk5T8fiEpLJbWWhuX5X+SERi1Eq3x9DRI1aI3SbGBm+sxbppheJyLHW/BNSqQTVO7yUKZe/09eXIaiwL6lpGdwPfsb6vcdoXa8Kfw/SN78LR1f+9YUtfx4+SW6RZ9Gq3ziOrp1FoYL5eRkTi0dFQXh0dczLrX2rOHX5JkfPXWXM7BVc272cBtXKUTywICcuXGfGik2s3XWIlX8O12r7cy1qBF7JKefEJSSR+5205Tl4RfIRXlGrNfyRk1feI7eIRKjU75eDJBJJDl7KlL3DK1/ILEFF/AVeeRrG+t1Had2gumaMvvndOLZ29pc1/I3xKfOOSiHnwfxOFBq+EzMXf2QJr7nUV7C8NrJ1pviUMyQ8PEf83VM82z6VohNPkLtYbcw9ihB//wzh++fz6uxmCnbVTrP+JRY1f8eo0QXJO3IL6FiH/saH5BaxFN6ZO/52i/qUd6VzTAbG2BSuTszl3YAQv0ZiYIwiIxUQUWTMIcQ/yzr0CY8oV6jovPUpO9v54JfXlNfJcorMuAGAs5UhZ3oGcj4siZPBCUw9Hs6J7gHULmhNEQczzoQmsuB8FFtuxTCvkadW259rUWNtrEdCek7rnPj0LGzeSV+tL80OayoRgeID6wbvrENG+pJP2BOJPrgnkohFOerKFNl/fyk/lXA2J1Wm5FF0GttuvaHpW+WRGvDOY8zO9r4fbuDfwifuiXaMbcfvs/djnz+AlNhXzG0qHEDkyutCl9WXeX7zLKFXj3NqxUQ6rzhPgXL1yFewGGHXT3Fx02zuHN5A/eFLtNr+Eouav2PU6IKe0T/2RFpTiOgf/2tDkHGz34tGxv1CXtAzNCZ/UE0enBBk3PxBNTUyLiIR7Red+GEy7jcLJlzMIw9PXiVyLTQGAKVKpeWmJMtSolSqyWslfKRVp7K1lS/j0xCLRNQq5MyEpiWIS8kkMU1OWEwytuZGNA/yZGDdQtx69kZn/yu7VeLUmAY6/+lye3KzFYTgk/cjNeNdd/YJFQrm06LVBblCxY6rgrby8tPXyLKUGsuYd2FmpI+voxVbLgUDEPwqkYcRCRR2y01RN1vuR8QRFp0EwPpzTzX1bC2MyFKqCHurfNpxNXsjWNEnH8fvRWrqybKUmrhApoZ6pGRkC0f/RNNSHiw6ep/LT6OpU9gFgGLutoTFJHP+cfbm4tazN1+8qfta2BUsTnzEU14/ugaASqnUclNSZslQKxWY5ha+1/392ae/qbEvEYkluJWuRVCniWQkxSFLSSDpZRjGufJQoGoLirUcRMwT3dHsa4xYRbP5p3X++5jb08fgWKgCj46sR61WI09PIeTsLhwDy6NvbIaVcwGenhZMjaOf3CT+eXYkdwt7F2KeCj6ckbfPkpEg/M5yOXoiEksIOZedwSwzWUjzp29shjxdt/ISoECV5jw5voknxzfhXbWFpo69T0lubZ2joUt5E0V6fPRXPff3hJNfCWKePyH8vmDxplIqtUw4FfJMVEoFFrYCv1zetUJTlhQThUgsoWC52tTuNZm0xFgyUhKIiwzD1CoPRWq1pHLbwUQ80s0vrSauodeqczr/fcwk9GPwKFaBa/vXoVarkaWncPfEDjyKlsfQxJw8rt7cOSa4qEQ8vJEju5V1XleiHgv8EnL9DKnxAr/kdsqPWCLl3qndGtr0JIFfDEzMyEx7P78UrtmCm4c2cvPQRorUEkxCDYzNcPYvxZn1szV0idGRpMT9OH4pEVCQx2ERXLkjrC9KpVLLTSlTloVCqcQhT24Alr6NkwEQFR2LRCymbqXS/DmwE7EJSSQkpRAa/pI8Nrn4vX5VhndpyY37T3T2v2H6CC5vna/zny5XFg8nwez92MUbmvGu3HGIyqUKa9HqgjxLwZZDpwG4cPM+mTK5xjLmXZibGuPv5cb6vcLG7MmzCO4/DaOobwGKB3hz90mYxqpo9a7szAp5rHORpVBqFApb3/YFUKVUYY6cv66pJ5NnkfLWzczMxIjklLT3jrtl3UrMXbuLCzfv06CyYCVQItCbkPCXnLl2R0N34/7T77YWlQz04VHoC67cfgC85ZV/uCllyuUCr9gJQvzSTXs1ZZGv3yARi6lXuQzThnQnNiGR+KRkQl9EYWdjxe+/1WB4tz+4fk93xp+Ns8dyZedSnf908spba5Rj569pxrty2wEqly6qRasL8qwsthwQ0pNfuHGXTLmc/C7asejMTU3wL+DO+j2Cle2TsHDuPQmlmL83JQIKcudRCCEvBNlp9Y6Dmnp2NlZkKRSEvuWHv/sCqFqmKEfOXtHUk8nl7/CKMUmpqe8dd8t6VZm7ehsXbtylQVXh1LdkoA8hL6I4c+WWhu76W+uwHwELj6KkvXxKUohgFa1WKbXclFRZMtQqJQZWwjoUdSL7pDoz/iUisZjcRWri0XIs8pQ4FGmJpEc/Q9/CFvuyzXBp0J+UsNs6+/fttUwIDKzj38fcnj6GXD7leHVmI2q1GkVGKjFX9pDLpxxSIzNM8nkRfUmIQZQceou0iGxeN7J1JuWZMN6EB+fIShLkd2N7D0RiKTFX92los1KFdUhqaIpSh1vH37Ar04zX57by+ly225PUyBQLrxKEH8hWYGXGRSFLjPmq5/4aFHU0JfhNBtcjhGdRqtRabkoyhQqlSk1eC+G3vubaa03ZyyQZEhHU8LZiXA0X4tOzSMxQ8CwuA1tTPZoVsqV/BQduRen+3Sxr5sWxbgE6/+lye3K1Fg6pT4ckasa74UY05dy19zW6IFeq2XVPsKy98iKZTIUad2ttvjMzlOJjZ8K2OwIvhLzJ4OHrNAo7mFLEwYz7r9M0VkWbbmZ/P1tTfbKUap69Ldt1L3svWN7DkpPBiZp6MoVKE1vG1EBCsuz9QWsbB+RmycVXXH6RTG1vwfKiqKMZz+IyufAsSUN3Oyr1h80tDj7FiX3xhMgHH5dxzd/KuDf2rNSUJb+JQiyW4FWmNlW7TyI9MZaM5ATiowQZN6BGS8q2GczLx7pl3EZj1wiBgXX8+1oZ161oBW4fyJZxH57aiWuR8hiYmJPb1Zv7J4Q9UdSjG7x5J7tVrrwuvHq7h3t28wxpb/dENm9l3Eend2toNTKusRmyD8i4/tVbcvfIJu4e2URAjVaaOk5+pbi4abaGLjkmktR/cU/0zSxqcpkYsKpbJUZvvUK6TDDhG9ukGOXfUXyYGekzuH4hqk/aRz4rEyq/Ezz3UVQ8E3YKC5xKpaZ3TX/sLI2ZfeAOO66EoicVIxKJmNS8hFbfXwI9qZhV3SszeusVJuy4jkqtplR+O/rU0m3O/k9YmRoQFp1Mjcl7yZArWdKpAvpS3e5HCztWYNC6Cyw+9gCpRMyCDuWwMROYe/rvQbSefxxLEwONuxSAVCJmUvOSNJ15GAdrU4K8sl2+3PJYMPOPIDotPY1SpUIiFjOvXVkKOljRraovDWccwlBPyu5B2v58zUp5UHTYNloEeWL81jbQ0sSAdT2qMG77NUZuuUyWQoVzbjPW96z6ocOS7wZDs1zUGLGaC8tGkZWZjkgspnSHcTgWyrak0jc2o3jrIWzvUxXT3PlwKlpFUxb37CGXVwvBWdUqJYWb9sXE2p4bW2bx9NR2JFJ9EEGZLpP/9Wcr2mIAZxcNZUt3QdjMX6kpTkUFE+fKAxdycmYv7uxaRG6PAPJ4ZQvfxf8YxskZPXl0eB12BYtjmlv47YglUmqOXs+5RUO4vnE6IrGYwIY98KrclII1/uDiijHc3rGQUh3Gao0lr28pTewfe5/sAIxVBy3m/LKRbO4mjFHP2JRKfedibJXnu7yTr4WxeS5aTVzLgfkjycpIQyQWU7PHBDyKVtDQGJqYU6X9MBZ2roRlHgfyl8jml9dhDzmyWMiGpVIpKd+6H+Y29pxeO4Pbx7Yj0dNDhIg6fab8249GxTaD2DdrMHPalAaEYMJ/j73xiEXsmNKTC1sWktcrEMeC2fxStdMItk3qzrV9QtweyzwCv0ikUn6fsoG9swZzcvU0RCIxZZv3pFCN5hSv24aDC0dzbvN8anbXjoTvGlBa4xft4l9Kc7/Z6KUcmDdcM0YDY1MaDp2PmfWP4RcrCzM2zRjB0BnLSMvIRCwSM7l/ByqVLKShMTc1ZmS31pRr1QdH+9xUfSd47P3gZ4yeuxoApVLFgA5Nsbe15q/lW9hy8BR6eoLF5LTBXb7JePX0pGycOZJh05cxavYqVGoVZQr7MqhDs49XBqwtzQl98ZLyrfuSnilj9dQh6OvpPvlZOXkwvSbOY/6G3UglEpZNHKix3Jk3qhdN+owjl7kZDatlm0BLpRKmDe5C3a4jcLK3pVwxf02Zh3M+FozuzR9DpmrWoqUT+uPr6Urv3xtSq/MwDA0MOLx8qtZYWtWtQsHa7fm9fhWMjYRNQi5zM7bNHsOIWSsY/NdSsrIUuOSzY/vcMR+0IPtSWFmas3nOOIZMW0R6RiYikZgpg7pQqVQRDY25qQmjeralbLPuONrbagLqAjwIDmP0Wzc0pUrFwI4tyGtrw7SlG9iy/wR6enqIRPDXsB7fZLx6elI2zRnL0D8XMXLmMtRqFUFF/Bnc+dPSc1tbmhPyIopyzXuQkSljzV8j0H+Pq9qqP4fTa9ws5q/djkQiYfmUoRrLnXlj+9O4x0hyWZjRqHoFTR2pVMJfw3pQp9NgnPLmoVzxQE2Zh7MDC8b15/cBE1ApVYglYpZNHoJvfjd6t21CrfYDMTQw4MjqmVpjaV2/Gt7VW/P7b9WzecXCjG3zJzBixlIGT12IXKHAxcGeHQsmfhde+Rj0THPh22s5oRvHoZSlg1iEe/PRWPmU09BIjcxw/W0gN8bVxNAqH1b+2S77aRGPCdsmyCRqlRLnOj0xyGXHi31zib64U7AUEYnwaPXvZylxrt+P4HUjuDZCGK9dUCOs/QWzf+/Oc3m8vB+RR5Zg5uKPuXu2gtm10RAeL+vDyzMbsfAshoG1sB8QS6T49l1F8LoRvNgzC0RiHGt2xS6oMfYVWxO6eTwRhxbh1nyU1lgsvUqgzBSUE5b5s/cD3l3mE7pxjGaMEkMTvDrMxMDS9vu8lI8gl7Eey5p5Me7wczKyVIhEQjDhcu6WGhozQyn/196dhVhdxXEA//3nztwlc3LSXBqXUivDNglSo1IzA8WMNi0hNCPa7CGQrIwsKyGDEC0rjUpbHjLowbJsp4jqpaLFgsAKimak5SmdcZy5PYw4ZdmMzWhH7+fzeg9/Dvx/HM75/s+5Z8GkITFt9edRf0Q+Jo3s+LPar7dui6W7jv20lcsx/6z6GFibjxXv/hAvfvZz1OSyyLIslkw9pkf6W5OriscvPyHuevW7uO/176Ncjhg7rHfcdE7XPl7XHVYd3/7SFNNXfx7bW1pj1aXH/WUHzp+tvGRkLNywJdZ88FPkqrJYcfHI6Ltr586yC4bH3Oe+jj6l6rhgdMftTNW5LJZMPTauWPdVDO5TiDOP6TjyNbxvKZbNGB7Xr/8mWtvKkavKYvlFI+LEAb3i2vGDYuZTm6NYUxUvzB39t77MPO2oGLf845g1pn+U8u1ruD6l6nhy9qi497XvY/Er30VLazmG1hVi7exR/8uaqFRbF5fevTbeeOSOaGnaFpFVxXnXLYljT5+4u02hV21MuOq2ePL6yVHbf3CM+NMcd+uWzfH2mvZxo9zWGmfOvjl69xsU7z/7YHzxxvrI1eQjIospNx74NdFZVy6ITSsWxpqr2z/WnDRlVow4o73vM25dFS8tmx8frV8Vg44/NepP7JinTZi3KDbcf0N88vK6GHLS2Kjt37EmuuyeZ2LTioXx3tMPRJZVxbiZ8+Pk82fFmOlz4s1H74wPn38oJl/79xtwh54yfvccd8jJHWuiCxc9Fq8/vChW7+pjvnR4TL9lZRx+gNZE2b4khFmWlbeumbcfu3Nw2PMGpkrV/5onolwud3vYyrKsfMPGnztvSFJWTevXI+8/or0Glr73W088ikPA7WfX7bW2siwr//7pxn/6qeLseQNTpep12rQujUVZlpW3fflmZ80OSXvewFRJDhs9ucv1MXHtPx9FozK9M+foLtfOj3eP76zZIWnPG5gqSf3iD7o9D86yrLzorV97qksk5L5zj+x2ffTY0ScAAAAAukdQ8x8M7de74nfTAPD/GlY/oOJ309A1w+oHVuRuGmD/GlJXrMjdNHAgCGoAAAAAEiGoAQAAAEiEoAYAAAAgEft061MpX93Q1NKa5h29HHDFmlzj9h07B3b3OdWFUkPrjiZ1dZDJ5YuNO5u3d/v9R0TUFEoNO9UAu1Tni40te6mtUrHQ0NS8Q62wW7GQb9ze1NzpWKR2KlNX6yOXLza0tTSrD3arqik0tu5o6rR2ijVVDc07y2qnwhSqs8amlrZuzYPNfw9d/zaX7ap9CmoAAAAA2H8cfQIAAABIhKAGAAAAIBGCGgAAAIBECGoAAAAAEiGoAQAAAEiEoAYAAAAgEYIaAAAAgEQIagAAAAASIagBAAAASISgBgAAACARghoAAACARAhqAAAAABIhqAEAAABIhKAGAAAAIBGCGgAAAIBECGoAAAAAEiGoAQAAAEiEoAYAAAAgEYIaAAAAgEQIagAAAAASIagBAAAASISgBgAAACARghoAAACARAhqAAAAABIhqAEAAABIhKAGAAAAIBGCGgAAAIBECGoAAAAAEiGoAQAAAEiEoAYAAAAgEYIaAAAAgEQIagAAAAASIagBAAAASMQf51q1LW04GgAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Setting plot size\n", "\n", "plt.figure(figsize = [20.0, 8.0])\n", "\n", "# Plotting the tree with some specific parameters\n", "\n", "_ = plot_tree(tree, \n", " feature_names = X.columns, \n", " class_names = [\"Unproductive\", \"Productive\"],\n", " filled = True, \n", " rounded = False, \n", " proportion = True, \n", " fontsize = 11) " ] }, { "cell_type": "markdown", "id": "8c49935f", "metadata": {}, "source": [ "We can see here that the most significant columns turned out to be \"incentive\" and \"smv\" (Standard Minute Value, or the allocated time for a task). All the splits, except one, used these columns to progressively divide the dataset into more homogeneous subsets.\n", "\n", "It's important to remember that we pruned the tree when we instantiated the model. We restricted it to only feature a maximum depth of three levels to avoiding overfitting. If we hadn't, it's likely we would've seen other columns further dividing the dataset.\n", "\n", "Let's use the model on a hypothetical observation which has an \"incentive\" of 24 and a \"smv\" of 5. You don't actually need any code to do this, as you can use the tree visually by following the branches to reach the leaf containing the prediction.\n", "\n", "Since the \"incentive\" is greater than 22, 24 <= 22 evaluates to False at the root node and so we follow the path to the right (False splits always go to the right.) Since the \"smv\" is less than 31.155, 5 <= 31.155 evaluates to True at the child node below the root and so we follow the path to the left (True splits always go to the left.) In the final split before the leaf, since the \"smv\" is greater than 3.92, 5 <= 3.92 evaluates to False and so we follow the path to the right where we reach the final leaf node, which happens to feature a \"Productive\" class. \n", "\n", "To summarize, all this means that an observation with those characteristics would be predicted as \"Productive\" by the Decision Tree.\n", "\n", "Feel free to use any observation you want by choosing alternate \"incentive\" and \"smv\" values to see where the Tree leads you!" ] }, { "cell_type": "markdown", "id": "69d632d9", "metadata": {}, "source": [ "- - -\n", "\n", "Having plotted the Tree, we can continue exploring how effective the Tree is when using alternate metrics. Let's first start with a [Confusion Matrix](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html), to keep it as reference:" ] }, { "cell_type": "code", "execution_count": 68, "id": "feede1db", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 35, 24],\n", " [ 13, 168]])" ] }, "execution_count": 68, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.metrics import confusion_matrix\n", "\n", "confusion_matrix(y_test, y_pred)" ] }, { "cell_type": "markdown", "id": "810a79b9", "metadata": {}, "source": [ "**[[True Negatives, False Positives],**\n", "\n", "**[False Negatives, True Positives]]**" ] }, { "cell_type": "markdown", "id": "4bd86ca5", "metadata": {}, "source": [ "And now we can proceed to calculate the [Precision](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html), [Recall](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html) and [F1 Score](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html)." ] }, { "cell_type": "code", "execution_count": 69, "id": "871bdd81", "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import precision_score, recall_score, f1_score" ] }, { "cell_type": "code", "execution_count": 70, "id": "6bb51e65", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Precision: 0.88\n" ] } ], "source": [ "print(\"Precision:\", round(precision_score(y_test, y_pred), 2))" ] }, { "cell_type": "markdown", "id": "218af10c", "metadata": {}, "source": [ "$$\\displaystyle\\text{Precision} = \\frac{\\text{TP}}{(\\text{TP + FP})}$$" ] }, { "cell_type": "code", "execution_count": 71, "id": "9492485a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Recall: 0.93\n" ] } ], "source": [ "print(\"Recall:\", round(recall_score(y_test, y_pred), 2))" ] }, { "cell_type": "markdown", "id": "32c81b47", "metadata": {}, "source": [ "$$\\displaystyle\\text{Recall} = \\frac{\\text{TP}}{(\\text{TP + FN})}$$" ] }, { "cell_type": "code", "execution_count": 72, "id": "36656bcf", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "F1 Score: 0.9\n" ] } ], "source": [ "print(\"F1 Score:\", round(f1_score(y_test, y_pred), 2))" ] }, { "cell_type": "markdown", "id": "f0055c10", "metadata": {}, "source": [ "$$\\displaystyle\\text{F1-Score} = 2 \\times \\frac{\\text{Precision} \\times \\text{Recall}}{\\text{Precision + Recall}}$$" ] }, { "cell_type": "markdown", "id": "ae36acb3", "metadata": {}, "source": [ "All these alternate metrics are even superior to Accuracy! Special mention for Recall, with a superb value of 0.93! \n", "\n", "This was the Accuracy, as a reminder:" ] }, { "cell_type": "code", "execution_count": 73, "id": "6640bea3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy: 0.85\n" ] } ], "source": [ "print(\"Accuracy:\", round(tree.score(X_test, y_test), 2))" ] }, { "cell_type": "markdown", "id": "ac53ba9a", "metadata": {}, "source": [ "$$\\displaystyle\\text{Accuracy} = \\frac{(\\text{TP + TN})}{(\\text{TP + TN + FP + FN})}$$" ] }, { "cell_type": "markdown", "id": "93155708", "metadata": {}, "source": [ "- - -\n", "\n", "We also have another option to evaluate our tree: [Cross Validation](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html). It divides the dataset into blocks/folds (the number of folds is determined by the \"cv\" parameter). Then it creates that many copies of the dataset where each copy will have a different segment of observations compared to the test set. \n", "\n", "The algorithm will then iterate on each copy and will output a list of the accuracy scores for all iterations.\n", "\n", "This is a practical way to ensure that we didn't get the original accuracy score by pure chance by comparing it with several other possible results.\n", "\n", "To improve readability in the calculations below, we have rounded the values to two decimals." ] }, { "cell_type": "code", "execution_count": 74, "id": "03f0798e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cross Validation Accuracy Scores: [0.85 0.88 0.81 0.87 0.87 0.82 0.72 0.76 0.84 0.79]\n" ] } ], "source": [ "from sklearn.model_selection import cross_val_score\n", "\n", "scores = cross_val_score(tree, X, y, cv = 10)\n", "\n", "print(\"Cross Validation Accuracy Scores:\", scores.round(2)) " ] }, { "cell_type": "code", "execution_count": 75, "id": "892822a4", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean Cross Validation Score: 0.82\n" ] } ], "source": [ "print(\"Mean Cross Validation Score:\", scores.mean().round(2))" ] }, { "cell_type": "markdown", "id": "231f91d6", "metadata": {}, "source": [ "To finish with this section, let's now get Cross Validated values for the other evaluation metrics:" ] }, { "cell_type": "code", "execution_count": 76, "id": "e04cbbb8", "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import cross_validate\n", "\n", "multiple_cross_scores = cross_validate(\n", " tree, \n", " X, y, cv = 10, \n", " scoring= (\"precision\", \"recall\", \"f1\") )" ] }, { "cell_type": "code", "execution_count": 77, "id": "dd2a59ea", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0.86, 0.9 , 0.83, 0.85, 0.86, 0.87, 0.78, 0.85, 0.86, 0.87])" ] }, "execution_count": 77, "metadata": {}, "output_type": "execute_result" } ], "source": [ "multiple_cross_scores[\"test_precision\"].round(2)" ] }, { "cell_type": "code", "execution_count": 78, "id": "6af27c27", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean Cross Validated Precision: 0.85\n" ] } ], "source": [ "print(\"Mean Cross Validated Precision:\", round(multiple_cross_scores[\"test_precision\"].mean(), 2))" ] }, { "cell_type": "code", "execution_count": 79, "id": "a53404c2", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0.96, 0.94, 0.94, 1. , 0.99, 0.9 , 0.85, 0.82, 0.94, 0.84])" ] }, "execution_count": 79, "metadata": {}, "output_type": "execute_result" } ], "source": [ "multiple_cross_scores[\"test_recall\"].round(2)" ] }, { "cell_type": "code", "execution_count": 80, "id": "689cbeb1", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean Cross Validated Recall: 0.92\n" ] } ], "source": [ "print(\"Mean Cross Validated Recall:\", round(multiple_cross_scores[\"test_recall\"].mean(), 2))" ] }, { "cell_type": "code", "execution_count": 81, "id": "00df05c8", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0.91, 0.92, 0.88, 0.92, 0.92, 0.88, 0.82, 0.83, 0.9 , 0.86])" ] }, "execution_count": 81, "metadata": {}, "output_type": "execute_result" } ], "source": [ "multiple_cross_scores[\"test_f1\"].round(2)" ] }, { "cell_type": "code", "execution_count": 82, "id": "892e5ee8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean Cross Validated Recall: 0.88\n" ] } ], "source": [ "print(\"Mean Cross Validated Recall:\", round(multiple_cross_scores[\"test_f1\"].mean(), 2))" ] }, { "cell_type": "markdown", "id": "5329378e", "metadata": {}, "source": [ "As we can see, after double checking with Cross Validate, we're still getting impressive metrics. This is excellent!\n", "\n", "- - -\n", "\n", "## Explaining the Tree\n", "\n", "After confirming that our Tree is good enough, here we will explain to the company's leaders not only the insights that our model can provide, but also how Decision Trees themselves are to be interpreted. Imagine that the following text is being read in a conference room to an audience that has never seen a Decision Tree before." ] }, { "cell_type": "code", "execution_count": 83, "id": "d3eb6061", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([False, True])" ] }, "execution_count": 83, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tree.classes_ # We'll transform them to [\"Unproductive\", \"Productive\"]" ] }, { "cell_type": "code", "execution_count": 84, "id": "803aa15d", "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGoAAAHBCAYAAAAxVF2MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3RURRvH8e+kF0IJEFrovffeexEUQUAUFBEUERAsKKgoKKgoKtIEVBCkS5EiRXpHioD03gIESAik1/v+sbwLmNADm8Dvcw7n5O7Mnfvc1WxmnzvFWJaFiIiIiIiIiIg4npOjAxARERERERERERslakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUgglakREREREREREUggXRwcgIiIiD8bV3fN8XExUFkfHISmHi5tHYGx0ZFZHxyEiIiL3zliW5egYRERE5AEYY6yPVgY7OgxJQT6v54tlWcbRcYiIiMi909QnEREREREREZEUQokaEREREREREZEUQmvUiIiICOO71qLTyKW4uns+0utu+X0MJeo/h3eGzABsnz+BuOhIKrfp/kjjuFfrJn/N3pVzcHJ2wcnZhbpdPiJ/xfp3LPuvQxuXsGLsJyTEx5GtUGla9B2Jq4fXo7wVERERSWG0Ro2IiEgql5rXqBnRvjTthkzDL2+xR3pdy7KICg3BM22G+zr/6NYV5CpZFVcPLwKP7mFS7+b0/n0/ru6ety27UUxkGKM6VODl4Yvw9c/Pwm96kdbPn1ov9X3g+9MaNSIiIqmXpj6JiIgIn9fzJSYyDLAlT1ZPGMKEHo0Y0b40W+eOt9e7dPIgU95rxbguNRj7anV2LZ0GQGjQeX7/9GV+eaMBY1+tzvop39rPuVV7638bRmjQeWZ/+grju9bi4okDrJn4JcvHfAzAqI4VCDy6x97O1jnjmP/VmwAEnTrMtA/a8PMb9RnXpSY7F0+5q/u8eHw/K3/6jNEvVWTfmj/u+/3KX7G+feSLX77igEXk1eA7lt3oyJblZCtcBl///ACUa/EK+1bNve+YRERE5PGgqU8iIiKSSFxUJK+MXEbI+VOM7Vyd0k3a4+LmwcyPO1Cn84cUq9MSgIgrtgTE/C/foEaH98hduhrxsTH89m5LshcuS74KdW/ZXo0O7/DPokm0/nRCkiNqSjVqx+6l02jYfTAAu679nBAfx9zBr9Hyw7FkylWI6IhQfu5WH//iFcmUq1Cidq5eDGDvitnsXTkHV08vitdrTacRS/BOnwmAiycOMG/wa0m+D3nL16FBt0G3fa92L5tOhmx5SZs5xz2VXb1whnRZctqP0/n5c/ViwG2vJSIiIo8/JWpEREQkkWL1WgGQPmsuPHzScfXiWaz4eBLi4+xJGgCvdL7ERIZzcucGIkKC7K9HR4Rx6dQhe6ImqfaSSqrcqFSj9kx4syH1Xx/IpVOHiA6/Sq5SVbl08iCXTh1i7mdd7HXjY6O5dPJQojYPrF3A7wM7UbJBW9p8/hvp/PwTXSdzniJ0Hb/23t6ga07u2sCaCUN4ceiceyoTERERuRUlakRERCQRFzd3+89OTs4kxMfdsq5lJYAxdB6zAmcX1wdu7//SZfEnU+7CHNmynJO71lOq8fMYY8Cy8Erne1fJlbzla/PU29+xZ8VsZvRvT7G6z1K8bisyZM9jr3O/I2rO7P2beUNep+1nU8iYq+Bdl/1fWj9/Tuxcbz++cuFMkiNvRERE5MmiRI2IiIjclUy5CuHk7MK+1fNumvrklc6XXCWrsnHa99Ts+B5gSzo4u7iSxjfLbdt09/YhOvzqLctLNW7Pzj8nc/bgP7wychkAGXMVxNXdi93LZlCqUTsALp06hE/GrLh7p/1P+2kp+9RLlH3qJa5ePMvelbOZ/WknnF1dqfPqR+QtV/u+RtScPbCDOZ+9ynOfTiRbodJ3XXaj/JXqs3TE+wSfOYqvf352LJhw02glEREReTIpUSMiIiJ3xcnZhbaf/caSH95n3eSvMcaJKm17UKpRO1p+OJZloz5k7KvVAXD3TEPzviPumKip+OxrLBjaE1d3T1p+OC5RedFaLVg6oi/ZCpcjXRZ/exztBk9l2aj+bJ45goT4eLwz+NH6k19ue620mbNTtV1PqrbryaWTB4mOCLvPdwIWD3+PuOgo/vz2bftrz/T7Eb98xW5btn3+BEKDzlHnlf64e/nQ7O3vmN6/PVZCPFkLlKTKm1/cd0wiIiLyeND23CIiIqlcat6eWx4Obc8tIiKSeml7bhERERERERGRFEKJGhERERERERGRFEKJGhERERERERGRFEKLCYuIiMhDNb5rLTqNXIqru+dt6037oC2Ne36Fb468yXLddZO/ZteSaQCUbtLeviPVjayEBCb2akJsVCQAaTJmoVmfb0mfNRen92xhyfDr54SHXCJNBj+6jFsNwM7FU/h79hgS4uPJkC0PT38wGs+0GZIldhEREXlyaTFhERGRVE6LCSd2ctdGlo7oyyuj/gJgwpsNadxzKLlLV0tUNyrsKh5pbNt6/z37R07u2kibQZMS1Zv5cQdylqhs3zVqyrut6DJ+Dd7pM7Fu8jeEXjpLsz7fPtwbu0taTFhERCT10tQnEREReWD7185nzMuVGf9abdZP+ZbP6/kSE2nb/vrGn0e0L83qCUOY0KMRI9qXZuvc8fY2RrQvzYXj+5Ilnn2r51KyYTtc3T1xdfekZMN27Fs9N8m6/0/SAERHhGKcEuc3wi9f5Ni2VZRs2A6AC8f3k6VACbzTZwKgQOWG7Fn+e7LELiIiIk82TX0SERGRBxJ++SJ/ftuHV0Yuw9c/P1tmjb5t/bioSF4ZuYyQ86cY27k6pZu0x80zzS3rR4VdYXKfFkmWZcpThGc/HJfo9auBZ8hdurr9OF0Wf07t3nTLa0z7oC3nD+/GK50vLwydnah897Lp5KtQlzS+fgBkyV+Cc4d2cvncSdJnzcXeFb8TExlG5NXLmv4kIiIiD0SJGhEREXkgAfu2kbVgKXz98wNQumkH/hrz0S3rF6vXCoD0WXPh4ZOOqxfPkilXoVvW90iTjq7j1yZv0P/R/suZWAkJbJj6Het/G0bT3t/cVL5ryVTqdRlgP86YswCN3hzC3EGvgoHCNZ4CwMnZ+aHGKSIiIo8/JWpERETkgVhYwN0vh+Li5m7/2cnJmYT4uNvWv58RNWmz+HMl8LT9+ErgGdL65bjtdYyTE2WadWB0x4o3JWrO7NtK5NXLFKjS8Kb6xeu1pni91gAE7N+OT6ZsuHunRURERORBKFEjIiIiDyRH0Qos/LonwQHH8M2Rj91LpyZr+/czoqZo7WdYNvIDKrTsAsC/f82gcc+vEtULD7mEMU54pfMFYP/qP/DLW/SmOrsWT6FUo3Y4Od/cbQoLDiSNbxbiYqJY++uXVGnb455iFBEREUmKEjUiIiLyQNL4+tG09zCm93ser3S+FKzaBCcXV1zdvRwWU54yNShcozljO1cHLEo2bGdfs+bQhsUc2rSY5u/+QHjwBeZ/9SYJ8bFYlkX6rLl5pv9Yezux0ZHsWz2PV0YuTXSNBUN7cCXwNPGxsRSr24pKrV5/VLcnIiIijzFtzy0iIpLKpYTtuaMjQnH38gFg5+Ip7Fz8G51+WOzQmJ5k2p5bREQk9dKIGhEREXlgW+eMY/+aP0iIj8PDJwPN3/ne0SGJiIiIpEoaUSMiIpLKpYQRNZKyaESNiIhI6uXk6ABERERERERERMRGiRoRERF55Cb1acHhTYkX6H1U/v1rJuO61GBwg8xsnTv+prLYqAjmDOrMqA7lGfNy5ZvivF3Zf+1Y+CujOpRn5IvlWDK8L1ZCAgBnD/7D+K61+PGVKuxaOs1ef9eSqaz/bVgy36mIiIikNkrUiIiIyBMnS4ESPPvRT5So/1yisk0zR+LmlYY3f9tOu8FTWfjNW8REht2x7EaXz51k3aShdBq5lDcnbyM44Cj/Lp8JwMZp39Oox5d0Hr2CdZOGAhBxJZidi6dQtV3Ph3jXIiIikhpoMWEREZEnVGxUBPO/7M7FkwdwcnYlY84CtP5kAmHBgcz9vCvR4aHExURRsEoj6r8+EIA1E78k6PRhosNDCT5zlGyFSlOtfW/+GvMxVwJPU6Rmcxp0GwTYRs1kzV+C80f3EHrxLEXrtKRel48TxREdfpW/xnzEhaP7iIuNIneZGjR8YzBOzs6s/fUr9q6cg4ubOxhDx2/n45Em3QPfu1/eYgAYp8TPrPatmsvTH4wGwNc/P9kKl+HIluUUq9PytmU3OrDmDwpXfwrv9JkAKPvUS+xaMpVSjZ7HydmVuOgI4mKiMU7OAKwYO4A6nT/E2dXtge9NREREUjclakRERJ5QR7euJDLsCt0mbAYgMjQEAI806Wg3eCpunmmIj4tlat/nOPr3cvJXagDAuUO7eHXMStw8vfnp9TqsHD+Q9l/OJCE+jpEvlqVc85fx9c8PwMWTB+nwzVziYqKY0KMxOYtXomDVxjfF8deYj8hVqjrN3/0BKyGBuYNfY+fi3yha+xk2zxxFnzkHcXX3JDoiFFd3z0T3cWz7alb8OCDJeyzV6Hkqt+l+T+/L1QsBpMuS036czs+fqxcD7lh2oysXAkiXxd9+nPaGejU7vsuf371DbFQEDV4fyMldGzBOTuQuXe2e4hQREZHHkxI1IiIiT6gs+UsQdOoQi4e/R+7S1SlYpREACfHxLP/xE87s/RuwCAu+wPkje+yJmvwV6uGRJi0AfvmKkyV/cduIF9zJmLMAl88etydqSjVuj5OzC26eaShetxUn/lmbKFFzaOMSzh7YwZZZowCIjY4kbebsuHv5kDFnAf4Y8jr5KtanYNXGuHv5JLqPfOXrkG/82of0LiW/zHmK8PLwRQDEx8bw27vP0vaz39jy+xjO7NmCdwY/Gnb/XKNrREREnlBK1IiIiDyhMmTPQ7eJmzmxYy1H/l7Oqp8/5/Wf17Pl99FEhYXQefRfuLh5sGhYb+Jiouzn2ZIyNk7Ozri4ediPjZMzCfHxSV7PsiwwSewYbVm0GfQbGbLnSVT0yqhlnN6zhRP/rOXnbvVo/+UssuQvflOd5B5Rk9YvB1cCT9unLV25cIbcZWrcsexG6fxycCXwjP346oUzpM2cI1G9DdO+p+xTHYkMDeHQxsV0/HY+ayZ+wb/LZ1Gm6Yv3FLeIiIg8HrSYsIiIyBPq6sUAnJycKVzjKRp1H0xEyCUir14mKuwKaXyz4OLmwdWLZzm0cfF9X+Pfv2aQEB9HTGQ4+9f8QZ4yNRPVKVitCRunfW9P8ERcCeLyuZNER4QSHnKJ3KWrU7tTPzLnKcLFE/sTnZ+vfB26jl+b5L97TdIAFK39DDsWTAQg+MxRzh38h/yV6t+x7EZFaj3NwQ2LCA+5hJWQwD+LJlH0P+vYBJ85SsC+bZRq9DyxURGALYlljBOxkeH3HLeIiIg8HjSiRkRE5Al14dg+Vo63LfxrJcRT/YU++GTKRsVnX2fOwFcY/1pt0mbOQZ6yte77GlkLlua3d58l9NI5itZ+JtG0J4BGbw5hxdhPGd+1JhiDi6s7Dd8cgrOLC79/8jJxMVFYCQlkLViaIjWb33csN9qzYjYrxg4gKuwKhzb8ycZp3/PC0NlkzlOEqu16suCrNxnVoTzGyZlmb39nn3J1u7LVE4bgkzEb5Z9+hQzZ81Cj43tMeNM2nSxfhbqUbND2phiWjf6QRm8OASBL/uJkyJ6bsZ2r4ZkuI20GTU6W+xQREZHUx1iW5egYRERE5AEYY6yPVgY7OoxEJvVpQdW2PZJMzsjD9Xk9XyzLSmKemYiIiKR0mvokIiIiIiIiIpJCaOqTiIiIPBQvfbfA0SGIiIiIpDoaUSMiIiIiIiIikkJoRI2IiIgAKWNNmflfvcnx7aspUrMFjXt+CcChjUtYMfYTEuLjyFaoNC36jsTVw+um86yEBGYP7MSF4wdwcXPHO0Mmmvb+Ft8ceQHbvV29cMa+8G/FVq8n2v5619JpLPjqTdoNnnZX70FY8AX++KIbVwJP4+LmwVPvfEeOohUS1Vs5biBHt66wH186dZj6r39KpVav218LD7nEuFerk7NkFZ779Ff768d3rGXluE+JjY4E4NmPxpMlfwn2r/mDNRO/IPzyJd6Zd+SOsYqIiEjqoUSNiIiIpCjV2vem4rNdAYiJDGPRsN68PHwRvv75WfhNLzbNHEmtl/omOq9Uo/YUrNoY4+TE1rnj+fPbPnQYNs9e3rjHl7dMwFy9GMA/CyaSo1jiRMutrPppELlKVaNmx3c59e9m5g1+ne6Tt2HMzWv41nvtE+q99glgS8iMaF+aYv/ZqnvJ9++Sv1IDYiLDbojpLAu/6cULX84iY66CxEZHkhAXC9i2Cc9WuCw/d6t31/GKiIhI6qCpTyIiIo+ZdZO/Ztmo/vbjiCvBDGuZn5jIcI7vWMOEHo0Y/1ptxr5anb0rZyfZxqQ+LTi8aWmSx6FB5/n905f55Y0GjH21OuunfPvQ7uXIluVkK1wGX//8AJRr8Qr7Vs1NVM84OVGoelOMk61r41+8IlcCT9/1dRYN60PDNwfj7Op+1+fsW/0H5Z9+BYBcJavg4ubOuYP/3Pacf/+aQd5ytUnjm+X6a8tn4Z3Bj9ylq99Ud/v8XyjZsC0ZcxUEwNXdE3fvtHcdn4iIiKROGlEjIiLymCnVqD0T3mxIg26DcHJ2Ye+K3ylUrSlunt5kLVial4cvxsnZmbDgC/zcrS75KtbH0yf9Xbc//8s3qNHhPXKXrkZ8bAy/vduS7IXLkq9C3ZvqXTxxgHmDX0uyjbzl69Cg26A7XuvqhTOky5LTfpzOz5+rFwPueN7WueMpVK3JTa8tHzuAlT8NIkv+EtTr+glpM2cHYPsfv5A5T5Ekpy3dSsSVYMDCK11G+2tp/fy5eiGA7EXK3fK8XUumUueV60m00Evn2DJrNC99v4D9a+bfVPfSiYOky5qTyW8/Q1RYCHnK1KBulwG4uN19MklERERSHyVqREREHjPpsviTKXdhjmz+i0LVm7Jr6TQavTkEgIiQSywc2pPggKM4ObsQGRpC0OnD+BereFdtx0SGc3LnBiJCguyvRUeEcenUoUSJmsx5itB1/Nrku7G7tGn6DwSdOkSHYX/YX3um3xjS+fmTEB/PhqnfMeezV+n0w2IunzvJP4sm8fKIxQ89roD924kIuUSBKo3sry0a1pv6r3+Km2eaRPUT4uM4s+dvXvh6Dq7uHswd3JWN04cnOe1LREREHh9K1IiIiDyGSjVuz+5l00ifPTfR4VfJVaoqAIu/f5dC1Zrw3KBJGGMY/VJF4mKiE53v5OyClZBgP46PiQLAshLAGDqPWYGzi+ttY0iOETVp/fw5sXO9/fjKhTOkzZzjlvW3zh3PnpWz6fDNvJsWHE7n53/tvpyp1Pp11v76FVZCAgH7thIadJ4fO1UBbAsEL/ymF3W7fEyZph1ueR2vdL4ARFwJso+quXrhDGn9bh3briVTKNmg7U3v25l9W7n4dS/AlgSLi4li2gdtaf/lTNJlyUm2ImXxSGOb7lSsTkt2L5txy/ZFRETk8aBEjYiIyGOoaK0WLB/zEZtnjqJU4/b216PCrpAuay6MMRzbtorggGNJnp8hex7OHtxBoepNuXjiAOeP7AHA3cuHXCWrsnHa99Ts+B5gS544u7jetO4KJM+ImvyV6rN0xPsEnzmKr39+diyYkGgh3v/bsXAiOxZOpMOwP/BMm8H+ekJ8HBFXgknj6wfA3pWz8ctXDOPkRIn6z1Gi/nP2uv/d+Wrl+EH4ZMpmX9z4RkVrP8P2+RPsiwnHRkeRrVCZJGOLjY5k78o5dBqx5KbX3/3j+vu/a8lUDm9eat/1qXj91qz6+XOqt++Nk4srR7euJEv+End+00RERCRVU6JGRETkMeTq4WWb9rRkKj2m7LS/Xq/rABYPf4+N077HL19xsuQrnuT51Z5/i9kDX+Ho3yvwy1eMrAVL2stafjiWZaM+ZOyrtsVv3T3T0LzviESJmuTg7uVDs7e/Y3r/9lgJ8WQtUJIqb34B2NZ3md6vHV3HryU6IpQ/v3uHdFlyMvW9VgA4u7rRefRy4mKimdH/eeLjYrAsC59M2Wj10U93df0Lx/aSrVDpJMvqdR3AvCHd2L1sOq7uHjzTb4x9MeOF3/SiUNWmFKreFIAD6xaSKVdBMucpctf3nrNEZQpUbsj412phnJzJWrA01V/oc9fni4iISOpkLMtydAwiIiLyAIwx1kcrgx0dRrKY/9WbZCtUJskRLI+alZDAhB6NeGXkMnsCJiUJOX+Kn7vV4515RxKVfV7PF8uyTBKniYiISAqX8nodIiIi8sRy9/Zh69xxLB3xgaNDwTg50Xn08hSZpNm/5g9mfNge7wyZHR2KiIiIJDONqBEREUnlHqcRNZI8NKJGREQk9Up5j4hEREQkRRjRvjQXju9zdBg3CTl/isENMjO+ay3GdanBhB6NOH/k3wdud1KfFhzetPS+z9+1ZCpBp69PQTq0YTHLfxzwwHGJiIjIk0eLCYuIiEiq4pEmnX03qb9n/8jCoT3pMm71TXUS4uNwcn503ZxdS6fhlS4jGXMWAKBQ9esLCYuIiIjcCyVqREREnnBn9v7N8rGfEBMRBkD91weSv2K9m+psnjmSvavmkhAfh4ubO017DyNrgZLERkUw/8vuXDx5ACdnVzLmLEDrTyYQdOow84e+SWxUJFZCPKUat6dqu57JHnve8nVY9fPngG0EUJlmHTjxzzrSZ8tN4x5fsOSH9zl38B8ASjZsR7X2bwFw8cQBFgztQUJcHJnyFCY+Jsre5oj2pWk3ZBp+eYslOr508iBLR/Yj/PIFLMuiStseWAkJnDu4k6UjP2D1L4Op320QoRfP2rfa/u2dllRs9RqFqzcD4NDGJWz5fTQdv51PaNB5lo54n6uBAcTGRFK8XmtqvPh2sr9PIiIiknooUSMiIvIEi7x6mVkDXuK5gb+Ss0RlEuLjiY4ITVSvZKPnqdK2BwDHtq9m8Xdv88qovzi6dSWRYVfoNmGzrb3QEAC2zf+ZApUbUrPjeze9/l+/f/oylwOOJ1nWaeRSXN09bxv//jV/kKXA9a3Dw4IC6fjtfABWjPsUy7J47ecNxESEMqFHY/zyFaNA5Yb88cUbVGz1GqUbt+fMvq382uvOo18S4uOY+XEH6nT+kGJ1WgIQcSUYr3S+7F42napte1CwamPANhXq/0o1bs/updPtiZrdS6dSuskLAMz/8g1qdHiP3KWrER8bw2/vtiR74bLkq1D3jvGIiIjI40mJGhERkSfYmX1byZS7MDlLVAbAydkZT5/0ieqdP7ST9VO+Iyr0MsbJiaDTRwHIkr8EQacOsXj4e+QuXZ2CVRoBkKtUNZb/OID42Bhyl6lJnrI1k7z+c5/+es8xR4VdYXzXWliWRYZseXj6/VH2spKN2tl/Pr59DY16fIExBnfvtBSv15rjO9aQs0RlLp7YT6mGtrr+xSraR8/cTtCpwyTEx9mTNABe6XzveF7RWi34a/SHRFwJAgwnd23k6Q/GEBMZzsmdG4gICbLXjY4I49KpQ0rUiIiIPMGUqBEREXmS3cXuj/GxMfz+6Su89P1CshUqTeilcwxvWxyADNnz0G3iZk7sWMuRv5ez6ufPef3n9RSt9TT+xSpybNsqNk77nl1LptCy/9hEbd/PiJob16j5LzdP75vuzfxn3yODsf90K07OLlgJ19+XuJhoW3Pc306Zrh5eFKrelL0rZgO29WvcPL1tI5eMofOYFTi7uN5X2yIiIvL4UaJGREQklTLGOAH1H6QN/+KVuPTNW5zZ+zf+xSvZpz7dOKomLiaKhPg40vrlAGDbH7/Yy65eDMDTJwOFazxFvgp1+b5NMSKvXiY2OpIM2fJQuskL+PrnY8HQpNenuZ8RNXcrb4U6/LNoMv7FKxMTGca+VXNo0G0Q7t5p8ctblD0rfqdkw7YE7N9+0+5WGbLn4ezBHWTJX5zjO9YQfvkCAJlyFcLJ2YV9q+clmvrk7uVDVPjVW8ZSuvELLBvVH4BGPb4AwN3Lh1wlq7Jx2vf2KWJXLpzB2cWVNL5ZHsZbIiIiIqmAEjUiIiKpjDEmJ9AJ6AyEPEhbnmkz8NzAX/lrzEfERkVgjBP1uw0iX/k69jru3mmp/Uo/fnmjPmn9/ClQuYG97MKxfawcPwgAKyGe6i/0wSdTNtZP+ZY9y2fh7OqGwdDozSEPEuZ9qdnxXZb88D7jXq0O2BYTzl/JFvvTH4xmwdAebJk1mqyFSpOjaAX7eXU6f8j8r7qzc9Ek/EtUJq2fP2AbadP2s99Y8sP7rJv8NcY4UaVtD0o1ake55i+z/McBbJ45kvqvD0wUS65SVe1r/+QqWcX+essPx7Js1IeMvRaju2camvcdkSyJGmPMFOAnYI1lWQkP3KCIiIg8Esa6iyHPIiIi4ljGGDegOdAFqAJMB36yLGuHMcb6aGWwQ+OTlOXzer4AbwFdAU/gZ+BXy7LOOjIuERERuTMnRwcgIiIit2aMKWKM+Ro4he2L93TA37Ks7pZl7XBsdJKSWZb1A1AKeAHIC+w1xsw3xjxtjNGoahERkRRKiRoREZEUxhjjbYx52RizDlgNJAC1LcuqbVnWJMuyIhwboaQWls3flmW9BuQE5gLvA6eMMV8YYwo4NkIRERH5LyVqREREUgBjU8EY8yNwGmgDDANyWpb1vmVZBx0boaR2lmWFWZY1wbKs6kADwA3YaIxZZYx50RiTeIstEREReeSUqBEREXEgY4yvMaYn8A8wEzgDlLIsq7llWfMsy4p1bITyOLIsa59lWe8A/sAooCNwxhgz0hhTxqHBiYiIPOG0mLCIiMgjdm1b7drYFgZ+CliMbXeeVfezO4+ru+f5uJgo7ecsdi5uHoGx0ZFZ7+UcY0xuru8mdhHbAsRTLcu6kvwRioiIyK0oUSMiIvKIGGOyY/si/CoQAYwHpliWFeTIuERuZIxxxjY1qgvQEPgDWyJxvaWOo4iIyEOnRI2IiMhDZIxxBZphS87UBGZh+9K7VV96JaUzxmTGNi2qC+DM9W2+Ax0amIiIyGNMiRoREZGHwBhTENsUkk7AMWzJmVmWZYU5Mi6R+2GMMUBVbAnHVsAqbEmbpZZlxTkyNhERkceNEjUiIiLJ5NquOa2xjT4oBkwCfrYsa79DAxNJRsaYtEA7bP+f5wAmAL9YlnXcoYGJiIg8JpSoEREReUDGmLLYRhq0B7ZiGz0z37KsGIcGJvKQGWNKYvt/vwOwE9v/+/Msy4pyZFwiIiKpmRI1IiIi98EYkx5bYqYLkAn4BZhgWdYpR8Yl4gjGGA+gJbakTRlgCrbRZP86MCwREZFUSYkaERGRu3RtnY6a2JIzTwPLsK3TsdyyrHhHxiaSUhhj8gGvXPsXgG2UzXTLskIdGpiIiEgqoUSNiIjIHRhjsgIvYRstEI/ti+dky7IuOjQwkRTs2jbfjbElNusCc7H97mzSjmciIiK3pkSNiIhIEowxLlz/klkHmIPtS+ZmfckUuTdKdoqIiNw9JWpERERucG3axv+31f7/tI0ZlmVddWRcIo+Da9MHa2BLgD4D/IXtd0zTB0VERK5RokZERJ54NyyE2gXbQqi/oYVQRR4qY0w64AVso2wyY9vme4JlWScdGpiIiIiDKVEjIiJPrGtbC3cBXgT+wbYwsLYWFnnEtMW9iIjIdUrUiIjIE8UY4wM8jy1Bk4PrT/GPOTQwEcEY4wm0wvb7WRyYjG102z6HBiYiIvIIKVEjIiKPvWvrYlTF9uXvWWAVtif2S7UuhkjKZIwpwPX1oo5jG/E207KsMEfGJSIi8rApUSMiIo8tY0xmoCO2BI0zti96kyzLOu/QwETkrl3bga0Ztt/jmsAsbInWrdqBTUREHkdK1IiIyGPFGOMMNMD2pa4h8Ae2L3Xr9aVOJHUzxuQAXsa2nk0Ett/t3yzLCnJoYCIiIslIiRoREXksGGNyA69c+3cR2xe4aZZlXXFoYCKS7IwxTkBtbAnZp4DF2EbMrbQsK8GRsYmIiDwoJWpERCTVMsa4AU9j+7JWEZiGbeHRfxwamIg8MsYYX2zbfHcF0mJL2Ey0LOuMQwMTERG5T0rUiIhIqmOMKYZt6kNHYC+20TNzLMuKdGhgIuIw1xYNL48tcdsW2ITts2GhZVmxjoxNRETkXihRIyIiqYIxJg22L1+vAnmBicAvlmUdcWRcIpLyGGO8geewJW0KAr9iG213yKGBiYiI3AUlakREJMW69oS8IrYvW22AddiekP9pWVacI2MTkdTBGFME2zbfLwMHsX2G/G5ZVoRDAxMREbkFJWpERCTFMcZkBDpgS9B4Yltz4lfLss46NDARSbWurWnVHNvnShVgOvCTZVk7HBqYiIjIfyhRIyIiKcK1XVzqYZva1BRYiC1Bs0a7uIhIcjLG5AQ6Yfu8uYxtlM1Uy7IuOzIuERERUKJGREQczBjjz/UvTFewfWGaoi9MIvKwXUsQ18f2+dMEWMD1BLE6ySIi4hBK1IiIyCNnjHHl+hSEqsAMbAmaHfpyJCKOYIzJxPUpl+5cn3J5zqGBiYjIE0eJGhEReWSMMYWwPbl+GTiE7YvQ75ZlhTs0MBGRa64tYl4JW8LmOWAttkTyYi1iLiIij4ISNSIi8lAZY7y4vk1uYWzb5P5iWdYBhwYmInIHxhgfoC22BHNuYCK2z6+jjoxLREQeb0rUiIjIQ2GMKYctOfM8sAnb6JmFlmXFODQwEZH7YIwpji1h0xH4F9somzmWZUU5NDAREXnsKFEjIiLJxhiTAXgBW4ImA7bkzETLsk47NDARkWRijHEHnsb2OVcemIZtm+9dDg1MREQeG0rUiIjIA7m2nkNtbE+aWwBLsCVoVmhbbRF5nBlj8gCvXPsXiG2UzXTLsq44Mi4REUndlKgREZH7YozJhm1R4FeBaGxfUH6zLOuSQwMTEXnEjDHOQENso2waAPOwfSZu0E52IiJyr5SoERGRu2aMcQGaYvsyUgv4HduXkb/1ZUREBIwxfsBL2JLYBtsIw0mWZQU6NDAREUk1lKgREZE7MsbkBzoDnYCT2L54zLQsK9SRcYmIpFTXpoVWw5bYfhZYgS2xvcyyrHhHxiYiIimbEjUiIpIkY4wH0Arbl4ySwGTgZ8uy9jo0MBGRVMYYkxbbDnhdgGzABGzbfJ9wZFwiIpIyKVEjIiI3McaUxvZloj2wHdsT4PmWZUU7NDARkcfAtc/YV7HtkLcD22fsH/qMFRGR/1OiRkREMMak4/rT3izYnvZO0NNeEZGH49qoxWexfe6WAn7DNmpxj0MDExERh1OiRkTkCXVt/YTq2L4ktASWY3uy+5fWTxAReXSurQP2/22+T2FbB2yG1gETEXkyKVEjIvKEMcZk4fqOJBa25Mxky7IuODQwEZEn3LWd9ZpgS6DXBmZj+4zeop31RESeHErUiIg8AYwxzkAjbJ3/+sBcbJ3/jer8i4ikPMaYbNiS6l2AGK4n1S85NDAREXnolKgREXmMGWPyYNtW+xXgHLaO/nTLsq46Mi4REbk716ap1sI2CvJpYCm2qVHLLctKcGRsIiLycChRIyLymDHGuAPPYHsKWw6Ygm2Byt0ODUxERB6IMSY9tt2iugC+wC/YFn4/7ci4REQkeSlRIyLymDDGlMD2xLUDsBvb6Jm5lmVFOTQwERFJdsaYctg+858H/sb2mb/AsqwYhwYmIiIPTIkaEZFUzBjjA7TD1lnPhW1b7V8syzrm0MBEROSRMMZ4Aa2xjbIpAkzCNorygEMDExGR+6ZEjYhIKnNtvYLK2DrlrYHV2NYrWGJZVpwDQxMREQcyxhTCti7Zy8BRbKNsZlmWFe7QwERE5J4oUSPyCHl4ep6PjorK4ug4JOVw9/AIjIqMzHrja8YYD6CAZVl7/vN6JqAjtgSNG7YO+K+WZZ1/VPGKiEjKZ4xxBZ7CNtqyOjAL29+Mbcm105+zm8f5hNho9WkeQ06u7oHxMVFZ71xTRB4WJWpEHiFjjLX3QrSjw5AUpLifO5Zlmf8fX9tG+3cgwLKsHsYYJ6ABts52Y2A+ts72Om2rLSIid2KMyQF0wvZ3JBTb35AplmUFP2C7VqPJ5x48QElxlnXMdlPfREQePSdHByAiIjbXpjSNBtIA3xpjBgDHgC+ANUAey7JesixrrZI0IiJyNyzLCrAsazBQAHgbqAocM8ZMNcbUu/ZAQEREUhB9MIuIpByDgPqABWwFsgCtLMsqb1nWaMuyQhwZnIiIpF6WZSVYlrXCsqwXgPzAZuB74LAx5sNrI2/sjDFFjTHPOyBUEZEnnoujAxARuRtzp/3KpB9/wDg5kZAQz3MdOtOha48k644fPpSFs6cRHxdHyXKVGDhsNG7u7vzz9ya++fQDrl4NAaB2g6a8PWAITk6Oz1lfGz3zEXARCAH6A6eAfQ4MS0REHkOWZQUBPxhjRgAVsK19tscYsx7b1Kg/gavA18YYLMua7rhoU66AtdM5uWQcxjhhJcSTo86L5G7cBYBL/67myKwvCD19gFwNO1P4hU+SbCMhNpp/vuvE1eO7AKg75vqf/ciLp1n/blXS+Bexv1b+g5m4+fjetkxEUj8lakTkkbAsiyshl0mf4f46EA2bP0vL51/CGEN4WCjP1CpHxWq1KVy85E31Nqz6iz/nzGDa4vV4ennxyTvd+XXsD3Tt9R5pfNIyZORP5M5XkJjoaDq3bsLC36fxdNsXk+MWH9R0bGsHAGQFqgEtgQvAdgfFJCIij7Fr02i3AluNMe8AbYD3gB+BX4FuwC/GmEuWZS13XKQPh2VZxIWH4Jomw32dn6XiU2Sv2Q5jDHGRYWzsVwffotXwyVUML7/cFOv8DYFbF5EQe5v1CZ2cydPsDVx9fNn+ZdtExS5eaak6OOm3/nZlIpK6KVEj8gSIjIigf89XOXJwHy4uruQtUIhvf5rK3xvW8MWH71CyXEV2b9+Ci4srX46awOhvPufwgb1kze7P8AkzMcbQoFwBFm7YTYaMmQAYOqAvaXzS0v29j2577SMH9rFw9jSWzp/NK9370Pblrvd1D2l80t50P3GxsdiWdLnZwb27KVelOl7e3gDUrNeYUV8Pomuv9yhYtLi9npu7O0VLlubsmVP3FU9ysyzrEHDI0XGIiMiTybKsMGACMMEYUxTb4sMTgABgtjGmqWVZG5PrevHREewZ+xZhAQcxzq54Z8tP6Z7jCN6/kQOTPyZd/jJcObID4+xCyW4jOTp3GGFnDuCRMTule/2CMbC2dwWqD12Hm09GAA5O/RQXDx/yt3rnttcOO3OQcxtnE/j3QnI360bOei/d1z24ePpcv5+YSKz4OLjWN/HKkheACzuWwm0SNU7OLmQsUYvIi6fvKwYReTwpUSPyBNiw6i+uhlxmwXrbsNorIZftZccO7WfIiJ8Z9O0YPnu/F6+1a87UxWvJmt2fbu2f5s+5M3iuQ2fqNWnBojnT6dC1B3Fxcfw5dyZTFq1O8nrnz57hzzkz+HPuTDy9vGn2bFumLFqDb6bMABw5uJ++3ZLuFFWrXZ93P/0yybKVSxbw/eCPOX3iGL0//IxCxUokqlOsdDl+/+0XLgddwiddepbO/52zpxMnY4IuXuCvhfMYM3Xe7d46ERGRJ1FTIAOwDSiMbZH7hUCyzau59O9qYiOuUP2rtQDEhofYy8LPHqLE68Mp/uow9k/sx/ah7an86UI8fLOz4+sXOb95Lv51XsSvXBPObZxL7sZdSIiP4/ymeVQasCDJ60UFn+Xcpnmc3zQXZ3cvslZ9lkoD5uOW1vYAKizgIP+OfjPJc31L1KJw+wFJll3YsZTDM4cQeeEkBdv0wydn0ft/U5IQFxnG5gGNsSyLrFVakqfZG/YHVbcrE5HUTYkakSdA4eIlOX7kEJ+934tK1WtTq0FTe1meAoUoWrI0AMVKleXcmVNkze5vOy5djlPHjwLQ8vmOfPHhO3To2oN1K5aQr1BhcuTKk+hafy2cR59Xn6fFcy8wYtLvZMuRM1GdAoWLMmfV1nu+j3pNWlCvSQvOnjlFr5fbUKtBE/IWKHxTnSo169K+cze6tn0Kd3cPKteqi4ur6011wsNC6fFSazq98RZFS5a55zhEREQecyHAJiAQOH/tX2ByXsAnV3HCzx5h/8R+ZChajcxl6tvLvLLmJ21u28MYnzwliQw6g4dvdgDS5i1FROAJALLXasuByR+Tu3EXLu1aiXf2gnhmTtzvCNy6iF0jupKtWmvK9pmIR8YcieqkyVH4vqYR+ZVrjF+5xkReOsPO718hU5n6eGcrcM/tJMU9vR+1hu/APV0moq9cYud3L+PqnQ7/Oi/etkxEUj8lakSeADnz5GPBhl1sXruSdSuW8v3gj5m3ZgcA7u4e9npOzs643XDs7ORMdFwkAOWr1CA8LJRD+/Ywb/pkWrZLekRM1dr1+HTYaBbNmUH3F5+lacs2NG3Zhpx58tnr3O+Imv/L7p+LkmUrsGbZn4kSNQAdX+tJx9d6ArDkj9/JV/D6QnuRERF0f/FZqtVuQKfufW57HRERkSeRZVm/POxrePnlpvpXawneu45Lu1dyZNYXVB2yEgBnN3d7PePkjJPr9WOcnLFiogDIULgK8VHhhJ7ez9l1M8heM/EaLwAZS9SiWOevObdxLjuGvUTWKk+TtUpLvPxy2+vc74ia//PM5E+6/GW5+M/yZEvUOLm6457Odu/u6TKRrVorQg5txb/Oi7ctE5HUT4kakSfA+bNnSJfel/rNnqFanYbULZWHKyHB99zO0207MHHM92zfvJ4vR01Isk4an7Q816Ezz3XoTOC5AP6cM4M+r7bH1c2Nt/oNpEqtevc1oubY4QP2hMvloEv8vWENDZ5qmWTdi4HnyZwlK1dCLvPTD1/zxjv9AYiOiuLNjs9Sqnwlen6Q9O4LIiIi8vBFBZ/F1Ts9fhWakrFkbdb0KnvT9Ke7la3Gc5z880cuH9xMyW4jkqzj4umDf50X8a/zIlHB5zi/aR67fuiCk4sbBdp8QMbiNe9rRE342cN4Zy8IQExoEMH7NuJXodk938OtRF+5hKt3OpxcXImPjuDCjmVkLtvgjmUikvopUSPyBDi8fw/ffmZb9DchIZ4uvfrilzU7J44evqd2nmnXgcYVCvNs+5fx9PK6Y/0s2XLwyptv88qbb3P00H7Cw8LuK36AmZN+YuPq5bi4uGJZFi+8+gbV6zYEYMbEcVw4f86efOnathkJCQnExcbywqtvUL/ZMwDMnjKBrRvWEhIczIZVfwHQ+OnWvN7ng/uOS0RERO5d6On9HJ4xBAArIZ68LXrikSErEeeP3VM72Wu0Zd3blclR63mc3e/cN/HwzUaep94gz1NvEBZwiPio8PuKH+D0yskE7VmDk7Otb5Kr4StkKlkHgMsHt7B71BvERYYCFuc3/0HxLsPIVKoup1f8SnRIIAVa9wVg84AmRAWfIzb8Cmt6lSNTqboU7zKMkENbODL7a4yTM1Z8LJnLNCRXw84Aty0TkdTP2HblE5FHwRhj7b1wmy0a5YlT3M8dy7K08p+IiKQqxhir0eRzjg5DHoJlHbOpbyLiYE6ODkBERERERERERGyUqBERERERERERSSGUqBERERERERERSSGUqBERu1Z1KxIVGXnHet3aP82p40eT7bpjhg2hScUiNKlYhDHDhtyx/kdvvUZxP/ebFieeO+1Xnq1dnqdrlqF7h2cJuWzb1SohIYEXmtbi2ToVeLZOBV5r15yAUyeSLXYRERFxjE0fNiA+5s79lh1fv0hE4Ilku+7Red+y7p0qrHunCkfnfXvLertHd2dNzzIs65iNuP8sWnyrsvBzR9k6pDXr+9Zgwwd12DOu913do4g8XpSoERG7Oau24uHpecd6P06bT668+ZPlmts2rWPZ/NnMW/sP89b+w7L5s9m2ad0t669auhBjbl7f7uih/fzwxaf8PHsJ89ftpFS5Sgwf/DEATk5OjJ2xgLmrtzF39TZq1m/M0AF9kyV2ERERcZyqg5fj7Hbnfku596bglSVPslwz+MAmAv9eSLUvVlHti1UE/r2Q4AObkqybo/YLVPk86S2/b1Xm5OJG4Rc+pcbQ9VQbspL4mEhO/DkmWWIXkdRDiRqRJ8yyBXNpXq0kretVYtz3X900MuXGnxuWL8SILwfyQtNaNCxfiCk/j7a30bB8IQ7v35ss8SyeN4un276Ih6cnHp6ePN32RRbPm5Vk3ZDgIMZ8M5i+g4be9PqRA/soUqIUvpkyA1CrQRMWzp5uL/dJm87+c1hoKMZJH30iIiKpQeDWhazvW4NNHzXk2PzhN41AufHntX0qcmT2ULYMbM7aPhU59dcv9jbW9qlI6OkDyRPP5vlkr94GZzdPnN08yV69DYGb5ydZN2PxGriny3RPZZ6Zc5I2T0kAjJMT6fKVJepSQLLELiKph4ujAxCRRyfo4gU+fbc70xavJXe+gvz64/Db1o+KjGDq4rUEnDrBM7XK0bLdS3inSXPL+levhNCpZcMkywoULsbQH39N9Pq5gNNUql7bfpzNPxfbNq9Pso3PP3iL7u99dFPiBaBw8ZLs3bmDMyePkyNXHhbNnk5EeBghl4NJn8EXsE3X2rd7JxkyZmT8zEW3vW8RERFxvOgrl9j3S18qfbIQ76z5OLl47G3rx0dHUvmThURePM3GfnXIXrMdLh7et6wfG36FbUNaJ1nmnaMQpbqPTvR6ZFAAGYpWsx97ZMrB5YOb7/KO7k18TCQBa6dRsG3/h9K+iKRcStSIPEF2bd9CsZJlyJ2vIACtXuh022lATZ9tC0COXHlIlz4DgefOkK9gkVvWT5suPXNWbU3eoK9ZOn82rq5u1Gn0VKKyPPkL8cHgYbzzWgeMMdRv+jQALi7XP+J+nDafhIQExg8fyo/ffsGAoSMeSpwiIiKSPK4c3Y5P7pJ4Z80HQPba7Tk49dNb1s9a5RnANirFxTs90cFnccle8Jb1Xb3TUXVw0lOTHC0hPo7do97At1gN/Mo1dnQ4IvKIKVEj8iSxrETru9yOu7uH/WcnZ2fi4+JvW/9+RtRky5GTs6dP2o/PnTlF1uz+ieptWb+aLetX07B8Iftrz9Qqy4/T5lOgcFGaPduWZtcSS7t3bCVLthyk8Ul7UxtOTk60eqETzaoUV6JGREQkpbMs7qHbgpPr9X6LcXIiIf72/Zb7GVHjmTEHUZfO2I+jLgXg4Zv97oO8C1ZCPP+OeRNXr3QU6fh5srYtIqmDEjUiT5BS5SvzUe/XOXnsCLnzFWDe9EnJ2v79jKhp/HRrvuj/Nu07vwHA/JlT6P/Fd4nqDRg64qbkSnE/d/5Y+499KtbFwPNkzpKV6KgoRg0dRKfuvQEIvnQRJycn0vtmBGDZgtkUKlrifm5PREREHqF0Bcqz96e3iQg8jleWvJxdNyNZ27+fETVZKrfgwOSPyNmwEwBnN8xK1mSKlZDAnnFvYZycKd7123t6wCYijw8lakSeIJn8svDJ1yPp/mJL0vtmok7jp3BxdcXTy8thMVWqXpsGT7WkZa2yWJbF0207ULFaLQBWLlnA6qWLGPTdj3ds56O3unL2zCliY2Jo+mxbOnTtAcClC4F82KsLcbGxWFjkyJWHL0dPeKj3JCIiIg/OPV1minb6ih3fdMTNx5fMZRtinF3vaqenh8W3aDX8KjRjY7+6YFlkq9EG32tr1lzYsZSLO5ZRvMswAHYO78yVozsB2NC3Bmn8C1O+7/Tbll3avZJzG2aTxr8Imz+2TXlKX7AiRTt98WhvVEQcyliW5egYRJ4Yxhhr74Voh8YQHhaKdxofAOZO+5XZUyby28JVDo3pSVbczx3LsvS4TEREUhVjjNVo8rmHfp24yDBcPG2jZwPWTidgzVQqfZz0LkuSPJZ1zKa+iYiDaUSNyBPmt/GjWDp/NvHxcaRL78vAbxPPvxYRERFJCU4t+4nAvxeSEB+Ha5r0FOv8jaNDEhF56DSiRuQRSgkjaiRl0YgaERFJjR7ViBp59DSiRsTxnBwdgIikLp1aNmT1skUOu37/nl2oVzofrepWpFXdioz97kt72YJZU3m2dnlKZfNiys+3Hyk0a/LPNKlUlCYVi/D5B2+RkJAAwJ6d22lVtyItapRm3vTJ9vpzp0+66VoiIiKS8m0d3IqL//zl6DAI3r+RZS/l4NRfv9hfCz93hK1DnmNj/3ps7F+PoH/X3PL8M6t+Y907VVn3ThX2/9of61q/5cqxnWz6sAEb3q9FwLqZ9voBa2dw7I/vH9r9iMjDpUSNiKQ6r/Z6lzmrtjJn1VZe7/OB/fUiJUrz9bjfeKrV87c9/8zJ44z5ZjBT/1zLn1v2cfLYERbMmgrATz98Tf8h3zJj6UbGfGPbxSEkOIi5U3/llTfffng3JSIiIo+luMgwDk3/nEyl6930+p5xfchRqx3VhqykdK+f2DO+D/HREYnOj7hwiqNzv6XyJwuo8fVGIgKPcW7j7wAcXziSwh0/o/LAJRyba1vEOCY0mIC108jzVPeHf3Mi8lBojRqRVCgyIoL+PV/lyMF9uLi4krdAIb79aSoXA8/zXreXCA+9SnR0FLUaNOXdT2y7BIwa+hnHjxwkLPQqJ44epnjpcnTp9R5DP3mfc6dP0uCplrz7qW3ESKeWDSlcohQH9+zm/NkzNHnmOXp/+FmiOMJCrzJ0QF8O7vuXmKgoKtWoTd9BX+Ps7Mzorz/nz7kzcHP3wBjDhLnLSJsu/UN9XwoWLQ6Acbp9DnrZgjnUa9oC30yZAXiu46vMm/Yrz7TrgIurK5GREcRER+Hk7AzANwP70avfp7i5uT3U+EVERB5H8dER7Bn7FmEBBzHOrnhny0/pnuOIDrnA7tFvEBcZSkJsNJlLN6BQ+48BODLnGyLOHiEuMpTw88dIm7cUeZv34ODUgUQFncGvQjMKtx8A2EbN+OQuTujJvUQFnyNr5RYUbNs/URxxkaEcnPIpoaf3kRAbjW/RahR+cSDGyZmjc4ZxbvNcnF09wBgq9PsdV+90yXL/B6d+Qp6nunPpPyN7Qk/tJVOpugB4Z82Ha5r0XNq9kiwVm99UL3DrQvzKN8EtbSYActTpwNm108leoy1Ozq4kxESSEBuFcbL1Ww5N/4wCz72Pk4v6LSKplRI1IqnQhlV/cTXkMgvW7wLgSshlANKmS8+oyXPwTpOG2NhYXmvXnHUrl1Kznm17x727djDzr014eafhufqV+fazDxk7bT5xcXE0rliYNi+9Su58BQE4dnA/P/2+mOioKF58qhZlKlahTqOnbopj6IC+VKhak0Hf/UhCQgJ933iZOVMn0qhFKyaM/o51+87g4elJeFgo7h6Jt9LctGYFX3/6QaLXAZ5p14GXu72VZNmkMcOZNekncubOR++PPiN/oaL39P6dCzhNdv9c9uNsOXJyPuAMAN3e7s+g93oQGRHOu598wdaNa3FycqJC1Zr3dA0RERGxufTvamIjrlD9q7UAxIaHAODilZayb0/CxcObhLhYtg9tz6XdK8lUyjby5OqJ3VQetAQXD282fdSIwzMHU/69KSTEx7Pu7Ur41+2Ad9Z8AIQHHKL8BzNJiI3m74HNSV+wIpnLNrwpjoNTPiVDkSoU7zIMKyGBf8e8ScCaaWSp1JwTi8dQZ9S/OLt5EhcZhpObR6L7CNqzlkPTBiV5j9lrtCF309cTvX5x1wriwq+StVLzRImatHlLcW7TXHI37srV47sIP3eUyEtnErURFRSARyZ/+7FnxhxEBZ8FIF/L3uyb8D7x0REUev5jgvdvxBgnfItUTTJOEUkdlKgRSYUKFy/J8SOH+Oz9XlSqXptaDZoCEB8fz7CBH/DP1s1gWVy6GMiBPbvtiZrqdRvik9b2dKhwsZIULl4SN3d33NzdyZO/EKdOHLMnap5p1xEXFxdc0qShacu2bFm3OlGiZtXShfy7YysTx3wPQFRkBFmz5SCNT1ryFijE+907UaNeI+o0ambfEvxGVWvXZ86qrfd072/1H0jmLNlwcnLijxm/8frzT7N06wGcr41+eVAFChdl0vwVAMTExNDluab88OssJo39gX/+3kTGzH70HfS1RteIiIjcJZ9cxQk/e4T9E/uRoWg1MpepD4CVkMChaYMIObwNsIgOuUDoyb32RE3GknVw9Up7rY2i+OQsjpOrO06u4J0tP5EXTtgTNbbRJS44ObuQtcozBO9bnyhRc2HHUq4c+4eTi8cCEB8TibtvNlw8ffDOlp9/x/QgU6m6ZC7b0L4l+I0ylqhF1cHL7/q+Y8OvcHjGEMq/PyPJ8hKvDefglE84u3YG3jkKkaFQJZycXe+6fYA0OQpT6aN5ACTExbDty7aU7T2Bk0vGEXJoK27pMlP4xU81ukYklVGiRiQVypknHws27GLz2pWsW7GU7wd/zLw1O/j1x+FcvRLC9CXrcffw4JN33iAmKsp+nrv79adDTs7OuHlcP3Z2diY+Li7J61mWhTGJF/+3LIsffp1Fzjz5EpVNXbyOf/7eyJZ1q2nToCpjpy+gcPGSN9W5nxE1WbLluKnOVwPeI/DsGbLnzJ1kO0nJliMnZ8+csh+fCzhN1hz+ier99MPXtH7xFa6GXGblkoVMnLuMkV8NYtHsaTzb/uW7vp6IiMiTzMsvN9W/Wkvw3nVc2r2SI7O+oOqQlZxc8iNx4Veo/OkinN082Pvzu8THXt8d08nV3f6zMc44ud1w7OSMFR+f9AUtC5Lot4BFmd4T8PJL3Geo9MkiQg79TfC+DWz+uDHl3puKT65iN9W51xE1YWcOEB0SyJZPbQ/UYkODubjzL2LDQsj/7Nt4+eWmbJ+J9vob3q+Fd/aCidr2yJiDqBtG2kQGBeDhmz1RveMLRuJf5wViw69wYcdSKvafzZHZX3Nu4xxy1Lr9+n0ikrIoUSOSCp0/e4Z06X2p3+wZqtVpSN1SebgSEkzolRAyZcmKu4cHgecCWLV4Ie06vXZf15g/awpNWrYhJjqapfNn81b/gYnq1G3cnJ9GfM2AoSNxdnbmctAlwsNCyZAxExHhYVSsVouK1Wqxa9tmDh/YmyhRcz8jagLPBdiTNetXLsPZ2Rm/G5I3d6Nh82d5+ZkGdH/3I9L7ZuT3yT8nWoD45LHD7N6+he7vfsjBvf/aE1VOTk5EhIfd0/VERESeZFHBZ3H1To9fhaZkLFmbNb3KEhseQlzEVdzS++Hs5kFU8Dku7liKf/37exBydsPvZKnyDAmxMZz/eyEF2yR+EORXtjHHF4yg2CtfYZyciQkNIi4yHDcfX+Kjw/EtWg3fotW4cmQbYWcOJErU3OuImgyFK1N39B778Z6xb5E2X2lyNewMQPSVS7ilzYgxhoC1M3Bydce3eOKp1lkqPsXWz58l/7Nv45rGl4DVv5G1aqub6oSfP8aVI9vJ/+zbhJ7aB9j6LcY4ER8Vftcxi0jKoESNSCp0eP8evv3sIwASEuLp0qsvflmz06Hrm/Tp8gKt61Uiaw5/Kteqe9/XKFaqLF2ea0rguQAaP9060bQngA8+/4ZhA/vRqm4FjDG4ubnz/mff4OLqSu/OzxMdGUmClUCxkmVp+FTL+47lRv17vErQpQsY40Qan7SMnDQbFxfbR9miOTMYNrAfV69cZtWSBfz8wzeMm7mIAoWLMuLLgfhlzUa7Tq+RM08+ur3djxea2jpD1eo0oEWbF266zlcfv8cHn38D2Kaa5cydl2dqlSWDbyaGT5yJiIiI3J3Q0/s5PGMIAFZCPHlb9MQjQ1ZyNXqVXSNeY9NHDfHwzZ5kkuJupc1Tku1ftiX68nmyVGqeaNoTQOEOgzg0/TM29q+PMQYnVzcKvzgIJxcXdg7vQkJsFFZCAmnzlMSvQrP7juVuXfxnKScWjgJj8PTLTZm3frE/GDoyeyju6bOQs/7LePnlJl/L3mwZaFtkOGOJ2mSv3vqmtg5O+YTCHWyjfXxyFcPLLzcbPqiDm48vZXr/goikLsayLEfHIPLEMMZYey9E37mig3Vq2ZBO3XsnmZyR5FXczx3LspIany0iIpJiGWOsRpPPOToMwLbrU55mbySZnJF7t6xjNvVNRBzs9nvYioiIiIiIiIjII6OpTyKSyMR5f925koiIiEgKUPHDOY4OQUQkWWlEjYiIiIiIiIhICqFEjYiIiIiIiIhICqFEjUgq1KllQ1YvW+TQGPr37EK90vkY0r+P/bVVSxfSvFpJmlQqyjtdXyQyIuK2bcybPpnifu5J3ktSZRNGfctTVUtQIovHPd3/pQuBdG3TjGZVivNsnQrs3v53kvXmTp9ElQJ+tKpbkVZ1K9Lr5TZ3VRYeFka/NzvTsnY5mlcryYRR39rLli6YQ4sapaleJPtdxysiIvKk2Dq4FRf/ceyU6z1j32JNr3IcmPSR/bULO5axvm8N1r1TlV0jXyc+Ouk+TfSVi2z/qh3r36vOxv71CTmyw15mJSRw5PevrpXVY8c3He4qntu1eaO4qHD+/bEnG/vVZX3fGpxYNCZRnZirl1j9Zkl2/tDF/tr5vxey4f1arHqjWKL6IpIyKFEjIvft1V7v0n/Id4AtWfHJ290Z9dsclvy9H+80PkwY/d0tzz1/9gyzJv1E6fKV77qsQrVajJ4yjwpV7237zu8Hf0z5qjX5c/NePvpyOH3feJlb7XhXpVY95qzaypxVW/nh11l3VTZ++Fe4urkxd/V2Zv61mfmzprJr2xYAGrdoxY9T/7ineEVEROTRytuiB0Ve+hywJUD2/fIuZd+eRM1hm3DxSMOJP39M8rzDM4eQoXAVany9gaIvD+HfMW/a+xgnl44j/NxRqn2xmmpDVlK86637RXfb5o2Ozx+Ok4sbVYespMqgZZzd8DshR7bfVGf/xH5kKl3/pteyVmpOuXen3FUsIuIYStSIONCYYUP48uN37cchwUFUK5yNiPBwNq9dyQtNa9G6XiVa1i7Hn3NnJtnGf0fX3Hh8MfAcvTs/T7vG1WlZuxzjvv/qod3L+pVLKVGmHLnzFQSg7ctdWfLHrFvW//Sd7rz/2de4ubvfdVnJshXIna/APce25I/fafdyVwDKV6mOu4cHe3Zuv8NZd+/g3t1Ur9sQYwxe3t5UrFaThbOnJVv7IiIiKd3Red9y4LcB9uOY0GBWvVGMuKgIgvauY8vA5mz6qCEb+9Xl3KZ5Sbbx39E1Nx5HhwSy84cubP6kKRv71eXY/OEP7V4u7VpJ2ryl8c6aDwD/eh05vyXphy6BW+bjX/8lADIUroyTqztXj+8C4OTisRRs9yFOLq4AuKfLfFfXv12bNwo9tY+MJetgjMHFwwvfIlU5t/H6wsrnNszGLV1mMhSpepd3LiIphXZ9EnGgZ9p1oH2Tmrz7yZe4uLiwaM506jVpgZe3N0VLlWXywlU4Oztz6UIgbRtWpXrdhqRLn+Gu2+/3Zme6vdOfClVrEhMTw6utm1CiTHmq1WlwU70jB/fTt9tLSbZRrXZ93v30yzte69yZU2Tzz2U/zpYjJ+cDziRZd/qEsRQoXIxS5SvdU9n9CAkOAiwyZMyUKLaSZSskqr9t0zpa1a1IGp+0vNrzHWo3bHbHsmKlyrFswRzqNX2asKtX2LDqL/IUKJQs8YuIiKQG2Wu0ZcunT1Go/QCcnF04v2kumcs1xsXDi7R5SlLp4z8wTs5EX7nI5o8bk6lUHVy90991+//+2It8LXvjW6QqCXExbPuiDenyliFjydo31QsLOMi/o99Msg3fErUo3H5AkmU3igoKwDOjv/3YI6M/UUFnE9WLCQ3GsizcfDLaX/PMmIOooAC8s+UnJjSYwC3zCdy2GOPkRN7mPfAr3+S2175dm+nylbmpbtq8pQjcuhC/8k2Ii7zKpX9X450tv+0eLp/nxJKxVPxwLoF/L7zjPYtIyqJEjYgDZffPRf7CRVi7fDH1mrRg3vTJfPD5NwBcDrrIx2+9xsnjR3B2duFKSDAnjhyidIXEU4WSEhEeztaNawkOunT9tbBQjh0+kChRU6BwUeas2pp8N3YbZ04e5/fffuG3havvqexRqNOwGU2faYOHpyf7/93J6+1aMGHeMvIXKnrbsi693uObgR/QtmFVfDNmomK1WlwODnLIPYiIiDiCZyZ/0uQoxKVdK/Ar15iAdTMo0mEQADFXg9g7vg/h54/j5OxCbPhlws8dJX2B8nfVdlxUBJcPbOTg5KAbXgsj7OzhRImaNDkKU3Xw8uS7sfuUEBeLFReDZSVQZeCfRAQe5+/PniGNfxG8suRJlmvkbd6DQ9M+Y/OAJrilzYhv0arEhAYDsO/ndyn0/Me4eHgny7VE5NFSokbEwVq2e4k/ZvxGztz5CL16hfJVagAwqG9P6jZuzvCJMzHG0KxKcaKjoxKd7+zsTEJCgv34/3UsKwGMYcayjbi6ut42huQYUZPNPxd/b1hjPz4XcJqsOfwT1du5bQsXzp+jRY3SAFy6cJ4BvbvR+6PPcHP3uGVZqxc63TGGpKT3tT2Ruhx0yT6q5lax3TjqpmjJMpStXI1/d2wjf6Gity3z9PLi469+sJcP6tuTfIWK3Fe8IiIiqVX2mm05u24mnplzExcRSobCVQDYP/EDMpdrROm3fsEYw/r3qpMQG53ofOPsYuu/XGOvYyUAhsoDF9unEd1Kcoyo8ciYg+D9G+zHUUFn8MiYeFMANx9fAGJCg+wjYCKDAvDImAM3H1+cPbzJVq01AF5Z8pI2d0muntxz20TN7dr8L2d3L4p2+sJ+vG/iB3hnt01BDzmynbCf3gYgPiqc+Jgodnz9IuXe09o0IqmBEjUiDtaw+bMM/aQvE0Z/R8vnrydLQq9cIUfO3Bhj2Lh6OaeOH03y/Jx58rFn53bqNWnBkYP7ObDHNofZO40P5atU56cfvuaNd/oDtgSFi4srmbNkvamN5BhRU6NeIwZ/0JuTxw6TO19BZv46niZPP5eoXvPWz9O89fP2404tG9Kpe2/qNHrKXn6rstv57vOP8MuWnRdf7Z6orFGL1sz4dTzd3u7H9s0biI6MpHjpconqBZ4LIEs2W0fo7OmT7N7+N93e7nfHsrDQq7i4uOLh6cnBvf+y4s/5zFq+6Y4xi4iIPE6yVHyKg1M/5eSfY8hRs6399diIK3hmyokxhqB/1xAReDzJ8738cnP12E78yjUmLOAgoaf2AuDimYYMhStzfOEI8re0JR+iggIwzq64p/e7qY3kGFGTqVRdDkzqT/j5Y3hnzceZlZPJWunpJOtmrdSCMysmka9lHy4f3EJCbBRp85SylVVpSdDuVfjX60j0lUuEnt6Hj39hAA7PGIy7bzZyNex8T23eKC4yFOPsgrObJ6Gn9nFh22KqfLYUgHo/7rfXC1g7g4s7/6JMr58e6H0RkUdHiRoRB/P08qJekxbMnfYrS7cdtL/e56PP+ez9Xvz0wzcUKlaCQsVKJnn+qz3f5e0uL7B+xVIKFStJ0RJl7GVfjf6Vrwa8R8vatqSEt7cPnw0fmyhRkxy80/jw6bBRdH/xWeLj4ylasgwffD4MgAvnz9Kt/TMPnAz6ZeQwfhs/iuCgi3zYqyvu7h7MX7+TND5pObTvX4olkXwB23v5QfdO/DFjMh4ennwxagJOTra11Af06Uadxk9Rr0kLpv3yIyuXLMDZ2fbR+Fb/QRQtWQbgtmWnTxznna4v4Ozigru7B1+NmYhfVm3HLSIiTxZndy/8yjUhYO10an67xf56obYfsv/XfhxfOBKfnEXxyZn0ttB5mvdg14iuXNq9kjQ5i+GTu4S9rOQbozg45RM29qtru5ZHGkp0/TZRoiY5uHimoVjnr/ln2EtYCfGkzV2C3B0+A2xrv/zzTQd7Mqhguw/598cenH13Fk5uHpR8fQTmWh+jYNt+7BnXh5PLfsYYQ4E2/ewjXkJP78cnb+kkr3+7Nvf+9A6ZyzXCr1xjIi6cZPfI1zFOzji5ulPyjVF4ZEj+Pp6IPHrmVlvUikjyM8ZYey8kHuqbGvXv2YXiZcolOYLlUUtISOCFZrWY+udaewImJQk4dYK2jaqx4UDihQiL+7ljWZZxQFgiIiL3zRhjNZp8ztFhJIs9Y98ibb7SSY5ueRishAS2DGxO5U8W2hMwj1rkxdNsHtCYumP2JSpb1jGb+iYiDpbyvtGISKrgkzYtU8aPYkj/Po4OBScnJ6YvWZ8ikzRLF8zhzY6tyJg5+Z/4iYiIyINz8fLh1LKfOTDpo0dyPePkRJWBfzosSXP+74X88+1LuN3lduEi8uhpRI3II/SwRtQ0LF+I0b/NpWDR4sne9v0KOHWCppWLUaBIcayEBDy9vPl46AiKlkx6mO/dupd1a5Iyd/okylasQp78tu2zVy5ZwI7NG+5qweSHQSNqREQkNXqQETVr+1Sk7NuT8cmZchbej7x4mvXvViWNfxEsK+HaQr1fkvaG6Vf3Y+vgVuRp9gaZyza8r/MD1s4gfcEK9m23L+xYyuWDW+5qUeT7pRE1Io6nNWpE5KHxSZfevi7N5HEj+Lj3a/y+YstNdeLi4nBxeXQfRX9Mn0wG34z2RE29Ji2o16TFI7u+iIiIpEwuXmnta8+cXDqeveP7UPXzv26qkxAfh5Pzo+u3nF03AzcfX3uixq9cY/zKNX5k1xcRx1CiRiQV2bl1M98M7Ed4WCgA737yBdXr3vyEZuLo7/hz3izi4+Jwd/ewj2KJjIigf89XOXJwHy4uruQtUIhvf5rK8SMH+bBnVyIjI0hIiKdlu4688ubbyR571doNGD7E9vSnYflCtHqhE1vWryZn7rx88PkwhvTvw56d2wBo8dyLdOn1LmDbOvyjt7oSFxtL/kJFb9qi/L8jiW48PnpoP19++A6XLgRiYdHpjT5YVgJ7dm7ni/5v88MXn/Lep19y/lwAa5b9yfe/TKdz68Z06PIm9ZradnZYtXQhv/74AxPnLuNi4DkG9+vDuYDTREdF0uzZdrzW+/1kf59EREQeFyGHt3Fo+iDiIsMBKNT+YzKVrHNTnRN//sj5zfOwEuJxcnW3j2KJj45gz9i3CAs4iHF2xTtbfkr3HEf4uSPsGdeb+OhIrIR4ctRsR56n3kj22DOWqMXhmbatr9f2qUiO2u0J3rcBr8y5KdzxMw5M+pArx3YCkL3Gc+Rt3gOwbQ++Z1wfrPhY0uQodNM25P8dSXTjcVjAIQ7+9jHRVy6CZZG72RtgJXD1+C4OTP6II79/RaH2A4gKPmffwWnbF23I1ehV/Mo3AeDCjmWcXDKWiv1nEx0SyP5JHxIVFEBCTBRZq7Yk39NvJfv7JCIPhxI1IqlEyOVgenVqy/AJMyhbqSrx8fGEhV5NVO/pth3o1N22bsymNSsY1LcH0xavY8Oqv7gacpkF623bd18JuQzA9AljqdmgiX0L7/+//l+9Oz9/yy3Cp/65Fg9Pz9vGv2z+bIrcsCPVxcBzTJy7DIBhg/qTkJDAvDU7CA8L5YVmtShcvAQ16zeh35uv8GKXN2n5fEd2bdtCh+Z1bnsdsI3S6fnSc7zVfxCNn24NQEhwEOl9M/LHjN9umjo1d/ok+3kt273EHzN+sydq5k2fzLPXtkzv92Znur3TnwpVaxITE8OrrZtQokx5qtVpcMd4REREnjSxYZfZObwzZXr9TPpCFbES4omLDE1UL3uN58jTrBsAQXvWsn/C+1T+dBGX/l1NbMQVqn+11tZeeAgAp5dPJFPpevZtuv//+n/t/KELkYEnkiyr9MkCnN1u328J3LKQtHmuT3uKDrlAxf6zATg0/XMsK4FqX6wiPiqMLQObkyZnUTKXrs+/P/YkV6Mu5KjZlpAj2/l7UNLbet8oIT6Ond+/QoHnPiBrZdso35jQYNx8fDm7buZNU6cC1s6wn5e9ZlvOrp9pT9ScXTeDHLXaAfDvj73I17I3vkWqkhAXw7Yv2pAubxkylqx9x3hExPGUqBFJJXZt20z+wkUpW6kqAM7OzqRLnyFRvb27dzD++6FcCQnGyThx4thhAAoXL8nxI4f47P1eVKpem1oNmgJQvkpNvhn4PrGxMVSqXpvKNeokef3vf5l+zzGHXgmhVd2KWJZFztx5GfzDeHvZM2072H/evHYlH3w+DGMMaXzS0uzZdmxas5Kylapx+MBenm77IgClK1SmYNE7zxU/ceQQ8XFx9iQNQHrfjHc8r2HzZ/lqwHtcDrqEMYZtm9bxxchfiAgPZ+vGtQQHXbLXjQgL5djhA0rUiIiIJCHkyHa8sxcifaGKABgnZ1y90yeqd/XEbo7N/4HYsBCMkxMR548B4JOrOOFnj7B/Yj8yFK1G5jL1AchQpAoHpw7CioslQ9Hq+BarnuT1y/T66Z5jjou4yqYPG2BZFl5+uSjx2nB7WfYabew/B+1dS5EOn2GMwcXTh2xVWhK8dx0ZClUi7MxBsld/DoD0Bcrjk7PoHa8bce4oVnycPUkD4Obje8fzslR8ioNTPiEmNAgwXD6wiRKvjyAuKoLLBzZycHLQ9XuLCiPs7GElakRSCSVqRFKJu1n4OyYmhj6d2zNp/gqKlSrLhfNnqVsqLwA58+RjwYZdbF67knUrlvL94I+Zt2YHjVo8S5mKldmwejk///A1c6f+yldjJiZq+35G1Ny4Rs1/eXmnuenejLl5zbr/H//39Rs5OzuTkJBgP46OirK3dz88vbyo16QFf861Pa2q16QFXt7etqlmxjBj2UZcXV3vq20REZEnyl38LU6Ii2HXD12p+NFc0uYpRdTl86ztVRYAL7/cVP9qLcF713Fp90qOzPqCqkNWkqVic9IVqEDQv2s4sXAEZ9dOo+QboxK1fT8jam5co+a/nN29b763RP2TO/dbjJMLWNf7Lf+fFnW//RZndy/8yjXh/KZ5APiVa4KLhxdxkWGAofLAxTi5qN8ikhqlvL1sRSRJZSpW5ejB/ezcuhmA+Pj4RNOUYqKjiI+PI2t2fwCmTRhrLzt/9gxOTs7Ub/YM73/2DZeDLnElJJiTx46QyS8rzz7/Em+8+xH//pN0YuX7X6YzZ9XWJP/dadrTnVStXZ/ZUyZgWRbhYaEsnjeTKrXrkcYnLQWLFGfRbNtont07tnJ4/x77eTnz5LOva7N57UqCLgYCkLdgYZxdXFg6f7a9bkiw7amSt48PYVcTTxn7v5bPd2Te9MnMmz6ZltemPXmn8aF8ler89MPX9nrnAk5zMfD8A923iIjI4yp9wQqEnz1EyGHb32krIT7RNKWE2GishHg8fLMDtmlN/xcVfBbj5IRfhaYUfnEgMaFBxIaHEBF4HPd0fuSo1Y58z75jXyfmv8r0+omqg5cn+e9O057uJGOJ2gSsnoplWcRFhnFu8x9kLFETF08f0vgX5tymOQBcOfoPoaf328/zypLbHm/Q3nXEXLkIgHf2AhhnF85vWWCvGxMaDICLpw9xEbfut2Sv1ZaAdTMIWDeD7NemPbl4piFD4cocXzjCXi8qKIDokAsPdN8i8uhoRI1IKpE+gy/DJ8xg6IC+REaEY5yceO/TL6lau769ThqftPToO4B2jauTLUdOata/vivA4f17+PazjwBISIinS6+++GXNzrjvv2Lh7Gm4urphjKHf4GGP/N66vd2fwf1607J2OcC2mHDNerbYh4z8hY/e6sqvPw6nWOlylCpf2X5er34D6d/zVX7/7RfKVqxKNv9cALi4uDBi0u8M7tebMcMGY4wTr3Tvw9NtX6RNx1f55tMPmDD6O9795ItEsZSvUsO+9k/5KteHU381+le+GvCePUZvbx8+Gz6WzFmyPpw3RUREJBVzTZOBMr1+5uDUT4mPjsAYJwq1H0DGErXsdVw8fcjf6j02f9IUj4w5yFSqnr0s9PR+Ds8YAtiSPHlb9MQjQ1aOzR/OuY1zcHJxA6Bwh0GP9saAfC37cODX/mzsVxewrbPz/9hLvP4De8b14eTisaTNW4r0Bcrbzyvw3AfsGduLgNVTSF+oIh4ZcwDg5OxCmd4TODDpQ47N+xaME3madSN7jTb41+3AwWkDObH4Rwo9/3GiWDIUrkJ8ZNi1n6/3kUq+MYqDUz6xx+jskYYSXb/FPb3fw3lTRCRZmfsdaici984YY+29EH3nivLEKO7njmVZtx4nLSIikgIZY6xGk885Ogx5CJZ1zKa+iYiDaeqTiIiIiIiIiEgKoUSNiIiIiIiIiEgKoUSNiIiIiIiIiEgKoUSNiIiIiIiIiEgKoUSNiIiIiIiIiEgKoV2fRB4hD0/P89FRUVkcHYekHO4eHoFRkZHa41tERFIVZzeP8wmx0erTPIacXN0D42Oi1DcRcSAlakRSOWOMG/Ad0AhoZVnWvw4O6bFgjPEAhgO1sL2v+x0ckoiISKqnfsvDoX6LyONFU59EUjFjjD+wBsgBVFBnJ/lYlhVlWdbrwFBgrTGmjaNjEhERSc2u9VvWon5LslO/ReTxokSNSCpljKkHbAX+wPbk5IqDQ3osWZY1AWgMfGWMGWaMcXV0TCIiIqnNDf2Weajf8tCo3yLyeNDUJ5FUxhhjgPeAPkAHy7JWODikJ4Ixxhf4DUgDtLUs67yDQxIREUnxrvVb+gK9Ub/lkVG/RSR104gakVTEGJMOmA20Biqps/PoWJYVDDQHVgDbjTE1HBySiIhIinZDv6UV6rc8Uuq3iKRuStSIpBLGmBLYhgyfB2pZlnXawSE9cSzLSrAsayDQBZhtjHnr2pNCERERucEN/ZZA1G9xCPVbRFIvTX0SSQWMMe2BH4B3LMua5Oh4BIwxebE9JTwEdLEsK8zBIYmIiKQI6rekPOq3iKQuGlEjkoIZY9yMMcOBz4AG6uykHJZlHQeqA+HAFmNMYQeHJCIi4lDX+i0/oH5LiqN+i0jqokSNSApljMkOrATyARUty9rl4JDkPyzLirQs61XgO2C9MaaVo2MSERFxhGv9llVAXtRvSZHUbxFJPZSoEUmBjDG1sc3rXgI8Y1nWZQeHJLdhWdZPQFPgW2PMUGOMi6NjEhEReVSu9Vu2AYtRvyXFU79FJOXTGjUiKci1Bd7exrb99kuWZS1zcEhyD4wxmYApgBvwvGVZgQ4OSURE5KFRvyV1U79FJOXSiBqRFMIY4wPMBJ4HKquzk/pYlnUJaAasB7YZY6o6OCQREZGHQv2W1E/9FpGUS4kakRTAGFMU+BsIBmpalnXSwSHJfbIsK96yrI+B7sAfxpge2gpTREQeJzf0Wy6jfkuqpn6LSMqkqU8iDmaMaQOMBt63LOsXR8cjyccYkx/bVph7gNctywp3cEgiIiIPxBjTFhiF+i2PHfVbRFIOjagRcRBjjKsxZhjwFdBYnZ3Hj2VZR4FqQDyw2RhT0MEhiYiI3Jdr/ZZvgS9Rv+WxpH6LSMqhRI2IAxhjsgIrgGJABcuydjg4JHlILMuKADphe/q4wRjzjGMjEhERuTfGmGzY+i1FUb/lsaZ+i0jKoESNyCNmjKmBbQvLlcBTlmUFOzgkecgsmx+BFsAIY8wQY4yzo+MSERG5E/Vbnjzqt4g4ntaoEXlEri3M1gvoD3SyLGuxg0MSBzDGZAamAxbQ3rKsiw4OSUREJJFr/Za3gH6o3/LEUr9FxDE0okbkETDGpAGmAS8DVdTZeXJd6+A0BrZi2wqzkoNDEhERuckN/ZaXUL/liaZ+i4hjKFEj8pAZYwoDW4AIoLplWccdHJI4mGVZcZZl9cM2wmqhMaabtsIUEZGUwBhTBPVb5Abqt4g8epr6JPIQGWNaAT8CHwI/WfqFk/+4tqPCHGAH8Ma1RfxEREQeOWNMa2z9lv6o3yJJUL9F5NHQiBqRh8AY42KM+Qr4FtvCe+PV2ZGkWJZ1GKgCuAAbjTH5HRySiIg8Ya71W4YCw4Bm6rfIrajfIvJoKFEjksyMMVmAZUAZbFtYbnVsRJLSWZYVDnQAfsLW6Wnu4JBEROQJca3f8hdQGvVb5C6o3yLy8ClRI5KMjDFVsW1huQHbE6lLDg5JUolrW2GOBJ4FxhhjBmkrTBEReZhu6LesR/0WuQfqt4g8XFqjRiQZXFtQ7U1gAPCqZVkLHBySpGLXnm5OB2KAFyzLCnJwSCIi8hhRv0WSk/otIslPI2pEHpAxxhuYDHQBqqqzIw/KsqxAoCGwC9hujKng4JBEROQxoX6LJDf1W0SSnxI1Ig/g2sr3m4AEoJplWUcdHJI8Jq5thdkXeAf40xjTxdExiYhI6nat37IZiEf9FklG6reIJC9NfRK5T8aYZ4DxwCfAj9odQR4WY0xhbFthbgZ6WJYV6eCQREQklbmh3zIAGKt+izws6reIPDiNqBG5R8YYZ2PMEGAE0MKyrDHq7MjDZFnWQaAy4A2sN8bkdXBIIiKSSlzbevsLrvdb9HBJHir1W0QenBI1IvfAGJMZWILtj095y7K2ODgkeUJYlhUGtAcmAZuNMU0dHJKIiKRwN/RbKqF+izxC6reIPBglakTukjGmErYtLLcBjS3LuujgkOQJc20rzOFAa2C8MeYTY4w+x0VEJBFjTGVgO7AV9VvEAdRvEbl/WqNG5A6ubWH5OjAIeM2yrHmOjUgEjDHZgBlAKNDRsqxgB4ckIiIpwH/6LV0ty/rDwSGJqN8ico+U0RS5DWOMJzABeBOoriSNpBSWZZ0D6gMHgW3GmLIODklERBzMGOMFTOR6v0VJGkkR1G8RuTdK1IjcgjEmH7ARcAWqWJZ12MEhidzEsqxYy7LeBj4AlhljXnF0TCIi4hjGmPzAJsAF9VskBVK/ReTuKVEjgm3kjDHG+Ybjp7B1dn4GOliWFe6w4ETuwLKsmUBtoK8xZqwxxsPRMYmIyKNjjGmOrd8yHvVbJIVTv0XkzpSoEbGZATx9bevtQcCPwLOWZY3UFpaSGliWtQ/brh6+wDpjTG4HhyQiIg/ZtX7LZ8AYoKX6LZJaqN8icntK1MgTzxhTBqgAbAEWAbWACpZlbXRkXCL3yrKsUKAtMB3YYoxpBLbh8MaYIQ4NTkREHpgxppoxpte1nzMBfwI1UL9FUiH1W0RuTbs+yRPPGDMdOA88A8wC+luWFefYqEQejDGmNjANGAUMB44Bda49wRIRkVTIGLMGGIdtQdbfgZmo3yKPAfVbRG6mRI080YwxhYDtQAwwEogECgJvWpYV5cjYRB6UMSYHtk58ELAbyGlZ1suOjUpERO6HMaYGMAn4Cvgc6GZZ1mzHRiWSfNRvEblOiRp5ohlj1gI1gXBsCZtt2Bbjm6053pLaGWOqApeBN4AW2OaBl7Es64Qj4xIRkXtnjFkM+GD7LH8Z8AJ2WpZ1xaGBiSQT9VtErlOiRp5oxphK2EbT7LYsK8HR8YgkJ2PMeKAJkAYIAIoCf1mW1cShgYmIyD0xxjQElmH7LI8G/IBdwOuWZe11ZGwiyUX9FpHrXBwdgIgjWZb1t6NjEHlYLMvqCmCM8QPKA82ALA4NSkRE7ocvsALb1KdtwEHLsuIdG5JI8lK/ReQ6jah5QJ7uruejYuL0ASJ2Hm4ugZHRsVkdHYeIiIiIiIikPkrUPCBjjBXy5zBHhyEpSPpm72BZlnF0HCIiIiIiIpL6aOqTiEgK5O7heT4mOkqj9cTOzd0jMDoqUqP15IE4u3mcT4iN1meL2Dm5ugfGx0Tps0WSlaeb6/moWM06eNJ4uLoERsZoZkFyUKJGRCQFiomOyjJnf5ijw5AUpFXRNOrwygNLiI3OUu/Xs44OQ1KQlS9n12eLJLuo2LgswbM+dHQY8oj5thmsz5Nk4uToAERERERERERExEaJGhERERERERGRFEJTnx4DCzf+y6Bf/8Td1YVfPuhIQX+/h37Nk4HB1H3rO45N/+yhX+thiYiK4a0fZrLn+Dksy6Jo7qz88FZbfLw8EtVN3+wdiuXJhpOTbY3gse+8QPG82R51yCJyBwHHD/FOq+o0ad+VTn2HJFln9rhvWDt/Ok4uLnh6+9Dt0+HkKlgMgAsBJxk3sA/nTx/HydmJpzv1osFzL3Mh4CTdG5ey1wMY+MtCfDJkfCT3JSKOd3btdE4vHY9xMlgJCWSv/QI5G3VJsu6JBSMI3DQHKyGOtPnKUeSVoTi5unPl8FYOTx9EXMRVADKVrk/+th9hnPTsVKTWu+NZOrgTnu6uj/S6Yxb9zXM1ipM5nTcAE5ZtJzImju7NKz/SOO7X4YAg6vT9ic6Ny/PZSw0A+HLmWn5Zup2sGdIAULlITr7u0iTJ85dsO8Qnk1cSF59A6XxZGflmC7we8X8DSUyJmsfAxMWb6d+hCS1rln4k14uLj0+WduLjE3B2frCOSfDVcHzTet/XuROXbCYmLp6No98F4OUhk/hl0UbealMvyfrLhvUkjaf7fccqIrdmWRZhVy7jk973vtuIj4/nx096Ubl+81vWOb5/N0un/8wPC7fh4eXNosmjmfT1R3w0bg6WZfFVz/a07d6Pyg1aYFkWV4Iv2s/19knHt3M33Xd8IuJYlmURFx6Ca5oM93W+X8WnyFazHcYY4iLD2PJhXTIUqUaaXMVuqhf072oCN8+jwieLcHLz5MCE9zi1dBx5mvfE2dOHYl2H45U1Hwmx0fzzVVvOb5pDturPJcMdiqRua7/p6pDr/rjob2qXzGNP1LzSqPwjua5lWYSERZHBx/O+24iPT+DtcX/SrGLhRGXtape0J25uJSwyht4//smiz14ifzZfeo1ZyMj5m+nbpuZ9xyTJQ4mahyh9s3f4+OWmLNy4h+DQcAZ1bsEzNUoBsHzbAQZOXER8gkWmdN5837MN+bJnumVbx85eoveIWVy6Eo6LsxMDXm5GgwpF6DfuDzbtPcbhgAv8tGgDC7/snuT5RTsOZO2It8mc3oc2A8ZjjGHmwC5cDAmlVs9v2T/5E8Iio+k7Zi7/HD4NQLt65el9LWnx1PujqVw0D9sOnsTDzZWvu7eytx0dG8frX08le6Z0DO76NH9tO8Cw6cuJio3DzcWZIa89Q8UiuVm3+wj9xv1B1eJ5+efQad59viHng68wet5a3FxdSEiwmNivI4Vy3n4NqhPng5i95h9+X/0PT1UpwUcvN72n/y7/Z4DI6Fhi42yJp4ioGLJnSn9fbYmkZtGREfzQ7zVOH9mPs4srOfIW5N3vJrPn77X8PKQvBUtW4NCuv3F2ceWtr8Yzc/QXnDq8j0xZ/en7w1SMMbxWrwgj/txB2gy2z7EJX/XDK40P7d7sf9trnzq8j7ULZ7JpyVye7tyLxu1eve/7mDt+GOXrNCUqIoyoiPCkKxlDfFws0VEReHh5Ex56lYxZswOwa+MqPL3SULlBi2tVDekzPvwRiiJPgvjoCPaN7014wEGcnF3xypqfEj3Gcnn/Rg5PGYBPvjJcPboD4+xCsddGcGLet4QFHMDDNzsle/0MwMa3K1L5y7W4+dhGsh2eNhAXjzTkffad21477MxBAjfN4cLWheRq2o0cdTve1z24ePrYf06IicSKjwNjEl/v9D7SF66Es7sXABlL1eP43G/I07wnafyL2Os5ubrjk7sEUZfO3Fc8Io8b3zaDOTXpPdJ4ulG6+0ja1SrJ6t3HCQwJo0eLynRtWhGAg2cu0W/CMi6EhGNZFj2erkL7OqU4fzmU939eRsClK0TGxNG6RnHeblUd4JbtDZu9nvPBobwybA7urs6Me6sl8zbtJzwqhs9eakCFnqOZ+E5rSuSxfT8Zt3gru46dZ9SbLTgcEET/icsIDo0kJi6ebk9V4sW6d35wvv/0RX5ft4c/Nu2nx9NV6NSw3H2/Z9/P20ij8gUJj4ohPCrmns9fvvMoZfJnI38224OyVxqVo/vIBUrUpABK1DxkPl4erBrem817j/PKl5N4pkYpLoaE8vo3U1k0tDtFcmVl0tItdB06hRXfv3XLdroOncLLTavwUuPKHDh1nmZ9R/H32Pf54rVn2H00gJ6t6tCkcrFbnl+zVAHW7jrC09VLcSrwMhYWsXHxrNl5mJqlCgLw9bS/SLAsNo5+l9DIaBq9/QPF82SjYcWiAOw7eY45n7+Gi7MzJwODAbgcGkGHzyfSvGoJ3mhZi+PnLvH1tL+Y/flrpPXyYP/J87QZMJ49v35sa+PEOb59szVfv2FL9OR67kM2jnkX/8wZiI6NIz4+Icn4g66EMXfdLn5fvcP2wVurDLMGdcE/s+2pWEhYJM0/GJ3kuUVzZWF83w6JXn+lWVW2HjhJwRc/BaB+ucK0qXvrD8rm748mLiGBhuWL8EGHxri76tdHHg//rF9O+JUQfli4HYCwK5ftZWeOHqDXF+Po/tlIxg3qw6CuLfly+ioyZc3B56+1Yt2iWTRs04lK9ZqzbuFMnurYnfi4ONYvmsUX01Ykeb1L5wNYv2gW6xbNwsPLixrN2jBk2nLS+WYG4PSR/Xz3Xuckzy1drR4vvzc40esnDu5h5/rlDPx1MbPGfHnLe81bpCQtOvWkW4PiePukw9snHZ9PXnrtXveTJr0vX/fuwPlTx8iaKx+vvP8lmbL5AxAZHsp7z9XEsixqNHuOZzq/hUniS5qIJBb87xriwkOo8sUaAGLDQ+xl4WcPUbTr9/h0/oaDk/qx65sXKD9gAR6+2dk1rAOBm+aSvc6LZCrXmMBNc8nZqAsJ8XEEbp5H+Y/mJ3m9qOCzBG6eR+DmeTi7e5GlSkvKfzQft7S2JE94wCH2/pj0wy3f4rUo8PyAJMsu7ljKsVlfEHnxJPme60eanEUT1fHJU4qzq6cSExqEi1c6Lvw9P8lkTMzVS1zY9iel35502/dO5EkVGRPLsiGdOHUhhOpvj6N9ndJ4uLnQYegsPmxfh5ZVbb9/waERALwxYgHvPVeDasVyERMbT8tBUyibPxt1S+e7ZXvvtK7BpBU7mfBOK4rluvZwZtN+ewztapdk2urdDO7UEIBpq2w/x8Un8NrweYx96xkK5chEaGQ09d//hYqFclAoR+KH7wFBV5m9fi9zNuzFy92N1jWKseTzl8l0bRTPgdMXeW34vCTfhzql8jHopfqJXt97MpCVu44x/5MOfD17faLyORv2sWrXcfzSe/NB21pUKuyfqM6ZS1fImTmd/dg/UzoCgq4mGYc8Wvqm+ZC1rlUGgIpFcnMu6CpRMbFsO3iKEvmyUySXbYv5Dg0r8u6o2YRGRCW5PkpoRBT/HgugQ0NbFrlIrqyUzJeDrQdO0rRy8buKo2bpAqz+5xDZMqajfOFcWFhsO3iS1TsPU7tMAQBW7zzMl68/gzGGtF4etK5dltU7D9sTNW3qlMPF2dneZnRMHE3eHUm/Do3t065WbD/I8XNBNOs7yl4vLj6BC5dDAcifPROViua5Ka43v5tBsyrFaVyxGHmyJV7vYcehUzR6ZwR1yhRiRO92Sa7Bkz6NJ+tH3v6J2n+t/ucwAAd/+wSALkOnMGL2Knq2rpuo7p5fP8I/cwauRkTx+jdT+XrqX/c9kkckpclTpCRnjh9i3KA+lKhUk/K1r89hzp6nIHmL2kYC5itWhotnT5Mpaw7bcfEynD91DIC6z77Iz0P68lTH7uxYtwz//IXxy5E70bU2L/uDr3t3oFaL5+k3aoY9CXKjnAWK3tMUo7jYWMYM6EGPwWNwvuEzKikXAk6xdeVCRi/9lwyZszDv5+/5od/rfPjj78THx7Nny1q+nLEK/3yFmT9xBD/0e41BE/8kQ+asjFt1kPQZ/QgJusAX3dvhnTY9Ddt0uus4RZ5kaXIVI+LcUQ5O6keGItXIWPr6lw6vrPnxyV0CAJ/cJYm6FICHr22km0+eUkRcOAFAthrtODTlY3I26kLw7pV4Zy+IZ+acia51Yduf7BnZlaxVW1PqrQl4ZMyRqI53jkJU+mz5Pd9H5nKNyVyuMVFBZ9g9vDMZS9fDO1uBm+r4FquBf4NO7Py6PU6u7vgWq0mw87qb6sRFhrH7+07kavI6PrlL3nMcIk+CVtVtD6Fz+aUnXRoPzgZfJT7BIi4+wZ6kAfD18SI8KoYN+04S9Mv1EbVhUTEcCgiyJ2qSai+ppMqN2tcuRcP+ExjYsT6HAi5xNSKaqkVzcvDMJQ4FXKLLd3PtdaPj4jl05lKiNhdsOUCnYbNpW7Mkv/Vti3+mtImuUyRn5nua+hUbF89bP/7JyO7Nk1xK4pWG5XinVXVcXZxZtesYHYbOYvP3r+Pr43XX1xDHUqLmIXN3sy3E9P9foLj4BCzL4l6ewVq3eN3cQyu1Sxfk62nLyZ4pPbXLFMSyLNbsPMyanYd5/4VGtutYVqI2b3xY7O1x8/osri7OVCiSiz8376VFtZI4OzthWRb1yxdm7LsvJIrh4OnARG389lEndhw6zdpdh2n+wRi+69Hanhj6v+J5szP23ReYuWoHLwz6haerl6J17bIUy3N9Md/7GVEz4c+NPF+/Ah7X/hu1qlma6Su3J5mo+f/InbReHrzUuDKj5q5J8loiqVHWnHkZsWg7uzetZse6ZUz5biDfzd8CgJv79eSxk7Mzru7uNx3HREcBUKxCdaLCwzh5aA+r5v5G3ZaJf+cASlWrS7eBI1i3aCaD33iO6k1bU6PZc2TNmdde515H1Fy+eJ7zp47x+eutAQgPvQKWRWTYVd4YNPKmuhuXziVXweJkyGwbwlznmfbMGGVbdDhz9pzkK14G/3y2ed61WrRj+ojPAXB1c7dPg0qf0Y9aLdpy4J/NStSI3CVPv9xU/mINl/etI2j3Ko7+/iWVPreNunNyvf65YpycbzrGyQkrJg6A9IUrEx8VTtjp/ZxbP5OsNdomeS3f4jUp0mko5zfPY/d3L+NX+WmyVH4GT7/ryeP7HVHzfx4Z/UmbryxBO5cnStQA5GzUxb7QcOCW+Xhnv14nPjqC3d+9hG+JWuRq2u221xF5kt04et3ZyYm4W4y8B0i49v1qxZedcXVJ+qHNvbT3f/6Z01HYPzPL/znC+r2neL5OSYwxWNgSRHeTXKldMi/fvd6M2ev20v7LGTxbrRitqhcjT5br62Xd64iawMthnAi8TLsvZgBwJTwKy4LQiGi+7/YUWa4tIgxQt3Q+cmRMy/5TF6le/OaHaP6Z0rF+z0n78ZlLV8iRMXEiSR49JWocoFLRPPT8fiaHTgdSKGcWpi7fRqn8OZIcTQO25EDJfDmYunwbHRpV4tDpQPYcO0uFIrnu+pq5svji7GSYtmIby4b1BKDROyNwdXEmp5/tQ6Ju2UJMWrqFysXyEBYZzZy1O/ns1Ra3bNPJyTCydzveGz2HV76czM/vd6BeucJ8NfUv9p88T9HcthFDOw6dolyhxLHGxcdz+sJlyhfORfnCuTh+LojdxwISJWrcXV1oXbssrWuXJfhqOPPW7eKdUbO5Eh7Fu+3q06p22fsaUZMrqy8rdhykZc3SWJbF8u0H7THfKCQ0Anc3VzzdXYmLj+eP9bspmS/x0zmR1OrS+QB80mWgcoMWlKlen1drF7xp+tPdqv1Me+ZPGMG+bRt466ufkqzjlSYtDdt0omGbTgQFnmXdoll8/VYHXFzdeLH3AEpVrXvPI2oyZ8/Jr5tO2Y+njxxMVER4krs+ZfHPzZo/phIVEY6Hlzfb1y6z7+RUrmYjpnz7KcEXzuPrl5V/1i0nd2Hbk+6QoAukSZsBF1dXoiMj2LryTyrUSXr3BBFJLCr4LK7e6clcvim+JWqzoXc54m6Y/nS3slZ/jlNLxhJycDPFXvshyTounj5kr/Mi2eu8SHTwOQI3z+PfkV1xcnEjX+v38S1e875G1ISfPYx3dtt08ZjQIEL2byBz+aRH10aHXMA9vR+x4SGcXDSSvM/0ASA+Jord33cibf5y5GvV956uLyJQKEcmXP7H3l1HR3F2ARz+zW7chYSEBAgECRII7u4UdytaoBSHAsVdirsXd3d3d5fglhAk7rrz/bGwkG9jQMIGeJ9zek525p2Zu+nmMnP3FaWCHefvxxv6ZGNuQqk8WZi54xwDmqjnV/HyDUZfqYhXtEiIubEhweFRie5vWbEAq4/e4PoTHw6Nbw9Azky2mBjqs/HkbZpXUN8rPPT2xcHaHAuT+F9MW5gY0rZKIdpWKcRrv2C2nr1H+2lb0ddTMqxlRSq4Z/viHjXOdpY8XtZP83rSplOaeXUAXvsFk+lDweX2sze8fB9EjkzaIxeqeGRn0H8HeeLjj6ujDcsPXaNBae0hncL3Jwo1OpDB0oxFf7fij8lriY1TkcHSlMUDWid5zJKBrekzZzPzd5xCT6lg0d+tyGCZdNL5fxU8cnLh7jMcbNR/tMYG+pTK/+lb7AEtqzFgwTZK/zUVUE8mXLWoW4Ln+kiSJKZ2b8ywpbtoPXY5q4a2Y/GAVvScuZGIaPVEvSXyuCRYqIlTyfw1fQNBoRFICgnnDFaM6vBbktezsTCl42+l6fhbaV6+9ef5G/8v+h187p9W1ek9Zwuluk0BIH+2TPRvoU5u+y7cYf+Fu8zp05yHXu/oM2cLkgSxsSqK58nK0N/FA5rw83j58C6rp6u/PVbFxdGoc39s7B15/fzRF52nUoPWdKuWj0oNf8fQOPmutbYZM9GgY28adOyN1xNPIsJCvyr+5BzcsBT/dz607DWcktXq8+jmFQY0KYuegSGm5pb0GL8AACMTUzoNm8q4rg2RZRlzKxt6TlgIgOfV86yfMw6FUklcbAxFK9SiVmvxTbggpFTYK0+ebFYXT2VVHFnr9MDQ2oHwN0+/6DyOZZtyrn9JHMs110zWmxRDG0ey1O5GltrdCHv9iLiIr88zr4+vwf/OSSQ9PZDBqWoHbN0rAuB9bBVRgW80xZcbU1qASoUqLhbnqu01BR2fU+sJuH+OmFB/Lt05AYB9sbq41Et8nkJBED7RUypYM7Apg/47yJTNp1EoJHrULUnzCu4s6lWfoSsPU6bfYgDMjA2Y81edZAs1XWoXpef8PRgb6LG4dwOt/XVLujHwv4MUzuGI84f5XPSUCtb904whyw8xZ9cF4lQq7C1NWdavkdbxn8tka0HPeiXpWa8kD7x8CY1IvED0LcatP8GNp29QKiQM9JQs7FlP83tYfugqPv6hDGlRAXNjQ2Z0rUXLiRuJU8m4Z8vIxLol0yQm4ctIspzYwBohJSRJkgP3TdN1GEI6YlW7P7IsixlGhW8iSZK87X7aFC6EH1OjPGYitwjfTJIkufLK17oOQ0hHjrXLJHKLkOokSZL9Nw/VdRjCd2bTdLzIJ6lEe+YhQRAEQRAEQRAEQRAEQSfE0Kd05NDl+4xZuU9r+4h2taleLPmxgu8DQ2g4bLHW9rql3TUTBguCIAiCIAiCIAiCkH6JQk06Ur1YnhQVZBJjZ2X+xRPqCoIgfK1+DUsxcf0xDI2Mk2w3rksj/hg2FYcs2VPlupvmT+L4jrWAel6cZn/9k2T7uUO7cWzbatZeeYOxqXp8dkigP0vG9uPJ3Rvo6elRplZjmnUfjOf1Cywe01dzbJDfe6wyZGTatrOpErsgCF/m0vCqFBm+G6VB0nnm5rQ25GwzDpOMLqly3Wc7Z+BzehMAjuWaaSYD/n9Bj6/yYMUg4qIjMcrgTL4/52JgoV6a9/Wp9bw6uARJoUBS6JGz1WiscpdIlfgEQfhy5f9ewsHx7TE21E+yXbMJG/i3Yw2yOVgn2S6lpmw5zfoTtwD1xMQfJzv+nEolU3PYSiKiYwDIaGXG9C61yGJvxcUHXgxYsl/T1jc4HHsrU05MVq8sZ9N0PHmz2KP4MOBoYc/65M1qnyqxC7ojCjW/gLI9pnF4Wq9kk1LTEUuY3K0h2RwzpMp1J687zLojlwFoVbUYA1tVS7J99xkbWHv4Ml5bJ2BmrJ4tvfPkNZy+9YQ3/sHxtgOsPnSRBdtPoVAq0FMomNClPqXzp86DoCAIyUvpykzDFm9LtWvevXyG8we3M3PXJQD+aV6RfMXKkq9Y2QTbXz6+DwntodJzhvyJe4kK9Ju2AoBA37cAuBUqGe99TerRArfCpVItfkEQvkxKV2Yq2H9Nql0zwPMC7y7tocSEYwBcGV0Hq9ylsHaLP8GmLMvcW9STPJ1nYJWrBM92zuTJpvHk+WMGMaH+PFo7klKTz2Jgacf7awfxXDGQkhNPplqcgiB8mZSuqrRpSItUu+a5ey/Zed6Ts9O6AFBtyArK5M1K6bzxF1pRKCS2DG2Bhal6FeCFey8xbOURVg1oQonczvFibzN5MyXcMsc7/sC4dpgZG6Ra3ILuiTlqfgFn5vZPtkgDsHlM51Qr0py9/YQdZ25yfsEAzi8YwI4zNzl7+0mi7fdfvIskaT9MtalegtNz+2lt9w8OY8iineyY8Cdn5vZnYKtq9J2zJVViFwThk/OHdtCzdiH6NyrNlkVTaJTHTLM60+c/d62Sl/Wzx/JPi8p0rZKXfWsXas7RtUpeXjy8myrxnN2/lQr1W2FoZIyhkTEV6rfi7P6tCbYNCfBj07yJtP9nYrztr58/5sWDO9Rp+5dmm1WGjFrHB/q948bZo1Ssl3o3bIIgaHt3eS8X/inHpeHVeL57NsfaZSI2Mgwg3s/n+hfn6bbJXBlTl3P9i+N1eJnmHOf6FyfUyzN14rm0E8cyTVAaGKM0MMaxTBPeXdqp1S7k2U0U+oZY5VL3knGq/DvvLu0G1EUcgNhIdY6MDQ/G0NoxVeITBCFxuy54UqL3QioMWMr0bWexaTqe0IhogHg/F/xrLhM2nKT6kBUU/GsuS/Zf1pyj4F9zuffyXarEs/3cPZpXcMfYUB9jQ32aV3Bn+7l7Cbb9WKQBCImISvDZ6H1QGMdvPqV5+fypEp+QfokeNT+JnWduMW7VPowM9GlQriBjV+7X9ECxqt1f87N7+3G0qFKUE9cf8sY/mJ6NK9KlrvqbaPf249g4qhN5Xb79RmL7qRu0rFJEUyBqWaUI20/doIy7q1Zb/+Aw/l17iJ0T/2TNoUvx9lXwyJng+T/eAIVGRGFvbU5QWCSZMlh+c9yCIHwS6PeOBSN6MWnDMTK55GD3irlJto+KjGDShmO8835Bn3rFqdSgjWaoUULCggMZ3q5Wgvsy58hD3ynLtLb7+niRv/inLsN2js7cu5LwsKTFY/vRvPsQTM3j5wavJ57YOjgxf1h3nt6/iXWGjLQdMI4sOfPGa3di53o8ylRJsIgjCELqiA72xXP5QIqO2I2JQ3ZeHtCea+9zcVERFB2xm4j3r7g0tBIO5ZqjZ2SaaPuYsCCuT2qc4D5Tp9zk+3Oe1vZIP2+s3UprXhvaOhH44EKC7YwyOGteG5jbIssqYkIDMDC3JXe7SVweUR09E0uQZQoNFl8oCUJaeh8URt9F+zg0oT2ujjbM33MxyfYR0TEcmtCel+8CKdNvMS0rFkyyV0pQWCR1R65OcJ9bZrsEl/b28g2iTL6smtfOGSw4f+9lotdoNmEDt56+wcbChK3DWmrt33DyNpUKZsfeKv79Vb1Rq4mNU1G1UA4GNSuHob54zP/Rif+DP4H3gSH0mbOZI9N74epkx7ztSXerjYiK5vD0Xrx460/pblNoVbVYvCFF/y8wNII6/8xPcF+eLBlZMrCN1vZX7wMpWyCH5rWznTVn7zxN8Bx/z9/GP61rYGma9Pjzz9lamjGtR2PK95yOlZkxKpXMnn//Sv5AQRBS7OHNy2TPW5BMLuq/5cqNf2f5v4nPB1O2dhMA7J2yYmphhd9bb5yz5060vamFVYqHT32pcwe2oadvQNFK2oWguLhYHt68RJu+o+g+fj4XDu1kYvfmLDh0O16749tW07rf6DSJTxAEtaDHVzF3yY+Jg3rocqbyLXi8flSi7TOWbACAsV1m9EwtifJ/jV6mhL/UAdA3tUzx8KnUFBsRgtfR5RQdtR9Txxy8vbiL27M7UXzc0QS/JRcE4dtdeehNgWwOuDraANCmUkGGrUz8779RGfUXNFnsrbA0M+K1fzC5nBIfXWBpapTi4VNfa9OQFqhUMjO2n2Xa1jNM7Rz/Pmbd8ZuMaFUp3rZbC3rinMGC4PAous3ZydQtZxjasmKaximkPVGo+Qlc9nxBQVcnXJ3sAGhTvThDl+xKtH3j8oUAyJrRBiszY177BpIrc+LfGFuZGafZJMU7Tt9EX09JzRJ5k2/8meDwSJbuOcvxWX3I6WzP9lM3aDN2OWfn/y1ugAQhtcjyF/096Rt8KvgqFEriYmOTbP81PWoyODrz7vUrzev3Pl5kcHDSanf74iluXzxJ1yqfckvvusUYvngbdpmyYOeYmbxFywBQsnp9Zg76g+AAXyys1TdoD25cIiTInyLlayT5HgRB+FYyJDCPVGIU+p/yjKRQIqvikmz/NT1qjGydiPT10ryO8vPG0DZTsu2iQ/wACX0za95d3oO+iSWmjupCd8YS9bi/tA8xIf4YWNgmGbMgCF9HRuZLHgM+73WiVCiIjVMl2f5retQ4Z7Dk1fsgzWsv32CcMlgkeR2FQqJNZQ+K9VoQr1Bz+aE3ASERVCucI1575w/nszAx5PcqHszfE3+EgvBjEoWan4As80UPU4YGn/63K1KQlL6mR01mOytevfPXvPZ6H4BzBiutdqdvPeb0zce4tx+n2VbyzylsGfsHblkcEo3p+LUHWJoak9NZPaN5w/Ie/DVjA37BYWSwTHyohSAIKZerYDHmDv0LnxdPcMzqyvHtqTdZJ3xdj5rSNRvy3/gB1GqlnpTv5M51/DF0qla7riNn0nXkTM3rRnnMmLX7MsamZsiyjKGxCS8f3SNLzrzcvXwGM0trzK0+PTwd27aKivVaodQT/0wKQlqydC3C/aX9CX/7DJOM2fA5sylVz/81PWrsi9Xl4ZrhOFVtD4DP2S3k+n2cVjtzlwLERUcS+PAiVrlK4H1sNfbF6wJglCELIS/uEB3si4FFBgLun0XP2Bx9c5tvfk+CICSsaE4nes7fy1Mff7I72rDuw0pLqeVretTUL5WHf5Yd4o8aRQDYePI2/3asrtXONygMhULCxtwEgJ0X7pMni128NmuP3aB5BXf0lJ+mmQ0MjcBQXw9jQ31i41TsuuBJfhcxZPtnIO5AfwLF3LLSY+ZGnr72JXumDKw7fDn5g77A1/SoqV+uIIMW7uCPOur5b9Yfvcrkbg212k3r3php3T9902VVuz8XFg5IcigWqHsD3XrizfvAEOyszDl18zHmJkbYWiQ+Tl0QhC9jlSEjf46ayfg/m2BubUuxSrXQ09fH0NhEZzHlL16eEtXq0adecZBlKtRvSb4Pc9ZcOraXy8f20X2c9jfkn5MkiR4TFjJ3aDdioqMwNDJh0Ox1moJ3VGQEZw9sZ9L6o2n+fgThV2dgaYdb+0ncmv47+mY22BaqhqTUT3Y57rRknac0dkVrcXFIZUDGoUwTrN3Uq7+9v3YQ3+uHyNNpGpJCQb6us/FcMQhVTJR6ee6u6rm8LLIVIEvtblyb0AiFngGSngH5eywWvX4FIQ3ZW5kxrUstWkzciI2FCTWL5ERfqcAkBYuqpJWy+bJSp0RuyvRfjCxD8wrumjlr9l9+yP4rD5ndrQ7vAsPoPm83MXEqZFkmq70Vi3rV15wnIiqGHefvc3B8+3jnf+jtR7/F+5EkiIlVUTy3E0OaV/ieb1FII9LHSVmFryNJkhy4b5quw2DH6ZuMW7UfWwtTapbIy4Q1B3m7YxIKhUJrMuHPJwz+/HVqTiYMMHHNQTYeu4qMTIvKRRncRj2EYN+FO+y/cJc5fZprHfN5rABtxq3g2oOXvPYLwtHWgjxZHdg2risAc7edZNXBC+jrKTHU12N853qUyqf75bmtavdHlmVxJyZ8E0mS5G33Q3UdBhFhIRibmgNwdNtqjm5dxYS1h3Uc1a+pUR4zkVuEbyZJklx55WtdhxFPbEQoesbq3rCvT23A59R6igzTXmVJSBvH2mUSuUVIdZIkyf6bh37364ZERGH+4Tli7fGbrDl6g/3j2n33OH5VNk3Hi3ySSkSh5hull0JNSHgk5ibqJd3WHLrEmkMXOTC1p46j+jWJQo2QGtJLoWbLwsmcO7iduNhYzC2t+XP0bJxd3XQd1i9JFGqE1JAeCzXPd83i3eXdyHFx6Jla4dZhMqZJTBAspC5RqBHSgq4KNdO2nmHn+fvEqmSszYyY3qU2uZ0TnyBYSF2iUJN6xNCnn8SiXWfYceYmcXEqrMxMmNWrma5DEgThJ9Dkz4E0+XOgrsMQBOEn5lKvNy71eus6DEEQfgL9G5elf+Oyug5DEL6ZKNT8JP5uUZW/W1TVdRiCIAiCIAiCIAiCIHwDRfJNhJ/db4Pmc+DiPZ1df+Oxq5T+ayq2dQawePeZePvCI6PpMHEVhTpNoFiXSUnGeeuJN7UGzKNE18mU6DqZw5fvA3D94SvK9phGia6TWXfk00TLaw9fYuqGL1sJQhCElBvetiZXju/XdRjcuXSKJvks2Ld2oWZbVEQ4U/u25a8aBehZu1CycUZHRdKrThEGNCmn2fb4zjX6NSxFrzpFOL5jrWb7se1r2LJwcuq/EUEQALg2sTG+N3Q/V1bA/XMca++M1+Flmm3X/23GpeFVuTS8KheHVOJYu0yEvtS+d5FVKh6uGc7FwRW5OLQyN6a2IirgDQDBz25yaXhVLgyuEG8VLJ/TG3m+a1bavzFBEACoO3I1B68+0tn1N526Tdn+S7BrPoEl+xNfLOb2szdUHLiU8n8voVTfRfRZuJeomFgArj95Tfm/l1CyzyLWf7YK1rrjN5m29UxipxTSAdGjRtA59+yZWPZPG2ZsOqa1b862E5gZG3L9vyE88X5PrYHzuLZ0sNaqUGGRUfw+fgVLB7ahmFtWYuPiCA6LBGDG5mP827UBHjmdKf3XVFpVLYZ/cBhrDl1m54Su3+U9CoKgGxFhIayeNoJC5eIvhblz2SyMTc2Zf/AWr58/Ztjv1Zl34BbGpmYJnmftzNHkLliC5w9ua7ZtWzKNTkOm4JqvEH3rl6BSg9aEBPhxbOsqRi7bk6bvSxAE3YqNCOXJpvHYFqgcb3uhQZ8KK++v7ufp1smYZcmrdbzv9YMEP71OsXFHUCj1eLRuFM93zSJ3u4m82DOXnK3HYZGtABeHVsaxbDNiQv15fWoDhQZtTPP3JghC+pDfJSNL+zRg1o7zSbbLkcmWQ+M7YKCvRKWSaT99KysOX6dr7WLM3H6eSR1rUDC7A2X7L6FlxQL4h4Sz9vhNtg9v/Z3eifA1RKEmnQiPjKbb9PV4vniLnp6CnE72rBjSlrf+wXSavIaQ8CiiomOoXiwPYzrVBdSrKj3yekdIeCSPvd/jkcOZPs0qM2zJbl69C6BuGXfGfmj726D5uGfPxO2nr3ntG0jDch6MaF9bK47g8EiGLt7J3ec+REbHUq5ADiZ0rodSqWDS2oNsPXkdQwN9JGD3pL+wMvv25TM/rjKlUGjPO7X91A0W9GsJgKuTHYVyOHPkiicNyhWM127LieuUzJuNYm7q5e70lEpsPizVra+nICIqhqjoWJQKdSey4f/tZljbmhjoiz8B4ecWFRHO7MFdePX4Pko9fZyy5eTvGasJeP+WGX+3Jzw0hJioSIpUqEnbAeMA2DB3PN5PHxIRGsLrF4/JnteDRp37s2LyYN6/fkXJavVoN2A8oO414+JWgOeet/B7+5rSNRvRpu8orTjCQ4NZPmkwLx7eISYqkvwlytN+0CSUSiUb503gzN7N6BsaIUkSY1bsw9TCKlXe//JJg6nfsTdXTxyIt/3s/q30nLQYgEwuOXDNV5jrpw9RumYjrXPcu3IWnxdPqNe+B88nfyrU6OnpExUZQUxUJAqFEoCVU4fRsvcI9A0MUiV+QUiv4qLCubekD2HeD1Ao9TFxcCV/j0VEBb7j7oK/iIsIQRUTha1HFXI0Hw7A0+1TCfd5TFxEKOFvnmLu4k7WOj14tH4Mkb5e2BetRY4WIwB1rxmzLPkIfXmXKH8f7IvXxbXpYK04YiNCeLRuFKGv7qOKicI6T2lythqFpFDybPs03l7cgULfEJAo9M8W9E0tU+X9P1o/iiy1u+F7I/GeuT6nNuBYvkXCOyUJVUwUqpgoJElBbGQoxnZZ1LuUeqiiI1DFRCJ9yC2PN4wle+NBKPREbhF+LeFRMfw1dxeer3zR11OQI5Mty/s14m1AKJ1n7SAkPIrImFiqF87B6N+rADBp0ykeefsREhHFk9f+FMzuQJ+GpRm+8givfIOoU9yNMW3VbeuOXE1+l4zcef6W134hNCidh+GtKmnFERwexbCVh7n34h2RMXGUzZeV8e2qolQq+HfzKbaduYehvhJJktg1qg2Wpkbf/N7zZrEHQCElPTev8WfLj8fExREZHcvHxyp9PQXhUTFExcSi/LBxxOqjDG1REQN95TfHKKQd8ZSaThy99oDA0AguLlJP2hkYEg6ApZkxG0Z2wszYkJjYOBoNW8yRK55ULapedeXGYy+Oz+qDmZEh5XtNZ/TyvWwZ25nYuDgKdphA+5olcXWyA+DBy7fsnNCVyOhYqvebTfE8LtQsEf9bnqGLd1LG3ZU5fZqjUqnoPGUtaw5fon6ZAszddpJH60ZjbKhPSHhkvKTw0YnrDxn23+4E32PLKkXp3rDCF/1evN4Hkjmjtea1s701Xu8Dtdp5vnyLvp6SpiOW4OMfjEcOZ8Z1qouVuQkDWlaj75ythEdFM6ZjHc7cfoJCkijj7vpFsQjCj+j6mSOEBQUye89VAEKDAgAwtbBk8PzNGJuaERsTw5jO9bl2+jCFy1UD4OndG0zecgojEzP+blyGNdNHMHyxevWnP6vlo1rTDmRyyQGA1xNPRi3bQ3RUJINbVsbNowRFK9WKF8fySYPJV6ws3cfNQ6VSMXNAR45tXUWpGg3YuWw2y88+w9DImIiwEAwMtQvAN88dZ+WUIQm+x0r1W1O3fQ+t7ddOHSIsJJDSNRpqFWre+3hhlymz5nUGR2d833hrnSMyPIxlEwcxeP4mfF48jrevabdBLBrVm8iIcNoOGMfdS6eRJAX5iolJDIWfn//tk8SGBVJy4kkAYsICAdAzsaBA35XoGZmiio3hxtRW+N06jm0B9YNPyPPbFBu1H6WRKZdH1ODJpgl49F+DrIrjXP8SZKrYBhOH7ACEeT/EY+BGVDFRXB1bF8ucRcngUS1eHI/WjcLKrRR5Ok1DVqm4u7A7r09twL7Yb7w8sJCyc26hNDAmNiIUhYH2g5P/3VM83jAmwffoUKYZWWp20drud/MYseHB2Berk2ihJjroPf73TuPWaXqC+zN4VCfw/nnO9iqIwsAYE8cc5G47AYBs9fviuWIQqqhwcjQfRoDneZAUWLuVTPBcgvAzO3bjCUFhkVyYqe4FHxgaAYClqRHrBjXDzNiAmNg4moxbz5HrT6haSH1/f/OpD8cmdcTUyICKg/5j9NrjbBragtg4FYW6z6NdtUK4OtoA8MDLl+0jWhMZHUuNoSsontuZGkXirzw3bOVhyuTNyuxudVCpZLrM3sGa4zepX9KNebsu8mBpH/UzUkQUxgYJPCPdesaIVQnnixYVC/BXnRLf9Hvy8Q+h+YQNPH8bSNVCrrSrWhiAvxuXpf+S/YRHxjD69yqcvfsChSRROm+Wb7qekPZEoSadcM+WiUev3vH3vK2ULZCD6sXyABCnUjHiv91cvP8cWYZ3ASHcfuqtKdRUKZwbS1P1Q00+l0y4Z3fEUF8PQ309cjrb8czHT1OoaVm1KHpKJWbGShpVKMSpm4+0CjX7L97j6sNXzN2uvvGKiIwmUwYrzE2MyOFkR5cpa6la1I0axfNqlgP/XMVCuTgzt3+a/Z4SExsXx8kbjzg8vRf2VmYMWbKLoUt3Ma9vC9yyOLB/SncAomNiqT9kEetGdGD+jlNcvPcMeytzxneuJ3rXCD8lFzd3vJ49ZPGYvuQvXo4iFWoCoIqLY9WUoXjeuAiyTIDvW5573tIUajzKVsHUXP3Ns0uu/GR1c0ffwBB9A0OcsuXkzatnmkJNxQatUerpYaxnRtnaTbh98aRWoeby8b08vn2FXStmAxAVEYGtgxPGZhY4ZcvJrIGdKFS2GkUq1sLY1FzrfRQsXYnp25Pu+vu5sOBAVk8fwcj/dn35L+0zK6cMpVarLthmzKRVqMmcIw/j1hwCICY6mtEd6zBo7gZ2r5yH5/XzWNna037QJNG7RvgpmWXJS7jPEx6sGoy1W2lsC6q/nUZW8WTDWIIeX0GWZaKD3hHy8o6mUGOTvwJ6JhYAmGbOg3nmvB96vICJoysR715oCjWOZZuhUOqhUOqRsUR9Au6d1SrU+F4/RPDTG7w6oJ6DKi4qEiMbR/SMzTFxcOXeop7YuFcig0dV9Iy1hzba5CtP8bEpn68uJiyIJ5sn4DFwQ5LtfM5swta9EgYWtgnuD3lxmzCfR5SZeQ2lkSmP1o7g0bpR5G47AVOnXBQZuh0AVWw01/9tToHey3h1cAmBjy5jYJGBnK1Gid41wi8hv0tGHnr7MWDpAcrky0r1wup7jziVipGrj3LpoZf6GSkwlDvP32oKNZULZsfiQ6+WfFnsyeeS8cMzknqo0LM3AZpCTcuKBdBTKjAzNqBRmbycuv1cq1Bz4Mojrj32Yd7uCwBERMeSycYCc2NDcmSyoeucnVTxcKVGkRyY/98UDQAVC2Tj1NTOafZ7crQx59TUzoRFRvPn7J3svuRJ4zL5cMtsx94xbQGIjomj4di1rBnQlAV7L3HR8xX2lqaMa1dN9K5Jh8STaTrh4mjLxUUDOXnjEUeuejJm5T7Ozf+bedtOERgawdEZvTEy0Kf37M1ERsdqjjM0+PS/UKmUMPysgqtQKIiNUyV4PVmWkRLoRifLMuuGd8DFUfvG4siMXly495xTNx9RsdcMtoztTP5smeK1Se0eNc52Vrx6G0AGS/XNlde7AMoVyKHVLou9NeUL5sDBRn3z17RiYXrM1B7HPWPzMdrWLEFgaDj7Ltxhz6S/mLDmAJuOX6NN9eJfFJsg/AgcMmdjzt6r3Dp/gmunD7F2xmhm7LrIrhVzCA0O5N+NJzAwNGLBiB5ER0VqjtM3/FSIVSiVGBh+uulQKJSoYmNJiCzLkFAXXVlm0NwNOGTOprVr0objeF47z+2LJxnQpCzDl+zAJXf+eG2+tEfNy0f3CHj/hkHNKgIQEujH5eP7CQ0MoFn3wdg5OvP+9SssbdSFbF8fL9xLlNc6t+e181w7dYhN8ycREx1JaFAgfeuXYMbOi/HabV8yjSpN2hMWHMjlY3sYs3I/G+aM49SejVRp9HuCcQvCj8zYPislJp4k4N5p/G4d58mWSRQfd5SXBxYREx5IkRF7UBoY4blsAKqYKM1xH4syAJJCqfVaVn1hbkGmQO9lGNtn1dpTZMQegh5dJuDeGS6PrIlH/7Va88V8aY+aMG9PogLfcmW0evh4TIg/vtcPExMWSLYG/TTtfE5vJEeL4Qme9+N+6zxlNEWrjKUb47m0n1a7F3vmkqlCK2LCgnh/7SCFB2/h6bYpvDm3jUyJDasShJ+IS0ZrLszsyqnbzzly/Qnj1h3nzLQuzN9zkcCwSA5P6ICRgR59Fu4lMiaRZySFAqPPChFKhUScKpFnJEjkGQnWDGyCy2c9/T86NKEDFz1fcerOcyoPWsbmoS3IlzVjvDZp3aPmI1MjAxqUycuW03doXCZfvH0zd5zj9yoeBIZFsv/yQ3aNasPEjSfZfOYOrSsVTOSMgq6IQk064e0biLWZCXVKu1O5cG7cfh9NQEg4QWERZLSxwMhAn9e+Qey7cIeOtUt/1TU2HrtKo/IeRMXEsuPMTYa31Z6jplbJfMzYfIzp3RujVCrwCwolJCIKWwtTwiKjKevuSll3Vy7ff8H952+0CjWp3aOmftmCLN9/nkK5MvPE+z3XHr1i6aA2Wu0alPOg2cilhIRHYm5ixJGrnuTP5hivzRPv91zxfMGgVtW58+w1EuokrJAkwiKjtM4pCD8D3zfemFtaU6JqXTzKVKFThZyEBgUQFhKEtZ0DBoZG+L19zaVje6nR4o+vusbJXespW6sxMdFRnDu4nda9R2q1KVbpN7YvmUaXkbNQKpUEB/gSERaKhbUtEWFh5CtejnzFy/HgxiVePrqnVaj50h41eYqUZsXZ55rXcwZ3xTV/IWq3/hOAUjUbcmjjMnLkL8zr5495fOcq/aYt1zrP5wWZO5dOsXLyUKZsOR2vzevnj3l48zLNug/m+YM7modJSaEgMjw0xTELwo8k0v81+qZW2BWphU3+CpztU5jYsEBiw4MxtMyI0sCIKH8f3l8/iFPltl91jTfntmBfoh5ybDTvL+8he5NBWm0yFKrOiz1zyd1+EpJCSXSIH3GRYeib2RAXFYa1Wyms3UoR9Pgqod6eWoWaL+1RY5WrBOXmfpqr6t6SPli4FMC5WkfNtqBHl4mNCNGaaPhzxnZZ8L9zksw1uqDQ08fv5lFMnXPHaxP+5inBT66RrUE/9cpRH3OLpCAuKizFMQvCj8zbLxhrM2N+K56bSgWzk7fLLAJCIwgKiyKjtRlGBnq89gtm/5VHdKhe+KuusfHkbRqWzktUTCw7z99nWMuKWm1qFs3JzO3nmNa5lvoZKTic0IhobCyMCYuMpky+rJTJl5XLD725//K9VqEmLXvUPH8bQCYbCwz0lUTHxLH/8kPN/DYfPfHx58ojbwY2LcfdF2/5WIpSKCTCIqPTJC7h24hCTTpx75kPo1bsBUClkunXrAqOtpZ0rVeW9hNXUa7HNJzsrKhQMGcyZ0pcQVdn6g9ZhI9fEA3KFtQa9gQwsUt9Ri7bQ9ke05AAA309Jnatj76ekrbjVhIRHYMsyxRwdaJuGfevjuVzW05cY8R/ewgMjWDfhbvM3HSMbeO74JbFgV5NKvLX9A0U6jQBpULBzJ5NNUOuxq8+gKONBR1/K01me2t6NalE9f5zkCSJrA42zOrZNN51hizeycQuDQDIny0TLg42lOo2BRsLU9YOa58q70UQ0puXD++yerp6ck5VXByNOvfHxt6R39p0Y2rf3+nfqDS2Ds4UKFnxq6+RPa8HozrWwf+tD6VqNtQa9gTQcci/rJoyjH4NSiJJEvoGhnQc/C9KPX2m9G5NdGQEKpWK7Hk9KFmt3lfHklINOvZhzpCu/FWjAAqFkm6j52iGXK2fPRYbe8cUF66WT/qHjoP/BcAld34yOmejd91iWFjbMmjO+jR7D4KgS2GvPHmyWT2niqyKI2udHhhaO+BcrRN35nbh0vBqGNlkwibv18/ZZJ7VnRuTmxMV8Ab7YnW0hj0B5Gw1hicbx3FpWFWQJBR6BuRsPRpJqcedOZ2Ji44EWYV5Vnfsimh/QZUWXp/eiEOZJpqJgD96um0yhlYOOFVui1OV9oR5P+DSsCpISj2MbJ1waz85XvtH60aRs/VoQD3UzNguCxeHVELf3Ab3Xv99l/ciCLp27+U7xqw9DkCcSqZvw9I42pjTtXYxOkzbSoUBS3GytaB8fpevvkbB7A40HLMWH/8Q6pfKozXsCWBCh2qMWn2McgOWIgGG+komtK+Onp6CdlO3Ehkdi0qWKZjNgTol3L46ls9tPXOXEauPEhQWyb4rD5m54zxbh7XELbMdEzacxNHGjA7Vi3DpgRezdpxHoZCIU8mUyZuFvxvHz71DVxxmQnt1Ds2XNSNZM1pRut9ibM2NWT2gSarEK6QuSZZlXcfwQ5MkSQ7cN03XYSTrt0Hz6dmoYoLFGSF1WdXujyzLSU/PLgjJkCRJ3nY//ffGGN62JvU79E6wOCOkrkZ5zERuEb6ZJEly5ZWvdR1Gsq5NbEyWWn8mWJwRUtexdplEbhFSnSRJsv/moboOI1l1R66mR72SCRZnhC9n03S8yCepRKHrAARBEARBEARBEARBEAQ1MfTpF7H33790HYIgCD+hsasOJN9IEAThCxUevFXXIQiC8AvYPVpM+C+kT6JHjSAIgiAIgiAIgiAIQjohCjWCIAiCIAiCIAiCIAjphBj6lE6kh8l+u01fz8nrj6hTxp3JfzYEYP/Fu4z4bzexcSo8cjgzr28LTIwM4h0XHRNL5b6zNK8jIqN5/safx+tHY21uwruAELpOXcfLt/4YGeozq2dTirplBaD/vK2cv/sMhUJCX6lkVIfaVPDIlWysSZ3zcysPXGDRrjMgyyBJ9G5SieaViwAQGhFF/3lbuf3Em5i4ONrWKEHPxpUAGLV8D0euPtCc59Grd4zuWIc/65dj55mbTFh9kPdBITzdMPYLf8uC8H2lh8l+5wzuys3zxylZrR5/DJ0KwOXj+1g1ZShxcXFkz+tBzwkLMTQ20Tp20eg+eF47j6RQoNTT5/d+oylQqhIx0dEMal5B0y4qIoK3Xs9YfuYZphZWTO3ThpeP7qNvaIiljR1/jpqFQ5bsycYa6PuWWYM68877JQZGRnQbPYdcBYsl2Pb2hROsmjqc6MgIAPpMXU42N3cOb1rOvrULkWUZSZJo0KkvFeq1+BBnOPNH9OC5522QZTLnzEv3cfMwNjXn3MHtbJgzjiC/96w8//KLf8+C8D2lh8l+7y3pQ8Dd09gVrUWuNuMA8L1+iMcbxyLHxWHu4k6eP2agNNTOLdFB77m7qCeRvl4oDYzI3WEylq7xl/b1ObOJ+0v6UKDvSjJ4VENWqbgzrwthXp4o9I3Qt7Ald7t/McnokmysKbkeQGxkGA9XDibk5R3kuBgylW9Fltrd1PGc3sijdSMxyuAMgFGGLBTovQyAuKhwPJcPUC/jLcuYOufGreM09IzNeHd5D0+3TSEm2Jdy8+5+0e9YENKT9DDxb/e5uzlx+xl1S+RmUscaABy48pCRq48RG6eiYHYH5navi4mhfrzjomPiqDp4meZ1RHQsz98G8HBpX6zNjak7cjVevsGYG6ufs7r+VpzWlQomG8+7wFD+nLOLV++DMDLQY0bX2hTN6aTVbuWR6yzZf0Vzb9KrfkmalVev4Lvu+E2GrDhMFjtLALLaW7F6oHr13J3n7zNx4yl8g8N4vKzfV/zGhK8lCjVCPH2aVaZLXfVybqERUfSevZn9k7vj6mRHz5kbmbPtBINaVY93jIG+Hmfm9te8nr/jFCevP8TaXH1jNHrFXkrnz8728V05f/cpnaes5drSwUiSxIj2tbE0NQbg9tPX1B+ygCfrxyBJSU8WntQ5P5c9Uwb2/fsXVuYmePsGUq7HNErmy0bWjDZM33gUAz0lZ+f/TXhUNNX7z6FkvuwUc8vKqA51GNWhDgC+QaG4tx9Hw3LqZFm/bEE8cmamUu8Z3/CbFoRfS6PO/ajd+k8AIsJCWTCiB+NWHyKTSw7mDevOzmWzaNZ9sNZxbfqNxtRcfePwzPM2ozr8xopzL9A3MGD69vOadrtXzuPW+eOYW9mgUqmo2KA1RSvWQqFQsG/tQhaM7Mno5XuTjXPNjFHkLVqGkf/t4v7Vc8wc2Il5B25q5Ra/t6+ZN6w7w5dsxylbLqIiI4iLjQHA0cWVsasOYGZpje8bb/o3LEWeIqWwd8rKoU3LiY2JZuauSwBM6dOGA+uX0vCPvpSu0ZAc+QszoEm5r/slC8IvKOtv3XGu1hFQFzk8lw+g8JDtmDhk5/5//Xm5fyHZGmg/XDzZPAGr3CXJNrAPgQ8vcm9hD0pOPqv5W4/0f4338dVYuBaJd5xDmaZk8KiGpFDgdXgZD1YMpNCgTcnGmdz1PnqxezaSnj7Fxx1FFR3B1bH1sMxVHMsc6jis85bDvecSrfO/PrEWVWwMxccfA+DO3C54H1tJ1t+6Y1+sDuYuBbkyqmYKfqOCICSnT4NSdK6l/hInNCKaPgv3sXdsW1wdbei1YA9zd11gYNP4/5Yb6Cs5NbWz5vWCvZc4eesZ1ubGmm2TOlb/4iLUmHXHKf1hOe4L91/RddZOrszpppVbXB1t2DO6DVZmxnj7BVNhwFJKumUmi70VABXcs7Hy78Za569fKg+FXB2p/M8yrX1C2hJDn1LZ5HWHGbx4p+a1f3AY2ZoPJywyipM3HlKt32zK9ZhG6W5T2HryeoLn+G3QfA5cvJfg6zf+wbQdv5LKfWZSutsUpm08kmbv5cgVTwrlcMbVyQ6AjrVLs/3UjWSPW3v4Eq2rF9e83nH6Jh1rlwKgVL7sGBnoc/3RKwBNkQYgOCwCiZSt5pbUOT9XrkAOrD4UjJwyWOFgbcFr30AA7jx7TZUibkiShKmRIWXcXdl0/KrWOTYcvUoFj5xktLFIUWyCkBY2zZ/EsomDNK9DAvxoWzILkeFh3Dp/nH9aVKZ/o9L0qVecM3s3J3iO4W1rcuX4/gRf+797w+TerRnYrAJ96hVny6IpafZerp8+hGu+wmRyyQFAjRadOLs/4YlDPxZpAMJDghIt4h7bvpoqjdQTAioUCopX/g2FQv1PXG6PErx/rZ0fEnLuwDZqtOgEQJ4ipdE3MOTxnWta7Q6sX0yFei1wyqbuAWhoZIyJmTpH5C9eHjNLawAyODhhbeeA3xtvACRJ3fsnNiaG2JgYoiLCsXXQ/uZLEL6XZztn8GjtSM3rmFB/Tv2Vj7iocPzvnubKmLpcGl6Ni0Mr8/bCjgTPcW1iY3xvHE7wdVTgW27P6czlUbW5OLQyz3fPTrP34n/rGOYuBTFxUPeec6rclncXdyXY9t2l3ThVVucMq1wlUOgbEvLspmb/g+UDydlqNAr9T72IJYUCu8I1kD7kFoscRYn09UpRbMld76PQV/ewda+IJEkoDU2wcivJ2/Pbkr+AJKGKjkCOi0GOiyEuKhxDG8cUxSYI39uULacZsuJTzvAPCce1w3TCIqM5efsZ1YesoMKApZTpt5itZxPuBVZ35GoOXn2U4Os3ASG0m7qVqv8so0y/xUzfdjbN3suRG0/wcHXE1dEGgA7VC7P93L1kjlL3YmldOfkeM8nZee4+Haqpe+eVzJMZQwM9rj/x0WpXNl9WrMzUz11OthZktDLjtV/IN19fSDuiR00qa1m1KFX7zmJspzroKZVsPnGN2iXzYWpkSEFXZw5M6YFSqeBdQAgVe82gSuHcmkJCSvw5dR0DWlajjLsr0TGx1B+ykMI5M1OpcO547TxfvuGPyWsTPEelQrkY26lustd69T6AzPbWmtfO9lZ4vw9M8pjrD1/x1j+EWiXyAepClSyDraXZp/PYWeH1PpDCubIAMH71ATYfv0ZgaDirh7VPtjdNSs6ZkNO3HhMUFoFHjswAFMzhzM4zN/mtVH6CwyI4dvUBOZzttI5bd/gSQ34X30IJulWpQWsGNa9IuwHjUerpcWrvJopX+Q0jE1Oy5/Vg/NrDKJVKAn3f8neTcniUraopFqTE7H8607TbIPIVK0tMdDSjOv5GjvxF8ChTOV67V4/vM2NAxwTPUbB0ZdoNGJ/std77eGGXKbPmdQZHZ3w/FDISsn72WE7t2URYcCADZ6/VyhGP71wj4P0bilaqneDx+9Yuolgi+z4XEuCHLMtYWGfQbLNzzIyfjxc53eN/q/7qsSf2TlkZ0b42YcGB5C9enjb9RqNvYBiv3Z1LpwgLCSJ7vkIAVG/eiQc3LtGxnPpB0qNMFcrXaZZsbIKQVhzLNuXK6Dq4thiOQqnHm/PbsStcHaWhCeYu7hQZtgNJoSQ66D2XR9bExr0i+qZWKT7/vcW9cKnXF2u3kqhio7n+bzMsshXEJn+FeO3CvB9yd2HCK1Ta5CtPjhYjkr1WpJ83Rhk+FT6NbJ2I9H+t1S4m1B9ZljEwt9Vqa5HdA6+jKzF1ypXg0KTPeR1ZRoZC1ZNsk5Lrfc7cxZ13l/eQoXBNYiOC8b99AhMHV83+wAfnuTS8Kkojc7L+1p0MHlUByFSxDUGPr3Cmp/rBz8a9Ag6lGiUbmyDoQssKBag2ZDljfq+CnlLBljN3qVUsJ6ZGBhTM5sD+sW3Vz0uBoVQatIwqBbNrigwp0W3ObgY0KUvpvFmIjomjwZi1FHJ1pFLB+EOgPV+9p8usHQmeo2KB7IxpWyXZa3n5BpHZ7tOXSs4ZLPH2C07ymOtPXvM2IJSa/9d7ZsTqo4xZe5z8LhkZ2boSmWyT/pLYPyQcGbC1+PQs6ZzBAm+/YArnyJTocWfuviAoPJKC2R00287de0n5v5dgbmJI7/qlqK7D4WWCmijUpLLM9tbkzpKRQ5fvU7tkftYducLELvUB8A0Ko/vMjTx97YtSqSAgNJxH3u8plsDcKgkJi4zizO0n+AaHabaFhkfx4NU7rUKNWxaHeMORvpc1hy/RrFJh9PWUKT5m6O81Gfp7TU7eeMTIZXs4MKUHBvqp+9H0fPmGbtPWs3RQG4w/jBnt27QyI/7bTcXeM8hgaUbZAq74BYXFO+7qg5e8DwqlRnHdzR0kCAB2mTKTOYcbV08dpHjl3zi+fS0dB/8LQLC/L3OHdsPnxROUenqEBgXg/ewRuT2KJ3NWtcjwMO5ePk1wgK9mW0RYKN5PPbUKNZlz5Ik35Oh7aNlrOC17DdfMCTN+zWH0DT59y3106yoq1G2Bnr6+1rE7/puJ15MHjFmR/LCnL6GKi8Pz+gVG/rcLA0NjZgzowPYl0+MN33r1+D6z/+lCv6nLMTRS32DeOnccgP9OPQZgxt8d2LFsFg069k7V+AQhpYxsnTF1yoXfzaPYFa7Bm9ObyNl6DAAxIX7cX9qPiLfPkJRKYsICCPd5ohmGk5y4qHACPc/zKMRPsy02Ioyw14+0CjWmTrkoPjbtegmnVMT7l7w+uZYiw3Ym2e7FvvmE+zxO0bCnL5H1tx483jiWK6NqoW9ug5VbaWJC/QGw9aiKfYl6KA2MCXlxmxtTW1N48FZMM+Uk4N5pAMrMUvfWvrewOy/3LdDMbyMI6YmznSW5ne04fO0xtYrlYv3xW0zooJ7vyjc4nJ7z9/DkTQB6ConA0AgevfanWK6U9T4Ni4zm7L0X+C377HkpMpqH3n5ahRq3zHbxhiN9L2uP3aRpufzxnpcW9KyPcwYL4uJUzNhxjk4ztrN/XLtUv7bnq/d0m7OLpb0bap6JahTJScPSeTE21OfWszc0Hb+BXaPakNs5QzJnE9KSKNSkgVZVi7H+yBVcHGwJDougdH51Uug3bwu1SuRjzYdeI0X+mEhkdIzW8XpKBSpZpXkd9aGNSqWe/On4zD7JFkJSo0dNZjtrztx8rHnt9S4QJzurRNtHRsew9eR19k3urtlmY2EKgF9QqKYHjNf7QJwTOE8Fj5yEhEdy77kPHjkza+3/mnMCPPF+T9MRS5nRowml8n1K0CZGBkzt/mksZv95W8mdOWO8Y9ccukTzykW+qPAkCGmlUoM2nNixlozOLoSHBpO3aBkAFo3pQ7FKtRk0Zz2SJNG9pgcx0ZFaxyuVevFyS3RUFACyrEKSJCZvOpVgseNzqdGjxs7RmTsXT2le+/p4kSEFw3/cS1YkIjSYl4/u4vqhh0p0VCRn929l7KoDWu33rV3I6b2bGLVsT4ITFf8/c2v1t93BAb6aXjXvfV5h6+is/R4yZSZH/sKaoVllajbixM71mv2vnz9mXNfG/DlqNnmKlNZsP7jxPyrWb4mBoZH6uFqNObFzvSjUCDrlULYZb85uxtg+K7ERIVjlLgHAg5WDyVCoOu69/kOSJM4PLIsqJkrreEmhRFZ9yi0f26i3SRQduR+FXtK5JTV61BjZOhFw/5zmdaSfN0Y22t8q65uphyhEh/hperl8bBv0+ArRgW+5OFhdSIoOes/9//rj2nQwmcq3BMDr8DLent9OoUGbEpyo+Euu9/+UhibkbjtR8/rBysGYOKq/2f68R455VneschUn+Ol1TDPlxPvYahzKNEFpoM4t9iXq8ebsFlGoEdKtlhULsP7kLbJmtCI4PIpSedS94v9ecoCaRXOyakATJEmiWK8FRMXEah2vp1SgUsma15Ef2qhkGQk4Oqlj8s9LqdCjxjmDJWfuvNC89vINwimJnjCR0bFsO3uPPWN+/7/zqI9RKhV0rV2MfzedQqWSUSgSH2lg82FUhl9wuKZXjZdvcKLXf+LjT/OJG5netRYl83x61vq8R06BbA6UcHPm2uPXolCjY6JQkwbqlSnA0CW7mLPtBK2qflotJCgskiwZbdTFlmsPeOrjl+Dx2RxtufbwFbVL5sfz5RtuP1V32zU3MaJUvmzM2HSMga3UVWev9wHoK5Va86ekRo+aKkVyM2DBNp54v8fVyY5l+87RoFziYyl3n71N9kwZyOsSf0x0/XIFWLbvPANaVuP83adERMXgkcMZWZZ55PWOXB+KI9cfvuJ9YCguDuobkdHL9+KYwVIzuXFKzvn/nvv40Wj4Yv79swHViuWJty84PBJ9pRJjQ33uPHvNnnO3OTG7r2Z/RFQMW09d59C0nin/pQlCGipVvT4r/v2HXctnU6lBa832sOAg7J2yIkkSN84e483LJwkenzFLNh7fvkrxyr/x6vF9nnveAsDY1Jw8RUqzbck0mv31D6Aunij19LG2i1+8TI0eNYXKVWPJuP68fv6YTC45OLjhP0rX0u6iL8sy3s8e4pxd3WPw8Z1rBPn7ktHZRdPmwuFdOGTJTtZc+eIde2jTMg5tXMboFXsxt7KJt2/N9JHYZHTUTG78udI1GnJww3807TaI+1fPER0VqSkKfa5cnWasnTGKhp37o6evz40zR3Fxyw/Am1fPGNu5AZ2GTqFw+fjDIuyds3LjzFFK12yELMtcP3OELDlFjz1Bt+yL1ubx+lG83L8Qh7KfhuLFhgVhlMEZSZLwv3OSiHfPEjze2N6FkGc3sStcgzDvh4S+VM8poWdshlXuErzYO5ds9dX/vkb6eSMp9TG0so93jtToUWPjXokHq4cS/uYpJg7Z8T62CvviCX8xZV+8Lt7HVpOtvnpy37joSMxdCmCR3SPekKH/X93K+/gavE+sodCgzeibxR9e+mTTBAytHTSTG6fkev8vNiIESamH0sCY0Jf3eH91P8VGqwvRUf4+mnlnIny9CHp8DZd66iKvsV1m/O+cUL9fWcbv1nFMnXJrnV8Q0ou6Jd0YtvII83ZdpGWlT38LQWGRZLG3VD8v3XzK0zf+CR7vktGaa09eU6tYLjxfvefO87cAmBsbUipPFmbuOKeZnN/LNxh9pYKM1mbxzpEaPWqqeGRn0H8HeeLjj6ujDcsPXaNB6TyJtt9z0ZPsDtbkzfIpB8bGqfAPCcfeSh3f1jN3yZvFXlOkGbP2OI42ZpoJjD9Xv2Qelh++pplMODI6Bo/s2vNTPX8bQJNx65nUoTrVCuWIt++1X7BmmNWr90FcfejN3421n7+E70sUatKAiZEBtUvmY+2Ry9xcNlSzfVT72vSfv42Zm4+RL5sj+bIlPMlbnyaVaTdxFUeueJIvmyMFXD9907xkQGuGLNlJ6W7qiT7NTAyZ26d5mkx0a25ixMyeTWk+6j/iVCoKuDoxqXFFAHz8gmg6cmm8YtDaw5doU017qMWo9r/RZeo61h+9gpGBPov+bolCoUClUtF79hYCQ8NRKhUYG+izYnBbzZw9d5/74JFTu/iS1DkBes7cSK2S+ahdMj8jl+8hIDicCWsOMmHNQQBGd/iNKkXceO7jR4eJq9BTKjE00GPxgNY42n4aY7r73C1yOdvjlsUhwRgE4XszNDahWOU6HN++mgWHP02u16bfGJaM6cu2JdPJmjsfWXPnT/D4hn/0Y2qf37l++jBZc+cnW55Phdc+k5exfNIg+tRT/w0bm5rTffx8rUJNajA2Nafb6DlM6NYUlSqObHkKUL/DZAD83/kwrmsjpm8/jyzLLBzRk5CgAJR6ehgYGtN/+qp4c+8c2/ZpEuGPIsJCWDSqN3aZsjC6Uz0A9A0M+XfjCQCeP7hD9nweCcbWpt8YZg3sxIkd6zAwMqL3v0s0uWXesO4Uq1yb4pV/w61QSQqXr0H/RqVQKJRkz+tB4y4DAFg9bTghgf5smDOODXPUSwb/3n8shcpWpXn3wSwY0ZM+ddU3Wy5u7jT5c0Dq/GIF4SspDU3IUKgGPqc3UnraBc1212ZDeLBqCC/2zMMscx7MMif88JH1t+7cmdsFv1vH1O2yfMpBebvO5dG6kVwcqh5GqTQyJU+n6VqFmtSgZ2yGW4fJ3JrRFlmlwixrfk2PkqiAN9yc3kZTDHJtOoR7i3pw/uxmFPpG5Os6WzNJcGJiI0J5sHIQRrbO3JjSHACFniFFR6qHVoZ63cc8m3bxJbnr3f+vPxkKVceucA0i3r3gzrw/kZRKFPqG5P1zLobW6vsQr6Mr8L12EEmp9+Gc/2CeVb28rkuDfjxYPpBLQyoBYJYlr6aIIwjpkYmhPrWK5WTd8VvcmPepN/6I1pUYsPQAM7efJ19We/JlSThX9G5Qig7TtnH0+hPyZrXH3eXT/fqiXvUZuvIwZfotBsDM2IA5f9XRKtSkBnNjQ2Z0rUXLiRuJU8m4Z8vIxLolAfDxD6H5hA3xikFrj9/SmkQ4KiaWFhM3Eh2rQpZlHG3MWdqnoWb/3Rdv480n87kRrSvx55ydbDhxCyMDfRb0rK8p8PRasIdaRXNRq1guRq05hn9IBBM3nmTixpMAjGxTmSoervx38Cr7Lj9ET6nOScNaVaJANvH8o2uSLMvJtxISJUmSHLhvmq7DSBXdpq+nUM7MCfZg+d5UKhXV+s3h8PSemoek9OTFW38q9Z7B0w1jtfZZ1e6PLMspW75KEBIhSZK87X6orsNIFXMGd8U1f6EEe7B8byqVisEtKzNx/bF0mVveeb9gQJNyrDz/UmtfozxmIrcI30ySJLnySu0Jdn9E95b0wcKlQII9WL43WaXi6ti6FBm+O9mCjy5EvH/FlVE1KTdPewWdY+0yidwipDpJkmT/zUOTb/iD6T53Nx6uDgn2bkkLKpVM9aErODS+fZLDoNLSy3eBVP5nGY+X9Uu2rU3T8SKfpJL09y+JoDMWJsYs2nmagQu36zoUFAoFR2f2TpcPUjvP3KTlqP+wtzLXdSiC8EMwMbdg7+qFLB3/t65DQaFQ8O/GE+kyt5w7uJ0J3ZpiZZv6PQ0E4WekZ2zOq8PLeLhmmK5DQVIoKDpyb7os0ry7vIdbM9thYKG9sqUgCF/G3MSQxfuv8M+yg9/legqFxJGJHXRWpNl5/j4tJ23CztJUJ9f/lYkeNd/oZ+pRI6QO0aNGSA1p2aOma5W8DFmwWWteF1165/2Cv2oUIEvOvMgqFYbGpnQdOZNseRIeRpBSw9vWpH6H3hStVOurjj+2fQ1uHiXIlE09meelY3u5f/VciiZNTm2iR42QGtKyR825/sUp0HcVZs5uaXL+rxHx/hUXBpbG1Dk3skpWT9bbbiLmWRMeIppS/z93zZfyOb0Ry5xFNUtvv792kKCHF1M0aXJqEz1qhLTwJT1qCv41l/X/NIs3b4uunbn7ghGrjnDs306abfdevqPlpE3cnN9DZ3HZNB3Py1UDMDM2SL5xAiZtOkW/hmUw0FdPtDxhw0ncMtvRqEzqzJcnetSknvRX9v+FuLcfx73nProOI57Ttx5TsdeMeNvuPffBvf04HUWkZlW7P6ER2itNpNTENQeJ/mzG+PGrD7Dt5PXUCE0QhFRiam7J9O3nmbHzImVrN2buUO3VSuJitVd+SEvHt6/h9fNPq98Vr/ybToo0giB8PT0TC4qPPUKJ8UfJWLI+9//T7r6vivu+ucXnzCbC3zzVvLYrXEMnRRpBEHQrNk6VfKNUNHnzaaJj4zSvh7SokGpFGiF1icmEBZ2IjYtDT/n9lrz+d90hejauiIG++iM/9Pea3+3agqArD65fZOXUYUSEhQDQbsB4PMrEX2py5/LZnNm3BVVcLPoGRppeLFER4cwe3IVXj++j1NPHKVtO/p6xGu9nD5kz+E+iIsNRxcVRqWGbNFlaumDpyqydORpQ9wCq0rgtdy6eJKNzNjoOmczS8X/z+PZVACrUa0mjzuoHr1eP7zN3aDdiY2LInMNNswT5x/N83pPo89deTzz5b8JAAn3fIssy9Tv2RqVS8eTudf6bMIB1s8fQbsAE/N56c+XEfgbOWsvIDr/xW5tuFK9SB4DLx/exe8Ucxqzcj/+7Nywd3x9fHy+iIyMo+1tTmnQVkwYLP4egx1d4vGEscZFhALg2H4ate8V4bV7uX8jbizuR42JR6BtperHERYVzb0kfwrwfoFDqY+LgSv4eiwjzecz9JX1RRUcgq+JwLNssTZaWtslXnieb1ctfn+tfHMfyLQm4dxZj+yzkbD2Wh6uHEvLsJgAOZRqT9Tf1N+dh3g+5v7QvqrgYTDPlirdM+f/3JPr8ddjrRzxcM5zooPeATJZafyKrVIQ8u8nDNcN5uvVfcrQYQZS/D743juDecwnX/22Gc7WO2BVW36v4Xj/EywOLKTx4C1GBb3m4ehiRft6oYiLJWLIBLnV7pfrvSRDSwqUHXoxcfZTQyGgARv9ehcoFs8drM3f3BbafvUdsnApDfT2mda6JezYHwqNi+GvuLjxf+aKvpyBHJluW92vEI28/us/bTUR0DHEqmZYVC9CzXsk0fy8f521pX7UQh68/ISIqhtnd6lAyT2bNvpYVC3D+3ksiomOZ2rkmpfJk0ez7o2ZRTt56RrPy+angno1+i/fjGxyOnlJiWMtKVC2k7m23+6In49adwMrMiGqFc2hd/+O8Mf//+uDVR/y76RQxcSoUksT8HnVZcVj9JXXNYStRSLB79O8MWX4YD1cHWlf2oEC3OVyc+admue5hK49gbmLAoKblufLImzFrjxMSrs59g5uXp3qRnGn+e/6ViULNd3Dp/nNG/LebkA89QsZ2qkvlwvGXTJyz7QTbTt4gNi4OIwN9pnVvTAFXJ8Ijo+k2fT2eL96ip6cgp5M9K4a05ZHXO/6avoHwqGhUKplWVYvSs3GlNH8vHyfR7VCrFIcu3yciKoY5fZpRKl92zb5WVYtx7s5TIqNimNq9MaXzf9rXuU5ZTt54SLNKRahYKBd95mzGNygMPaWCEe1qU7Wo+iZn19lbjF25D2tzE6oVzaN1/Y+T+P7/6wMX7zFp7UFi4uJQSBIL+rdkxT71UsLV+89BoZDYM+kvBi/eQaGcmWlTrTj524/l8qJB2FqqZ4IfumQX5iaG/NO6Blc8XzBqxV5NUhrSpgY1iouqs5D+hQT682+vlgycvQ63QiWJi4sjIjRYq13F+i2p30F9k3/z3HEWjurNvxuPc/3MEcKCApm9R10MCQ0KAODA+iUULl9ds4z3x+3/b3Lv1rx5+TTBfRPXH8PQyDjJ+M8d3B5vVaqA928Ys3I/AKumDkdWqZi56xIRYSEMblEZl9z5KVy+OrMGdea337tRqUFrHty4xNDWVZO8Dqh76Uzs3oLWfUZQuqZ6Wd6QAD/MrW05sWNtvKFTx7av0RxXqUEbju9YqynUHN++hkoN1StQzf6nM027DSJfsbLEREczquNv5MhfBI8ylZONRxDSs5jQAG7P7oR7z6VY5iyGrIojNiJEq51DmaZkqaWeQNz/7ikerPyHoiP24H/7JLFhgZScqF51JCYsEADvoyuxLVhZs4z3x+3/7/aczokuE15k+G6UBknnlneXdscb9hQd+I7Cg7cA8HjjOJBlio8/RlxkKFfH1MXMOS+2BStzb1FPnKt3wrFsM4IeX+XquPpJXgfUvXRuzeyAa5NBmmXCY0L90Tez4c3ZzfGGTvmc3qg5zqFsM96c2awp1Pic2YRjOfUqU/cW98KlXl+s3Uqiio3m+r/NsMhWEJv8FZKNRxB0KSAkgrZTtrByQBNK5HYmLk6leTb6XIvy7vT4sGrSiVvP6LdkP4cndODYjScEhUVyYWZXAAJDIwD47+BVqhV21SzF/XH7/2s3dSvPElnq++D49hgb6n/xe/IPiaBYbmeGtarE5tN3GLX2GAfGtdPsy5fVnrFtq3L27gv+mLmDa3P/0uzL5ZSBf5qVB6Dq4OW0q1qI36t44PnqPXVGrubCjK7IQJ+F+zgwrh05nWyZvfN8iuJ6/NqP3gv2sndsW1wdbYiKiSU6No4pf9Tkv4NXOTCundbQKRNDfWoVzcWWM3fpWrsYsXEqtp29y4Fx7QgKi6T/4v1sHNIcB2tz3gSEUOWf5ZybnhlLU6Mv/r0JKSMKNWksICScNuNWsHpoO0rkzaZOSuGRWu1aVilKz0YVAThx/SH95m7hyIzeHL32gMDQCC4uGghAYEg4AEv3nKNa0TwMbFUt3vb/13b8Sp76+Ca47/C0Xl+XlILDKebmwvB2tdl0/Cqjlu3l4LSemn35smVi3B/1OHP7CX/8u4bry4Zo9uXObM/gNjUAqNJnFu1qlaRtjRJ4vnxD7YHzuLRoELIs03v2Zg5N60lOZ3tmbT6Worgee72n1+xN7J/cHVcnO3VSiollavfGLN17jkPTemJmbBjvGPVS6vnZfOI6f9YvR2xcHFtPXufgtJ4EhkbQd+4WNo/pjIONBW/8g6nceybnFgzAyizpG0FB0LUHNy7h7OqGWyH1zY5SqYy3rPVHT+7eYNuiKYQEBaBQKDTDfFzc3PF69pDFY/qSv3g5ilRQPzDkLVqGlZOHEhsTjXuJ8uQvkfDDwcBZa7845rCQIPo1LIUsy2R0dqHnhIWafRXrt9L8fOv8cToNmYwkSZiYWVD2t6bcPH8ct8IlefnoHhXqtQQgt0dxsqRgHh7vZw9RxcVqijQA5ta2yR5Xqnp9lk8aRHCALxISdy+fodekJUSGh3H38mmCAz7l3oiwULyfeopCjfDDC3p8FZNMubDMqV7xRFIo0Te10moX8vwWz3fPJjYsECQFEW/VhVuzLHkJ93nCg1WDsXYrjW1BdS8/q9wlebxhDHJsDFZ5SmOdp0yC13fvueSLY44ND+bS8Kogg5FdFvJ0nqnZ51CmiebngLunydlmDJIkoWdsjn3JBvjfO41lrmKEej/AobS6rWWOIphlTn4ennCfJ8iqWE2RBkDfzCbZ4+yL1ubxupFEh/ghSRKBnufJ22U2cVHhBHqe51GI36f3FhFG2OtHolAjpHuXH3qR2zkDJXI7A6BUKhK8n77x9A0ztp8lIDQShSTxxEf9ec/vkpGH3n4MWHqAMvmyUv1D75LSebMwYtURomPjKJfPhXL5syZ4/ZV/N/6ieBObZOXz7WZGBtT40KukaE4nhq88otlnoKekWTl3AMrky4qxgR6PX/thbmyIkb4eDUurv4gOiYjizvO3tK6k/nLKLbMd7i4ZufLIG1mGAtkcyOmkvidpV7UQo9Yk/1x04tYzqhZ2xdVRnW8M9fUw1E/+sb9VpQIMXn6IrrWLceT6Y3I5ZSCLvRWHrz3mxbtAmo3f8On3IMHTN/4Ucs2U7HmFryMKNWns0v3n5M6ckRJ5swEfkpK5iVa7G4+8mLbxKIGh4UiSxBPv9wC4Z8vEo1fv+HveVsoWyEH1Yuo/6tL5szP8v91Ex8ZSrkAOyhfMoXVOgFVD231RvJKUcFr6fLuZsSE1S6h7lRRzy8qwpbs1+wz0lDSvVBiAsu6uGBnq88jrHeYmRhgZ6NGwvAcAIeGR3H7qTZtq6hs9tywOuGd34rLnC2RZpqCrEzmd1ROKtatVipHL9yYb+/HrD6hW1A1XJ/WqBilOSlWL8c+iHfxZvxyHr3iSK7M9WTPacOjyfV689afJiE83hZIEz177UihX5mTPKwg6lYKJ4mOio5napw1jVx3ENZ8H/u98+KOC+obDIXM25uy9yq3zJ7h2+hBrZ4xmxq6LlKregNweJbhx9ijblkzn6LbV9Jn8n9a5v6ZHzcc5ahJiZPJptQFZltV/jJ/5mKMSy2EASj09Pp9APyY68tP5voKhsQnFK9fh9N7NABSvXAcjE1MiwkKQJInJm06hp//lxXBBSN+S/3tRxUZzZ25nCg/ZhrlLAaIC3nC2j/rewNg+KyUmniTg3mn8bh3nyZZJFB93FPtiv2GZowj+d07yYs9cfE5tIN+fc7XO/TU9aj7OUZMQpdFnuQWZxB7PksotkkIPVJ/mmfg0LOrrcovS0IQMhWvw9sIOADIUroHS0ITYiFBAoujI/Sj0RG4Rfiwp+WuIjomjw7St7BnzOwWzO+LjH0K+rrMBcMlozYWZXTl1+zlHrj9h3LrjnJnWhXol3SiWy4njN58yc8c51h6/yaJe2j3evrRHja2FCf4h8Xvn+IdEkOGz1Y8+TsgLoFRIxKoSn29GlkH6kF9MjPQ1OSWxWxBJklDJiZ9PqVSgUn06OPKzuTi/9r6mVJ4shEZEc+/FO9aduEXLigU058uX1Z69Y9p+1XmFryMKNWksJX8n0TGxtJuwkr2Tu+ORwxkfvyDy/D4GABdHWy4uGsjJG484ctWTMSv3cW7+39QvW4DiebJy7NoDZm4+xtrDl1g8oLXWub+0R00GS1P8/693jl9wGHYfhgVB/KSkUCiIjYsjMbIsf5aUDD4lpUTaS0iokvil6f1fUoqKjvl0rUSPSlrp/NkJjYji7jMf1h2+TKuqxTSx53PJxP4p3b/yzIKgO7kLlcBrRHceXL9I7kIlNEOfPu9VExMdSVxsLBkcnQA4sG6xZp/vG2/MLa0pUbUuHmWq0KlCTkKDAoiKCCdj5mxUbtgGx6yuzB2S8BwSX9OjJqUKlq7MkS0rcStUksjwUM7s20K7gRMwMbMgS868nN6ziQr1WvDo1hVePryrOc4hczYe376KS+783Dp/nEDfdwA4Z8+NQqnHuQPbtIY+GZtZEJbAkLGPKjVszbKJgwDoNGQyAMam5uQpUpptS6Zphoj5+nih1NPH2i5jmvxOBOF7scxRlPDXfxP0+AqWOYpqhj593qtGFROFrIrD0EadW7yOrtTsi/R/jb6pFXZFamGTvwJn+xQmNiyQqIAIjO2y4liuOcYZs3F/qfaEv/B1PWpSyiZfeV6fXIdlzmLERYbx7uJOcrQYgZ6xOaZOuXl7fjsOZRoT/OQ6oa88NccZ22cl+NkNzLLkxf/u6Q/z0YCJYw4khR7vLu3WGvqkZ2RGbLj2kLGPHMs259Fa9eTCOduo7wn1jM2wyl2CF3vnaoaIRfp5Iyn1MbRKP6vlCEJCiudyprfXXi498KL4Z0OfPu9VExkTS6xKhZOtBQDLDl7V7PP2C8bazJjfiuemUsHs5O0yi4DQCCKiYnDJaE2rSgXJ7mhDz/l7Erz+l/ao+dgb5eiNJ1TxcCUuTsXKw9epVDBbio6Pjo1jy5k7NCvvzvn7L4mMiSVHJlveBMT/u7cwMSS/S0bWn7xF60oFeejty53n7yiSIxMy0GvBXp74+OPqaMOqozc0x2W0MiM2TsVTH3+yO9qw5fSn+53KHq5M23pWc9zHoU/mxoaYGRsQHB6Z6KpRzSu4M2/3Rc7fe8XCnuqCV/Hczjz18ef0neeUy+8CwLXHrynk6phkEVv4NqJQk8ZK5HWh1+xNXLr/nOJ5XDRDnz7vVRMZE0tsnApnOysA/ttzTrPP2zcQazMT6pR2p3Lh3Lj9PpqAkHB1UnKwoXW14rhmsqP7jA3/f2ngy3vUuGZS90Y5etWTKkXc1Elp/wUqFc6VouOjY+PYfOI6zSsX4dydp0RFx5LT2Q4f//gPOhYmRrhnd2LdkSu0qV6ch6/ecufpa4q6ZUGWZXrO2sgT7/e4Otmx+uAFzXEZrc3VSem1L9kzZWDziU8rN1UpnJupG45ojvs49MncxAhzY0OCwyK1hj591KJyUeZuP8G5O09Z9Ld6iEWJPC48ff2eUzcfa3osXXv4kkI5M4ukJKR75lY2DJy9juX/DiYqIgxJoaDdgAkULP1pLisTMwta9BzGwKYVsHN0plD56pp9Lx/eZfV09UOCKi6ORp37Y2PvyJZFUzi9eyN6BgaApClOfE9Nuw1i6bj+9KlXHFBPJly4nHoYaK9Ji5k7tBu7VszBNV8hchYsrjmuZe8RzBnchcObV+BWuCQZHNU945R6egyet4El4/qzaf4kJIWC+h16U7F+S6o37cDKKUPYtXwWbf/WXu0pb9EyRISqb7ryFCmt2d5n8jKWTxqkidHY1Jzu4+eLQo3ww9M3s8a951IerRtNXFQ4kkIiR4sR2OQrr2mjZ2xOtoZ/c2V0LQxtnLAt8GnIX9grT55sngCArIoja50eGFo78Hz3bN6e24akpw+SRK7WY777e3Op35eHq4dyaag6XocyjbEtoM6ZebvM5v7Svrw8uAhzlwJYuhbWHJe98SDuLemtKfIY2qoLVAqlHgX6LOfh6qE82zkDSVKQudafOJZpQqZKbXi8YQwv9y8gR4vhWrFY5S5BbGSo+udcJTTb83ady6N1I7n4IUalkSl5Ok0XhRoh3bM2N2blgCYMW3mE8KgYFBKMaVuVigU+FT4sTAwZ3LwCVQYvxzmDhWZCXVAvjT1m7XEA4lQyfRuWxtHGnOnbzrL59B0M9JRIEkzoUC1V4tXXU7LqQ7yj1xxDJUPpPJnp1zDhYZn/z8bcmCc+/lQdvJyIqBiW9mkQ78vuzy3uVZ9+i/ezYM8l9JQSC3rW0/TcmdG1Nq0mbcLKzIgGpT/Nk6mnVDChQzUajV1HZjtLyn425MvV0YaZf9am04xtxKlklAqJ+d3rkTerPd3rlqDB6LUYGeixe/TvWrG0rFAAj+7zaFWpACYfvtC3MjNm7aBmjFx9lCErDhMdG4eLvRXr/2n+/x2chVQkfW3XKEFNkiQ5cN+0JNtcvPeMYUt3ExYZjUIhMa5TXSoWyoV7+3FsHNWJvC6OzNp8jKV7z+FsZ021om6MWbmPwH3TOHz5PqNWqIf9qFQyzSsXoU/TykzbeITNx6+hr6dEkiSGt61FtWJ5kowjpW4+8WLokl0EhkagUsmUyZ+dMZ3qYmyon+Rkvh9//qNOGY5eeUBEVLTWZMIfjwN4+to3RZMJNyjnwZDFO/HaOgEzY0NWH7rIlPVHyGxvTbkCrizefUZz3v0X7zJxzUHiVCqUCgUL+rUkXzZHJq09yJYT1zEy1I83mXCXumUBePUugIIdx9O6ajHm9GmuifHaw5cM/28PgaHhxMTG4eJgy4aRHVEoEl/Z3qp2f2RZFmlL+CaSJMnb7ofqOgwhHWmUx0zkFuGbSZIkV175WtdhCOnIsXaZRG4RUp0kSbL/5qG6DkMn/n8Fpl+JTdPxIp+kElGo+UYpKdT8KhIqxvyKRKFGSA2iUCP8P1GoEVKDKNQI/08UaoS0IAo1olAjfJvEuwUIgiAIgiAIgiAIgpBiWeytfskijZC6RKFGSDVZM9r88r1pBEEQBEEQBEEQBOFbiEKNIAiCIAiCIAiCIAhCOiEKNYIgCIIgCIIgCIIgCOmEmEz4Gxkb6r+JjI4V660KGkYGem8jomIcdB2H8GMzNDJ+Ex0VKXKLoGFgaPQ2KjJC5BbhmygNjN6oYqJEbhE0FPqGb+OiI0VuEVKVsYH+m8gY8Yz0qzHS13sbES2eg1KDKNT8YiRJmgVYyLLcQdexJEeSpDLAJiC/LMsBuo5HEITEidwiCEJaELlFEIS0IHKLkN6JQs0vRJKkUsBW1H/k/rqOJyUkSZoHGMiy3FnXsQiCkDCRWwRBSAsitwiCkBZEbhF+BKJQ84uQJMkAuA6MlmV5k67jSSlJkiyAu0BbWZaP6zoeQRDiE7lFEIS0IHKLIAhpQeQW4UchJhP+dfwDPAE26zqQLyHLcjDwF7BEkiRjXccjCIIWkVsEQUgLIrcIgpAWRG4RfgiiR80vQJKkvMBJoJAsy166judrSJK0AXguy/I/uo5FEAQ1kVsEQUgLIrcIgpAWRG4RfiSiUPOTkyRJAZwG1siyvEDX8XwtSZIyAreBmrIsX9N1PILwqxO5RRCEtCByiyAIaUHkFuFHI4Y+/fy6ATKwSNeBfAtZlt8CA4GlkiTp6ToeQRBEbhEEIU2I3CIIQloQuUX4oYgeNT8xSZIyA9eA8rIs39d1PN9KkiQJOAQclmV5sq7jEYRflcgtgiCkBZFbBEFICyK3CD8iUaj5SX34A94FXJJleayu40ktkiRlBy4BJWVZfqzreAThVyNyiyAIaUHkFkEQ0oLILcKPSgx9+nk1A1yAf3UcR6qSZfkpMBFY9CHxCoLwfYncIghCWhC5RRCEtCByi/BDEoWan5AkSbbATOAPWZajdRxOWpgFWAIddB2IIPxKRG4RBCEtiNwiCEJaELlF+JGJoU8/IUmSVgCBsiz30XEoaUaSJA/UYzMLyLL8RsfhCMIvQeQWQRDSgsgtgiCkBZFbhB+ZKNT8ZCRJqgYsAfLLshyq63jSkiRJEwFXWZab6ToWQfjZidwiCEJaELlFEIS0IHKL8KMTQ59+IpIkmaJecu7Pnz0hfTAG8JAkqb6uAxGEn5nILYIgpAWRWwRBSAsitwg/A9Gj5iciSdI0wF6W5d91Hcv3IklSBWAN6mp5kK7jEYSfkcgtIrcIQloQuUXkFkFICyK3iNzyMxCFmp+EJEnFgN2o/zh9dR3P9yRJ0mIgTpblbrqORRB+NiK3iNwiCGlB5BaRWwQhLYjcInLLz0IUan4CkiTpA1eAybIsr9V1PN+bJElWwF2ghSzLp3UcjiD8NERuEblFENKCyC0itwhCWhC5ReSWn4mYo+bn8DfgDazTdSC6IMtyINADWCJJkpGOwxGEn4nILSK3CEJaELlF5BZBSAsit4jc8tMQPWp+cJIk5QbOAkVkWX6h63h0SZKkrcA9WZaH6zoWQfjRidzyicgtgpB6RG75ROQWQUg9Ird8InLLz0EUan5gkiQpgOPAVlmWZ+s6Hl2TJCkTcBOoIsvyLV3HIwg/KpFb4hO5RRBSh8gt8YncIgipQ+SW+ERu+TmIoU8/tj8AQ2CergNJD2RZfg0MAZZKkqTUdTyC8AMTueUzIrcIQqoRueUzIrcIQqoRueUzIrf8HESPmh/UZ5XSSrIs39F1POmFJEkScAzYKcvyTB2HIwg/HJFbEiZyiyB8G5FbEiZyiyB8G5FbEiZyy49PFGp+QB/+8LYBt2VZHqHreNIbSZJyAueBorIsP9dxOILwwxC5JWkitwjC1xG5JWkitwjC1xG5JWkit/zYxNCnH1MjwA0Yr+tA0iNZlh8BU4GFHxK4IAgpI3JLEkRuEYSvJnJLEkRuEYSvJnJLEkRu+bGJQs0PRpIka2A28Icsy1G6jicdmwZkBNroOhBB+BGI3JJiIrcIwhcQuSXFRG4RhC8gckuKidzygxJDn34wkiQtAaJlWe6u61jSO0mSigD7AHdZlt/pOh5BSM9Ebkk5kVsEIeVEbkk5kVsEIeVEbkk5kVt+TKJQ8wORJKkSsBLIL8tysK7j+RFIkjQFyCTLcmtdxyII6ZXILV9O5BZBSJ7ILV9O5BZBSJ7ILV9O5JYfjyjU/CAkSTIGbgN9ZFneo+t4fhSSJJmg/r31lGV5n67jEYT0RuSWryNyiyAkTeSWryNyiyAkTeSWryNyy49HFGp+EJIkTQJcZFluoetYfjSSJFUF/kNddQ/RdTyCkJ6I3PL1RG4RhMSJ3PL1RG4RhMSJ3PL1RG75sYhCzQ9AkqRCwEHU4wrf6jqeH5EkScuAUFmWe+k6FkFIL0Ru+XYitwiCNpFbvp3ILYKgTeSWbydyy49DFGrSOUmS9ICLwBxZllfoOJwfliRJNsAdoLEsy+d1HY8g6JrILalD5BZBiE/kltQhcosgxCdyS+oQueXHIZbnTv/6Av6oJ8wSvpIsy/5AH2CpJEkGOg5HENIDkVtSgcgtgqBF5JZUIHKLIGgRuSUViNzy4xA9atIxSZJyABeA4rIsP9V1PD86SZIkYCdwRZblMbqORxB0ReSW1CVyiyCoidySukRuEQQ1kVtSl8gtPwZRqEmnPvwBHQH2ybI8Tdfx/CwkSXIGrgMVZFm+p+t4BOF7E7klbYjcIvzqRG5JGyK3CL86kVvShsgt6Z8Y+pR+dQAsgVm6DuRnIsuyFzACdXc/8fkXfkUit6QBkVsEQeSWtCByiyCI3JIWRG5J/0SPmnRIkiQH4BZQXZblGzoO56fzIRmdAtbLsjxP1/EIwvcickvaErlF+FWJ3JK2RG4RflUit6QtkVvSN1GoSYckSdoEPJFlebCuY/lZSZKUBzgNFJJl+ZWu4xGE70HklrQncovwKxK5Je2J3CL8ikRuSXsit6RfoptTOiNJUn3AAxATO6UhWZbvo+5COf/D2FdB+KmJ3PJ9iNwi/GpEbvk+RG4RfjUit3wfIrekX6JQk45IkmQJzAU6y7Icoet4fgH/Ai5Acx3HIQhpSuSW707kFuGXIHLLdydyi/BLELnluxO5JR0SQ5/SEUmSFgBKWZa76DqWX4UkSSWAHUB+WZb9dByOIKQJkVu+P5FbhF+ByC3fn8gtwq9A5JbvT+SW9EcUanTowwROFWVZPiZJUjlgA5BPluVA3Ub2a5EkaSZgJctye0mSXFD/w/BEt1EJwtcTuSV9ELlF+NmI3JI+iNwi/GxEbkkfRG5JX0ShRockScoLbEM9/vIGMFiW5e26jOlXJEmSGXAH6AzkB7LKstxHp0EJwjcQuSV9ELlF+NmI3JI+iNwi/GxEbkkfRG5JX8QcNbrlBHgDQ4G7IiHphizLocCfwCLAD/X/F0H4kYnckg6I3CL8hERuSQdEbhF+QiK3pAMit6QvolCjW85AGOo/iCWSJJ2XJKm3jmP6pUiSZC1J0hsgF3AOqIVISsKPT+QWHRO5RfhJidyiYyK3CD8pkVt0TOSW9EdP1wH84pyBksA9YDkwGFil04h+MbIsB0iSVBmYAzigTkiRuo1KEL6ZyC06JnKL8JMSuUXHRG4RflIit+iYyC3pj+hRo1vVADvUYzHzyLK8QpZllW5D+vXIsnwPqAqMAuKAjB8mNROEH5XILemAyC3CT0jklnRA5BbhJyRySzogckv6IiYT1iFJkloDb2RZPqrrWAQ1SZJMgWGyLA/WdSyC8LVEbkl/RG4RfgYit6Q/IrcIPwORW9IfkVt0TxRqBEEQBEEQBEEQBEEQ0gnRlUkQBEEQBEEQBEEQBCGd+KLJhI0N9N5ExsRlTKtghB+Lkb7ybUR0rMO3nkfP0PhNXHSk+Fz9YJQGRm9joyK++f8/gL6h8ZtY8RkQPtAzMHobk8hny9jI8E1kVLT4rAgaRoYGbyMio5LNReKz82tK6edDaWD0RhUTJT4fgoZC3/BtXHRksp8dI33Fm6hYWXx2fjGGetLbyBjVN90Hi/vfn1dS97Ip9UVDnyRJkt8t6fgt1xN+IvadlyHLsvSt55EkSf5rn29qhCR8R/NrZ0iV//+g/gxMOB2QGqcSfgJDylkn+tmSJEkOu7Hve4ckpGOmHrVTlIskSZLD74rpD341JvmqpPjzUXHl6+8RkvCDONEuU4o/O96jS32PkIR0xGnk+W++D5YkSR56zD+1QhLSkfGVbb758yGGPgmCIAiCIAiCIAiCIKQTolAjCIIgCIIgCIIgCIKQTvxUhZpKo3cQER2bbLuWsw7x7F1wql132p4bFBuymWJDNjNtz40E2zx5E0TDqfsoPXwr5Uduo9fy0/FiXXfmIRVGbafS6B1UG7eTCw/faPYFhEXRdfFxSg7dQrkR25i6+3qqxS6obexRkdioiGTb7RnRgiCfZ6l23SvrprKmY1HWdCzKlXVTE2wjq1Rs7VeTjd0rsLF7BXYPb0bw25cABHo9Zsc/9VnXpSQbupXl2PSeKXofwpeZ06EcMSn4va4Y0BQ/79T7fBxbMYWpzQsxtXkhjq2Ykmz7rRN7MKScNVHhoZptL+9eZnb7skxrWZRl/RoRGvA+RccJX69ksx5EREYl265h9xE8feWTatedtHgd+et0JH+djkxavC7Z9n+OnIGpR21Cw9Wf7Qs37lGyWQ/Nf67V2lC6Rc9kjxNST4lGXVL02Wnw52Cevky9YToTF6wmX8025KvZhokLVifbvuuwKZjkq0Jo2KfPwMpt+ynW4A9KNOpCmWbdOHv1VqrFJ6hdHl6VuOjk/+5uTWtDxNvnqXbd5ztncOHvUlz4uxTPd85ItF3Q46tcHlaViwPLcnNyC6KDPw1rjwkN4N78blwcWJZLgyvyfMd0zT6fU+u5PLQyl4dX5crImgQ+uJhqsQvaqi24SURMXLLtfl9zn+f+kal23RknvCg98xqlZ15jxgmvRNtdfRVC1fk3KTv7Oi1X3cM3NCbVYhAStqRz+RTd5274pxkBqXife3r1FOa1Lsy81oU5vTrh+1xZpWJFj+os+aMcS/4ox/pBTQh8o34O8rpzkSWdy2v+m9U0L0u7VNQcO76yDUv+KKvZ/+7pvVSL/Xv4osmE07vjIxukqN363tVT7ZrnH75h15VnnBrVEICaE3ZTOpcDpXLFnztIX0/BmGYlcM9ii0ol03XJCeYfukP/Oh74h0YybONFLoxvgr2FMQduvOTvNec4M6YRAL2Wn6KsWyYWdakEwLtgcXOc2prPPZGidnXGbEi1a76+fY7HZ3bRYsFpALb0rUEm99Jkci8dr52kUFBn7CYMTS0AuLljEWeXDKfWsJUo9A0o03ksdq4FkFUqDv3bmRtb51G01d+pFqcAPZefTlG79lM2p9o1n904y53jO+i96hwAC7pUJZtHabJ5lEmw/f2z+0GKPxRWlmU2je1KkyHzcClQimMrp3Jw4WgaD56b5HHCt7mwaW7yjYDt88ak2jXPXL3NtsNnuLxlAQAVfu9L2SLulC3inmD7fScvIv3f//eSHnnjxd68zxhKFcqX7HFC6rm4bXGK2u1YODHVrnnmyi22HzrJlR3/AVChZXfKFStI2aIFEmy/9/g5rZThFxjEwEnzubVvJRkz2LDn2Dl6jprBtd3LUy1OAYqNPZKidgX6r0m1awZ6XuD9pT0Um3AMgGuj62CVuxRWbiXjtZNlmfuLeuLWeQZWuUrwfOdMnm4aj9sf6sKO55I+WOUtS96/1DkqOkj9pUFMqD+P146kxOSzGFja4XvtIA9XDKT4xJOp9h6E+A53K5iidqvb5Em1a154Hszee34c7a6+dt0ldyjlYkFJF4t47WRZpte2R8xokIPiWS2YedKLCUdeML1BjlSLRdDWecmpFLVrMWlTql3z5c1zeJ7cSZdlZwFY0b0aWQuUIUtB7eegFpO2YGSm/qxc2rqQI/OH0WTMKpzzl4gX++bhbcicv0S849vNOYCBsVmqxf09/XA9anZffU7p4VupPGYHM/fexL7zMkIj1ZXWz38u8s8mJu28Rq2Juynyzyb+O/apglbkn03c906diUt3XH5Ks1I5MDbQw9hAj2alcrDj8lOtdlkymOOexRYAhUKiULYMePmpv73+OJ/zx9iDwqNwtDYB4OnbIO55BdClSl7NuewtjFMl9l/NkzO7WdelJJt6VOLqxhnMr52BmAj1/4PPf17dvhCXVk9ka7+arG5fiNu7l2rOsbp9Ifye30+VeB6f2kHuKs3QMzRGz9CY3FWa8fjUjgTbfizSAMSEhyBJ6j9di4xZsHNV30xLCgUZcxcm5N2rVInvV3PnxC6mty7OnI7lObFqWrweJp//PLlpAQ4vncCCP6szuWkBzm/99GA1uWkB3qRStf7Wse0UqtkCfUNj9A2NKVSzBbeObU+wbXiQP8eWT+a3HuPibff2vI6egSEuBdSTHJao34Hbx3cke5yQvB1HzlCoQRdKNe/BlKUb4/Uw+fznPLXaM3b+aiq17UeeWu1ZuGG35hx5arXn7uPnqRLP1oOnaFWnCsZGhhgbGdKqThW2Hkz4xssvMJgJi9YyqX/nRM/3zj+Qoxeu07JO5S86TkjejkOn8KjTnpKNuzJ58dp4PVM+/9mtWivGzFlOxVY9cKvWigVrd2jO4VatFXcfpc63mlv2H6dVveqfPjv1qrNl//EE2/oFBjFhwWr+Hdgt3nbNfcyH2INCQnFysEuV+H417y/v5eI/5bgyvBovds/mRLtMxEaGAcT7+Xz/4jzbNplrY+pyvn9xvA4v05zjfP/ihHp5pko87y7tJGOZJigNjFEaGJOxTBPeXdqp1S7k2U0U+oZY5VI/JGWq/DvvLqnzXfibp4R63ce5+h+a9gaW6s/Hx0VNYiPV/8bGhgdjaO2YKrH/yvbe86P8nOtUX3CT2ae8cBp5nrAodS+az38uMeMaU469pO6S25SYcY3lFz/18iwx4xqeb8NTJZ5dd3xpUtAOY30lxvpKmhS0Y9cd7YVEbr4Ow1BPQfGs6vvetkUzsvuuX6rE8KvzPLWLhe1KsLRLBc6unc74yjZEf3j2+fznuS0LcnL5BFb0qM7clgW5vH2J5hxzWxbk3bPUuc+9d2I77tWaa+5z3as1596JhO9zPxZpAKLCQ5AU2l8YhQW85+mV4+Sv1jxV4ksPfqgeNe+DI/h79Vn2D65D9oyWLDx8J8n2EdGx7B9cl5e+IZQftZ3mpXNiZqSfaPug8CgaTNmf4L7cmaxY2Lmi1nZv/zDK5P70D4qzjSkXHr3Ravf/ca0/84ihjYoCYGtuxOTWpakyZgdWpoaoVDLbB9QG4IFPII7WJvRdeYbbr/yxtzBmZJNiuDlZJ3kNIb7wwPecmNOPxtMPYOXkys3tC5JsHxMVQePpBwh++5IN3crhVrUF+klUY6NCg9jxT/0E99lkyU21gYu0toe89yJTgU+9I8ztnPG5cz7Ra+wZ0YL3T25hbGFD3XHaPTdioyK4f2gdJdsPS+qtCQkIDXjP9il96LbwMBkyu3Jm4/wk28dERdBt4SECfF4yq11pCtdqhaFJ4p+PiJAglvaqk+A++2xuNB+xRGt70Fsvshcqq3ltmdGZZzfPJXiOndP/pkqHQRiZWcbbHvjWC+uMmTWvTa1skVUqwoMDMLGwTvQ4IWnv/APpOXYOx1dNJ0dWJ+asTvjG4qPwyCiOr5rOC++3FGvSjTb1qmJmknjBPTA4lJp//JPgvjyuWVg+caDW9ldv3lPusx4QmR3sOHst4X8j+02cz9A/W2NpbppoDOt2H6VKyUJktLX+ouOEpL3zC6DHqOmcWD+XHFmdmbNyS5LtIyKjOLFuLi+831C0fid+b1ADM9OkPzs12vdLcF/eHC4snzxEa/srn3eUL+6heZ3Z0Z4zVxIettR33GyG/tUWS/P4+S6DtSWzRvSmVJOuWFmYo5JVHFw+PcFzCImLDvblwfKBFB6xGxOH7Lw6kHQPq7ioCAqP2E3E+1dcHloJh3LN0TNK/O8zJiyIG5MaJ7jP1Ck3ef+cp7U9ys8bK7dP33Ab2ToR9OBCgu2MMjhrXhuY24KsIiY0gPDXDzG0duTBsv6EvriDgaU9rs2HY+qcGwNzW3K1m8TVEdXRM7FElmU8Bif9dyEkzTc0hoG7nrK7c36y2xqz+FzSwyQjYlTs7uzOq4BIKs+/STMPe0wNlYm2D4qIpcmKuwnuy21nwtwmObW2ewdFUyrbp3uNTJYGXHihPQ2Fd1AUTpaGmtc2pvqoZAgIj8HaJPFnOCFpYQHv2Te9L+3nHsLG2ZWLm5O5z42MoP3cQwS+ecnijmUoWLNlkr1SIkODWN23boL77FzcaDBUO5cFvfUia8FPz0EWGZ15eSvx56AN/zTjzaNbmFja0HLyVq39tw9tIHvRSpjZ2MfbvrpvPVRxseQoXpVy7QahZ2CodWx69UMVaq4+fY97FluyZ1T/obcqk4sRmy4l2r5hseyAujeLlYkhPgFh5HS0SrS9pYlhiodPfa3YOBVdF5+grJsjNT2yABASEc2yE/c5PKw+ORws2Xn5KR3mH+XEyAbExslcffqeYQ2LMjOXA3uuPef3eUe4PKFpmsb5s3nreQU71wJYObkC4Fa9NWeXDE+0fc7y6qFsFhmzYGhmSaivD9aZtf/h+cjQzDLFw6e+Vp0xG5BVKq5umsmVDdOp0P3TWE5VXCyH/u2Mc8FyZCtZK03j+Bm9unsZp1wFyZBZ/fko+ltr9s0dmmj7AlXUwxKtHbNgbG5J0PvX2GfNlWh7Y3PLFA+f+lK3j+9AT98AtzI1v8txAly+5UlBN1dyZHUCoG2D6vwzTbvY9lHTGuUByOqUESsLM7zf+pI7W+ZE21tZmKV4+NSX2nboNPr6etQqXyLJdmt2HmZ0r/ZffJyQtEs37+ORNyc5sqofaNs2qsmgyYl/cdCklnrIc1YnB6wszfF++57c2bMk2t7KwizFw6e+1LaDJzHQ16d2Re1liINDw1i0fidnNi0gV7bMbD1wgha9R3Jp+xIxVO4LBD++irlLfkwc1PevjuVb8GT9qETb25dsAICxXWb0TS2J8n+NXqbE71X0TS1TPHwqNclxcQQ/uUb2pkOw6jSd91f2cXtme0pOPU9sRAjeR5dTZNR+TBxz8O7iLu7O7kTRcUfFZ+crXfMKwd3RlOy26qJui8L2jD74ItH29fNnACCztRGWRnr4BEeTwy7xgrClsV6Kh08J6YP3vSs45CyAjbP6PrdgrTYcWZD4F7t5K6vvc60csmBkbknw+9dkyJL4fa6RmWWKh099rRaTNiGrVJxdN4Mza6ZRq0/8uT1vHlhHpT9GxNvWc8MtLOydiQoLZufEbpxZPZWKnRK/v09vfqhCjYz8RVMpGOp/qgYrFRKxKjnJ9l/To8bJxpRXfp8m4PTyDyOTdcLfZsSpVHRbehJLEwMmtPw0tvfEPW8sjQ3I4aAuQNUvlp1eK07jFxpJZlsznGxMKflhzps6hV3o/t9J/EIisTU3SvL9CJ+R5S+ah0Np8Ol3q1AoUcUlPUn11/SoMbdzjjdMKeS9F2YZnJK8jqRQkLd6a9Z2Lq4p1Kji4jg8uSuGZlaU/TP15i34lcgyX/T5+LwaL6Xg8/E1PWosMzoT+ObT5yPorReW9tqfj6fXTvPk2mkmN/3Um2JW21K0m7IZq4zOBLz9dI6wQD+QJEwsrJM8LmM2tyTfz69OluUveoAwNDTQ/KxUKIiNS3oSx6/pUZPZwY6XPu80r1+9eY9zxgxa7U5dvsXJSzfJU6u9ZlvRxn+yfe5Y8riqCwCXbnniFxRCjbLFvug4IXnq+5iUf3aMvuKz86U9ajI72vPy9VvN61c+73BOYNjSyYs3OHHxOm7VWmm2FanfkR0LJ+L55AWW5mbk+lCAbFyzIl2GTsY3IAg7G6skYxY+JwMp/3wo9D/7ZlihRFYl/fn4mh41hrZORPp+mvg10s8bQ9tMybaLDvEDJPTNrDHM4IyRrRNWudWFXruitbm/qAfRIX4Eep5Hz8QSE0f1HCT2JerhubQPMSH+GFjYJvl+hIR94S0NhnqfZsJI0fPSV/SocbI0wDvw00Tpr4OiyWRhkEA7Q7yDPrXzD4tBAtGb5hvJX5hbPr/PTclz0Nf0qLHM6EzQZ/eowW+9sEjgPvdzkkKBR+02LPi9WLxCjfe9y0QEB5CjZLV47S3s1V+KGJpa4FH7dy5tSbonUXrzQxVqimS3p8+KMzx9F0x2ews2nHuUquf/mh419YpmY8j6C3SspJ5wa9P5x0xsWVKrnUol03P5aZQKiZnty8a7UcuSwZzbr/x4HxyBnYUxZzx9MDMywNbMCFszI0wN9fH0DsDNyZrzD99gZWKIjdmP020rPcjoVpRjM3sT9Poplpmy43l4faqe/2t61LiWq8fphUNwr9MJgAdHN1Gum3ahJSLIF0lSYGRhA8DjM7uwcVHPWSSrVByb3gOFQkml3rPEt09fKXO+omyd1AM/r6fYOmfn6v7U/Xx8TY8a90oN2DNzECUbqcf0Xz+wgTp9Jmu1q99/GvX7T9O8HlLOmt6rzmNoYoZKpSI2KpLnt87jUqAUF3cux71Sg2SPE5JWrIAb3UbN5MnL17hmycSaXYdT9fxf06OmYbVy/D15IV2bqwuC6/YcZdqgblrtZg7tzsyh3TWvTT1qc2XrwnhDsVbtOESrOpXR01N+0XFC8ooXyEO3YVN48sIb16xOrNlxMFXP/zU9ahrVqMDfE+fStaX6y4Z1uw4xbYj2al+zRvRm1ojemtcm+apwdecyzEyNiYiK5ub9x7zzC8De1pqTF69jbmpCBmsxrPJLWLgWwXNpf8LfPsMkYzbenEm9iTvh63rU2BWry+M1w3Gq2h6At2e3kPN37XnNzF0KoIqOJPDhRaxyleD1sdXYF6+r2ac0NCHM6wGmzrkJ9LyAnqk1+mY2GGfIQuiLO0QH+2JgkYGA+2dRGpujb27zze/3V1XY2Yx+O8J45hdBNltjNl3XXu3xW3xNj5o6+WwZsf857YpnBGDLzfeMre2i1a6AoymRMSouvQimeFYLVl15S918omD3rZzyFGXvlJ74ez/Fxik7tw4mvzLkl/iaHjV5KtTn0Nx/KNJAfZ97+/BGqvf8V6tdWKD6OcjEUp0T7p/YiV22+BNd39i/FvfqzVEoP5U2IkIC0TMwRN/QGFVcLJ6ndpHRNf+XvjWd+qEKNfYWxkxpU5rWsw9hY2ZEjYKZ0VcqMDHQ3dsok9uR3wpnpfyo7ciyTLNSOSj9Yc6aAzdecvDmS2a0K8vRO15sufCEPE7WVB27C4DiOez5t3VpCmbNQPfq7jSYsg99PQWGekr++7OS5qF7Vvty9F5xmqjYOIwN9Fj+VxXxQP6FTKztqdBjKntHtsTIwhaXEjVQ6OmjZ2iis5icCpQle+nf2NCtHCCTq3IznNzVYzWfXdjP8wsHqNRnFuH+7zg2owdxsbEgy1g4ZKHq3+qu8i+uHOHh8c3YZM3D5t5VAHDMU5zy3bUf6IXEmdvY0+Dv6awc2BwTSxvylKmJUk8ffSPdfT6yFypL3gp1mdW2NLIsU6hmC7IXUn8+7p/Zx/0zB2j0z+wkz6FQKGg6bCE7pvYlNjoKa4csNB2u3btL+DIZba2ZNbQHjXuOxNbKgloVSqCvp4eJke4K6OWLFaB+5dIUa9INWYZWdSpTrqh6xae9Jy6w9+QF5o/sk+x5IiKj2HboNMdWTUu2rfDlMmawYfbIvjT6awi2VpbUrlhK/dkx1uFnp7gH9aqWo2iDTurPTr1qlCumfgjbc+wce0+cY8GYpFcSLJwvF307NKNG+34Y6OlhYKDPuhkjxb3KFzKwtCNX+0ncnv47+mY22BaqhqTUR2mgu4KodZ7SZChai8tDKgMyGcs0wcpNPfzN99pBfK8fwq3TNCSFgjxdZ/NwxSBUMVEYZXAmT1d1wVmSJHL/MQPPpX1RxUajNDAmf8+lSJKEebYCZK7djRsTGiHpGaDQMyBfj8Xis/MN7MwMmFQ3O23XemJjok+13NboKyWM9XW3hkzpbJbUymNDlXk3kYEmBe0o5aIu5B7y9OfQgwCm1ndFoZCY1Sgn/+x+QmSsTGYrQ+Y0Fis+fSszG3tq9ZnGxsEtMLG0IWepmij09NHX4XNQVo+y5C5bh8UdywAy7tWaa+aseXh2Pw/P76fO37MJ83/H7n+7o4qLQZZlrByyUn/Ip3vZmKgI7p/YQfu58b/48Hv5kP0z+gESqrgYnPIVp0JH7V6l6Zn0cbb1FDWWJPndko5pGE7yQiNjNBMCrz/7kLVnHrJnUMJDCoS0Zd95GbIsf/O/pJIkyX/t0575PbVFh4dgYGIOwP1D67h/aC2Npu5N8+v+rObXzpAq//9B/RmYcDp1VmL7WlHhIRh++Hxc3buWK3tX03X+AZ3G9KsaUs460c+WJEly2I193zskLSFh4Zibqm9wVu04xKodhziyYmoyRwlpwdSjdopykSRJcvjdo98jpCTF++xsP8DKrfs5umaWjqP6eZnkq5Liz0fFlUlPuvo9xEaEovdh0k6fUxvwObWewsO0V1kS0t6JdplS/NnxHq09d5MuhUbFYfZhQuCN19+x/to7dnT6sXoTpHdOI89/832wJEny0GP+qRVSkj6/z725fy039q+h3eyEp/wQvt34yjbf/Pn4oXrUACw5epddV54Tp1JhZWrI9LZlkz9IEIBbu5bw5Mwu5LhYDM2sqNhrhq5DEtKRc1sWcef4TuLiYjGxsKbhQPHgJCRuwbpdbDt8hti4OGwszZg7opeuQxJ+EPPXbGfbwZPExcVhbWnOvNEJzykj/Jq8D//Hu8u7kePi0De1IndHUQAWvtx/F3zYc8+POJWMlbEeU+pl13VIgo5d3raY+yd3IsfFYmRuzW/9Z+o6JCEZP1yPGiH9+NF61Aip62frUSOkHz9Cjxoh/fjRetQI39eP1qNGSD9+5B41Qtr70XrUCN9XavSo0d1gRUEQBEEQBEEQBEEQBCGeX7pQ02DKPg7dfKmz6z95E0SDKfuoNHoHZYZvZfKuawm2O/vAh6zdV1Jp9A4qjd5BzQm7NPtuPPel0ugdlB2xLd4qWBvOPmLG3htp/RZ+GTsG1eP5xdRdneNLnJo3kHVdSrKxewW29a/Nu4fXE2wX6uvDjn/qs7RJNjb3qhJv37uH19nYoyLru5bG88gGzXbPw+u5smF6msb/s1vSsw6eZ3U3n83O6X8zvXVxZrcvy8JuNfDy/PT5eP/yEUt712N2uzLMbleGR5ePJ3mumKhIZrQpybw/Kmm2eXleZ06HcsxoU5Jrn62IdXXfOo6vEt3yv1TNToPYf+qizq6/fu8xijf9C4sidVi4YXeK933u9Vtfav3xD45lm1C2VfxhX9fuPqRksx4UadSVNbs+rTCzeudhJi/Z8P+nEr5Ajfb92HfivM6uHx4Rye/9x5K/5u941GmfaCynLt3AtkhtSjTqQolGXSjf4tOKYVfvPKBEoy4Urtsh3qpXq7cf4N9Fa9P8PfzMrk9sjO+N1F2F7msE3D/HifbOeB1eptl2499mXB5elcvDq3JpSCVOtMtE6Mt7Wsf6XjvAlRE1uDSkEpcGV+TV/oWafcHPbqqPH1wh3opYPqc38mKXGK78LZosv8vhB7rr2RwRHcefmx5SZtY1ys+5nmgsKpXMiH3PqDT3Bv9j7yyjo0i+Nv4biStJCAnEhRCiuAR3h8VtF3d3d10Wd3d3d3d3jwARICHuMxl5PzQ7ITuDw8L+X55zOKS7bkl336m6detK5QW3abXuIa+T5QDciUql6qI7VJh/m623YzR1ttyKYc6ZSJ3t/cLnY12/ugRf+nF7oqzMdHaOb8/C1kVY3KbER8eikGeypF1JVnStpLn38sktlnUqx5J2Jbl7JFuuvXN4I+fX/zzJFP5zMWr+lzBuxzXqFnGhQ6WCpGZmUW7MTqr4OVLYNbcWbX57S46NrK91f+6hu0xuURJ/Z2vKj91F89KexKdmsvHCU7b3r/FvPMYv/AtwKlqZoC6TkEj1eH7lCEendqL1yutadHpGJhRvNQR5egrXNuTM/HRz21zKdplMbs8AtnQvR4EqzclMjufR0Q3Um7zz33qUX/gO8CpRhTq9pyCR6vH4wmE2j2nPwC2CsmbHlB6UqN+eQjWaExsRyvI+9ei/8Rr678lodWzZRJx8i/E65L7m3pn1s6nTZyr5vAKZ0yaIwjVbkJ4Uz42D62k/a/e/8Yi/8A3h7+XGmqlDmbFKO/Xvh8reGbYGFgAAhC5JREFUhYmxESO6tSIlLZ1Ji3Nurmes2sb0IV0oVNCT4o2707peFeISk1m35yj7l0z+ps/yC/8uZq/aiqmJEfcPryPkRSRVfu/L/UPrMDXRzkpUwN2ZC1sXad2fsXwTM4b3pFBBT4r91onWDaoTl5jE2l2HObD8r3/jMX7hO0KRkUrY1klY+VfKcT9wSPac8ubGIZ7tmIapU0Gt+voWtvj1W4NBLjsU6clcH1MDM7dCWHqVIHz/fDxbTcTM1Z9rIyphV6YpWanxvD67mYAhW777s/3C98Piiy8xNZBwoU9hwuIyaLjyARd6F8LkbUDkv3H0SQI3o1I51i0AqUTE2MPPmXM2kil13Jh/PooJNV3xz2tC5YV3aBpoS3x6FltuxbD5D21e+4X/Ji5vnY++sSnd198gPjKUtX1q0339dfTfBmH/J06vmEi+gsWIDn2guXdp02yq95yKXf4AlnUsg391Qa69c2gDrabv+rce5aP44YqadJmCXqvO8uRlIlKJCI88FizvWonopHS6LjtNSkYWsiwlVfwdGdO4GADT9t4k5HUSKRlZhEYnEeBsQ++a/ozZepWI+FRqF3JmbJPigGA14+toxf2IeF4mpFG/qCsjGhbVGkdKhpzRW6/yMDKezCwlZQrYM75pcSRiMX/tvcWua2EYSCWIRLBrYE0sjL8+laYISM4QtMAZcgUikQgbM8PPakNPIiJDrkCWpUQiFgykxm2/xrAGRdCXSj5S+7+FrMx0Ts7sSfyLx4ileljm86D68BWkx0dzdFpnstJTUMhlOBerSukOYwG4uv5PEiODkaenkhgVSm4Pfwo37cPFZaNJiYnELag2pTuMAwSrGRs3P2LD7pEa+wqPsvUp2Xak1jjk6SlcWDqSuOcPUchl5PMvQ1CnCYglEq5tmEbwmZ1I9A0RIaL+1N0YmFp89bO7lKiu+dvOuxipsS9Rq1SIxDmN4gxMzMnrV5qou+e12hBLpShkGSjlMk29iyvGUuKP4Uj09L96jD8a8sx0tk/qTvSzx0ikUmycPGk5fhUpcdFsHtcRWZrAH16lqlKz+3gAjq+cypsXT5GlpxAbEUo+r0DKt+rLwQUjSXwdgU+5OtTsMQEQrGbsPf14FXyPpDcv8avYgOpdRmuNIzMtmYPzRvI67AEKWSauhctSu+ckxBIJJ1b9yZ3jO9DTNwCRiI5z9mFk9vX8USAoWynr5FucpDcvUalUiMViXoU8wLNEFQBsHN0xNrPk6eXj+Faop9XOszsXiY0MpUyzHhx6R1EjkUrJkmWgkMsQS4R55dDC0VTtOALpf5R30jMy6TxqJo/CXiCVSsnvnI91fw3ndWw87YZOIzktHZlMTvWyxZjUrwMAkxat5+nzSJJT0wkJj6KQtwf92zdl2IxlRLyKoV6lICb3F2hrdBiCn5cb956EERUTS8OqZRnXu63WOJJT0xk6Yyn3nz4nUy6nXFF//hzYCYlEwuTFG9h2+AwG+vqIRHBo2VQszXULIp8DHw8XAMQibaPaD5W9CwszE8oU8ePstbtaZVKplPRMGZkyuWZdGjFrBaN7/IG+nt7XDf4nQHpGJp2G/8mjkOfoSaV4ujqyfuZoXr+Jp+2giRreqVGuBJMGdgFg4oI1PH0WLvDO80gK+eRnQMfmDJu2mPBX0dSvUpbJb2mrt+2Pv5c7d5+EEvX6DQ1rlGd8345a40hOTWPItEXcfxKGTC6nXPFA/hzcDYlEwqSFa9l28ORb3hFxeNWMb8I7Ow6fZunkIQB4ODtQ2Dc/R89fpWH18p/chp5USnpGJpnybP4YPn0pY3q3R1//v88fSlk6j5f1JS3qCSKJHsZ27vj0XIIsMYZHi7qjyEhBlSXDOrAy7s1GAfBs13TSX4WgzEgl/XUYZi5+ONXpSeim8WTGRpK7aE3cmwvrza0pjTB18iE1/AGy+FfYFq+LW5NhWuNQZKQQsnEsaRGPUGXJsPQujUfLsYjEEp7vmkH0ld2I9QwQISJg6Hb0TL5+LQII3TQWx1rdiLt9/L00r89uxr5cc51l5u6FNX9Ljc0xyetBZmwkeJVALJGilGegyspEJBbWotDNE3BtNASx9L+5Fr2LDLmSPrtCePomA6lYhLuNEUua5icmRU737cGkypTIFCoq58/FyGrOAMw4FUFIbAapMiVhcRn42ZvSs2w+xh15TlSijJreVoyq7gIIVjMF7Yx5+DqdV8ky6vjYMKyKk9Y4UjIVjDvygkfRacgUakq7mDOmhgsSsYiZpyLYfT8WA6kYEbCtrQ8WRl+/ndx7P47ZvwlpuN2sjfDPa8LJkETq+ljnoBOJQK5QIVOoEIvEpMmUOOYS9mR6YhEZWUoyFSrEb9O7Tzz6gsGVnNCX/m85kWRlprN3andiXzxGLNHD2tGDhmNWkRofze6Jnd7KvJl4lKxG5S7CPufs6qnERQQjS0shPjIUu/wBlG7Rl+OLRpEUHUGBsnWo3FWQj9f1q0sed1+iQ++T8uYl3hUaULHjKK1xyNKSObZoJDGhD1FmZeIcWIYq3QSZ9+yaP3l4cicSfQNEIhGtZ+7F8BvsiR6e2kXdoQsBsHJwx94rkNArx/Gu0ECLNvzuJeIjwyjRpDvRodkyu1iiR5YsHYVcpplLTiwZTYX2I36qPdEPV9ScehBJYrqM8+MbApCYJgPAwlifdT2rYmqoR5ZCRbPZRzh5P5JKvg4A3HkRx7ER9TAxlFJ5wh4m7LjOpj7VUKhUFBu2jT/KeeGWR2CGJ68S2d6/BplZSmpP3U8xd1uqBeScmEZvvUqp/HbMalMGlUpNt+Wn2Xg+mLpFXFh49B4PZ7bESF9KamYWhnraCpAzD6MYu+2azmdsVtqDrlW1U+JNbF6S1vOOser0Y5LSZYxuXAwnGzOdbYRGJ1N5wh70JCLaVvCmeWlPAPrXCWTQ+oukyxSMaVyMi09eIRaJKJXf7lNe/38KETdPIUtNpMWSiwBkpiQCoG9qQe0xG9AzMkWpyGL/yCaEXz+BU1HB9edNyB0azzmBnqEJ23pX4vKqCdSZsAWVUsH6dkUoWOMPLPO5AxAf/oR6k3eilGeyo39N7LyL5VCSAFxYOpK8fkFU7DsHtUrFsb+68PjYBtyC6nF75wLabXyM1MAIeXoKUgPtU8aIW2e4uGKMzmcsULkZAb91++B7uLdvOc7Fq2opaT6Goi0GcmbeABSydEq1H0fUvQuIRCLy+pX+rHZ+VgRfPUlGSiL91l8GIOMtfxiaWvDH1E0YGAv8sWpAI55eOU7+t8qLl0/v0GPZSfSNTJnfoTxHFo+j7V/bUCkV/NU0kGL12mLjKPBHzPMntJ+1G4U8k8XdquHsWzyHkgTg4LyRuAaWpuHQuahUKraO78SNA+vxrVifc5vmM2LfU/QMjJClpyDV1+aPkOunObRAezEEKFSjBWWadf/ge7i0cxlepaohfssf+bwCuHN8O0FNuhL15DZvIkJIfB2hVU+ekcaBucP5fepG4iLDcpRVbDOIPTP6I89Ip2a38YTduoBIJMY1MOiDY/mZcfzSTRJSUrmxcwkACckpAFiambJt7hhMjY3IylJQr/tIjl64TrUgQcF/62EI5zbOwdTYkNItejN6zip2L5iAQqmkYK12tG9UAw/nfAA8Dgtn/5LJZMrlVPyjPyUDvalZrkSOcQydsZQyRfxYOKYvKpWKdsP/Yu3uYzSoGsSctTt5fnIjRoYGpKSlY2SgfUBw8vIths9cofMZW9WtTK/ff/tm7+xTMbRTC/pMmkdahoxJ/dpz7vo9xGIRZYr4/etj+R44duE6icmp3Ny3CoCEpLe8Y27K9gWTMDV5yzudh3D03FWqlRUOjm49COb81oWYGhtRunFXRs9czu4lU1AolBSs3pr2TWrj4SzIOI/DXnBg+V9kyuRUbNWLkoE+1KqQM1jpkGmLKFs0gEXjBwq8M3gya3Ye5rdq5Zizaisvzu34MO9cusGwv5bofMbW9avRq01jrfsRr2JwyptHc+1ol4fIVzFadAAhzyMp1bgLelIpnZvXo3UDYS0d2rU1vcfPJi0jk0kDO3Pu2h2BP4r6f/C9/1cQf+8MWWmJFJ9yBoCstERAUDr49luD1NAElSKLu9NbEnf3FNb+gptp6vN7FBl7CImhCddHVyds62T8B6xHrVJyeUAJ7Cu0xthOyNyTHvWUgMFbUGXJuDWhLuaeRbEJrJpjHCEbx2JZoBQFOsxArVLxaHEPXp3dTO5itYk4vJjS8+4i0TdCkZGKWF/7kDD+wVlCN4/X+Yx2QU1xrNFZ637cnZMo0pOxLVbnvYoaedIbEh6ew6vDx12u014Gkxx6k/xtBQth5/r9eLp6CEpZOm7NRpL4+BKIxFgWKPnRtv4LOB2aSFKmktM9AwFIzFAAYG4oZU3LApgYSMhSqmi57hGnghOo6JkLgLsv0zjUxQ8TfQnVF99l8rEXrG/tjVKlpuTsm7Qqmgc3a0HeCH6TweY/CiJTqKi3/B5FHc2o6pUrxzjGHXlBSRdzptd3R6VS03NHMJtvxlDbx5rFF19yZ3BRjPQkpMqUGOpQgJwNTWTC0Rc6n7FJQG46l86rdT8qSYaDZfY8lc/CgJdJMi26qvlzcfFZMoHTr2OkJ8bDxohJtV0B6FvegaH7w0iXqxhVzZlLz5MQi0SUdDH/2Kv/zyH02kkyU5Poskpb5m06aSP6b/dEmwY3JvTqcdyLCzLvq6d3aL/oJPpGJqzoUoFTy8bRfOpWVEoFC1oVolCdNlg5CDJv7IsntJq+C4U8k9U9q+PgUxzPUjn3RMcWjcTZP4g6A+eiVqnYPakzdw6tp0D5+lzZuoC+O59oZF49HXuiZzdOc3yx9qEngH+15pRooi3zJsdEYZHHUXNtbutA8psoLTp5RhrHFgynycQNJETllGvL/D6QQ7MGkJWZTuUu43hx5wIisRingJ9rT/TDFTU+jlaEvEpiyIaLBHnZU8VPePFKlZpx269xLTQatRreJGdwPyJOo6ip6JMPc2NB41XQwQofBysM9CQYIME9jwXP36RoFDXNSnkilYgxlYhpUMyVc49faSlqjtwJ5+azNyw6KpwiZ8gV2OcywcxIDw87C7qvOEMlHweq+Ttiaqh94lO+YD5Ojcn3Wc++9sxjmpTyoGd1P6IT02kw/SCBzjYUcbPNQefvZM3tP5thbqzPizcpNJ51GHtLY8oXzIdX3lzsHVwbALlCSeOZh1nTowpLjj/gakg0uc2NGN+0+P+EdY21qw8JEcGcXTCYvP5BOBcThBK1SsnFFWN5/egaarWajIQYYsPuaxQ1joUrYWAiTNLWLgWxdvNBomeARM8ASwcPkl891yhqClRphlgiRWxkikf534i6c05LUfP8yhGin97i9i5Bm6vITMfUJi/6xmZY5vPg+F/dcCpaCefi1dA31la8ORYqT7P5p7/oHQSf2Unw6R00mPb+2BHvg5WTF7/9tR8AZZacvcMbUnP0Ou7sXszrh1cxssxNUKcJP5Um+XNg7+HLm/Bg9swciFuhMniVqgYI/HFo4WjC718FtZqU+BheBd/TKGo8i1fSaPjt3H2w9/BFqm8AGGDj5EH8y2caRU3hGs2RSKVIpKb4V25I6M1zWoqaRxcOEfnoBue3LABAnpmBRe68GBibkdvJg60TupC/eGW8SlfHQAd/eBStQK9V577oHdw5voM7x7bTaf4Bzb3GwxdyYN5wbh7cQG4XL5z9SiKWas9hhxaOpmTDjljkzqulqMnjWoDO84VMS4osOSv7NaD15A1c2LqIF/euYGqVm1o9J/2nrGv88rvy9FkE/SYvoGxRf2qUFSw2lSoVI2at4PKdR6jVaqJjE7j7JEyjqKlSujAWZiYA+Hq64JffDQN9PQzQI7+LA2GRrzSKmlZ1qyCVSjCVGtGkenlOX72jpag5cPoK1+8/Ze5awdQ2IzOTfLY2mJsY4+mSjw4j/qJq6aLUKFccMxNtd7VKJQtxeev87/aevgTe7k4cXSm4sMizsqjTZTibZ41m/vrdXL79EFtrS6YO7PSfta7x93LjybNw+k6YQ7nigdR4+02VSiXDZyzhyq0HqHnLO49DNYqaKkFFsTATrFp8vdzw83LHQF8fA33wdHEgLPylRlHTqn41De80rlmRM1duaSlqDp66xI17j5mzehvwlnfscmNuaoynqyPth0yhapli1KxQUjfvlCrClZ1Lv8s7CizoydMTm7AwM+V55CtqdxxE3jw2VCpVBG8PF46tnQ2AXJ5F7Y6D2DJ3PPPX7uDSrfvYWufiz8Hd/rPWNaZOBUl/FcrTtcOwLFAa64C38eLUKsI2TyAp5Dqo1ciTYkgNv69R1OTyLY/UWJBVTB29MXEsiFhP2Lga27uTEfNCo6ixK9NUkFUkUmxL1Cfx4QUtRU3craOkhN0m4rAQ40Uly8TAyh6pkRlGdu48WtILK7+KWAdWQarDZcDKpxxWE95vFfNPZKUlEbZtMgGDPxyH6vX5rVj5VUTf3PqDdLLEaO7PaYfn75MxyCUcPprky0+hEcJcqVLIufNnM3z7rCTiyDKSg6+hZ26DR8ux/1nrmoJ5TAiJzWD4/jBKuVpQxdMSAJVazYSjL7geISiFY1LlPHidrlHUVPCwwNxQ2NJ55zHGx84Eg7cKFHdrI17EZ2oUNU0CcyOViJBKJNTzteHCsyQtRc3RJ/HcjkplyUUhC1pGlgp7c33MDCS42xjRe0cIFTwsqeKVC1MD7f1FOXdLjnWz/ObvB+DeqzRCYtO5MaAIJvoSxhx6zrgjz5lU2438tsbsbC8cjMsVKpqvfciK5l4su/SKa+HJ5DbVY0x1l/8J65o87r7EhT/l8JxBOAcE4VFSkHlVSiUnFo8h8sFVQE1qfAzRIfc1ihq3opUwNBXmGVs3H/K4+2hkXmtHDxJePtMoavyrt0AskaJvZErBig15fuuslqIm+OJhXj2+yeVtgsyrkGVg/lbmtXL0YM/kLrgXq4xHKd0yr2uRCnRadva7vKMTS8ZQpEEHzHPn1VLU5HYpwB9zBFlZmSVnw8DfaDJhPVe3LyLi/hVMctlStfvEH74n+uGKGpfc5lyY0Iizj15y4n4kk3bd4MzYBiw+9oCkdBmHh9fFUE/KgLXnycxSauoZvGPVIhGJcli5SMQiFEqVzv7UasFsTtf9NT0q45JbW+t6aFhdroZEc+7xK6pM3MPmvtXxcbDKQfMlFjXLTj7k2uQmAOSxNKZMgbxcCo7WUtSYGWUziXNuM2oGOnE1JIbyBXMqhuYeukurMvlJTJNx+PYLdg2sxZ97brLjSigtgvLrHNt/CRb2LrRYcpHI2+cIv3GcK2sm0mzhOe7sXIQsNZFGs44g1Tfk9Nx+KOSZmnoS/WwNvUgiQfrOyZFILEalVOju8D3MolarqTlqLRb2LlpljWYd4dXDK0TdOce23pWpM2ErNq4+OWi+1KIm7OIBrqyZTL0pOzHOZauT5lNxc9scvGv8jiw1kWeXD9Fg6h6urp/K01Pb8a7W8qva/lGwyutCv/WXCb1+lidXjnF06QR6r77A+S0LyUhJpNuS4+gZGLJrWl+y5NmnNO/yg1gsebtgZV+rFLr5Q2AP3fzResoGrPK6aJV1XXyMF/euEHbzLAs6VqTt9G3Ye+ScG77UoubB2f0cWzaRDrP3YGaVzR9WeV34fcpGzfWs1iWxddGeD17cvcyTy8c4uXoaCrmMjJRE5rYJoveaCznozqyfTdE6f5CRksjD8wfpNHcfx1dM4c7RbRSp3Urn2H5GuDrYc3PXEk5fuc3RCzcYO28NV7cvZN66nSQmp3Jm3SwMDfTpOX4uMplcU8/AIHs+loglGOa4FqNUKtEFNWqd/AJqtswahauDvVbJ6bWzuHT7IWeu3qFMy97sXjABv/yuOWh+RouadzFj5Tba/FaDxORUDpy+zKHlU5m4cD2bD5zijwbVfujYvhSujnm5tW8Vpy7f5Oi5q4yZvYJru5czd812EpNTOLN5AYYG+vQYM5NMeTbv/JNXDPTfuZZIULyPd9S6eUetVrNl7nhcHbVPp89snM+lW/c5feUWQU26sWfJFPy83HPQfIlFjaO9LeEvo8ltZQlAxOtoypcI1KIzNzXR/O3iYE/dSkFcuvWASqWK5KCbvnwTbRvVIjE5lf0nL3B49UwmzF/N5gMn+OO3/2acPSNbZ4pPOUPCw3PE3z3Fs+1TKTrxBBGHl5CVnkjh0fuR6BvyZOUgVFnZa9HfShnhQqJ1rVa9by16j2CLGt8+KzGyddYqKTx6P8nB10h4eJ4bY2rgP2CDVryYz7WoSYt6jDwxmhvjagGQlRJP3K1jKNIScWnQX0P3+twW3JrrXuP+hjw5ljt/NsOxZjdsS2i76QKE75+PffmWKNKSiLt5hMBh23m28y+iL+58r1vVzw5nK0PO9AzkfFgSJ4MTmHo8nBPdA1hy8RVJmQr2d/LDUE/M4L2hyBTZ+xyDdxQPErEIA6kox7VC95YINUIYBq37aljR3AtnK21Lq30d/bgWkcyFsGRqLrnL+tbeFLQzyUHzJRY1+SwMiEyUYW0iKGijkmSUdtV2k9l6O4Yg12zFVMMAGwbsDtWiW3A+ihaF85CUqeTI43i2t/Nh+skIdt2LpVmhr5OhfwbkyutCl9WXeX7zLKFXj3NqxUQ6rzjPle0LyUxNpN3CY0j1DTkwo2+OPVEOGVciQZJjTyRB9Z51iPesQ6jVNB6/nlw6ZN52C44Scf8Kz2+dZWXXSjSfuo087jn3RF9iUWNum4+k6AhMLG0ASI6JxCWwjBZd5P3LhF45xvm1f6GQy8hMTWRZxzJ0Wp4zPMTFTbMJrP07mSmJPL14iNYz93Jm9RTuH99GQM0fK9f+cEXNy/g0LE0MqFXImQoF8+E/aDOJaXKS0mXksTDGUE/Kq4Q0Dt0Op22FAl/Ux7bLITQo5opMoWTvjWcMb1BEi6Z6gCPzDt1lWuvSSMRi4lIySc3MwtrMkLTMLEp72VPay57rYTE8jkrQUtR8iUWNs40ZJ+9H0qy0J6mZWVwJfk2NAEctuujEdGwtjBCJRCSkyTjz8CVDGxTOQRMWncSNsDcMrFuIB5HxiN5OvWKRiLTM9ygi/mNIjX2JgaklbqVr4Vi4Amt+90WWkoAsLQljqzxI9Q1JjX3Fs8uH8anV9ov6eHJyGx7lfkOZJSP0/F5K/DFci8alZA1ubZtDuR7TEUskZCTFkZWRiqG5FVmZaeTzCyKfXxCvH10n/vkjLUXNl1jUPL9yhAvLRlFv0nbM82j7E38OEqNCiX58g2ItBxH77IGGV0QiMVmZaV/V9o9EUkwURua5KFiuNh7FKzL1N28yUhLITE3C3NoOPQNDkt685OH5g5Ro0P6L+rh1ZCt+lRqizJJx/9RuqnXSjmHkXaYmZ9bPpv6AGYglEtIS45Clp2JiaYUsPQ23QkG4FQoi/ME1op890lLUfIlFzeMLhzk4fwTtZ+4il31O/khNeIOJpQ0ikYgbBzci1dfHvYh2PIl3FTJht85zaMEoeizPmSEqNiKUiIfXqNxuMK9C7msWbZFYjCzjv8U7UdGx5DI3pW6l0lQuVRiPqr+TkJRCYkoaeWysMDTQ52V0LPtPX6ZTk1pf1MemAydpXL0csqwsdh47z9ief2jR1CpfkhkrtzFnRA8kEgmxCUmkpmdgbWlOanomZYv6UbaoH1fuPuJhyHMtRc3PaFHzN0JeRHH17mOGdWnJvafPNDsCsVhEWkbmhyv/xIh8/QYrCzPqVS5DldJFca/YlPikZJJSUrGzscbQQJ+o6DccOHWBjs10bzI/ho17j9O4RkVkcjm7jpxhTB/tOatWxVJMX76ZuaP7ZPNOWjrWuSxITc+gbLEAyhYL4OqdhzwMfq6lqPkSi5rfqpdnxdb9FPH1IuRFJDfvP2HNX9rz4Ks3cdjZWCESiYhPTObExRuM7t0uB03Ii0iu3n3E8O5/cO9JqGY+EYvFpKVnfNa4fiZkxr9Ez8SS3EVqYuVbnot9C6NIS0SRnoyBRR4k+obI4l8Re+sIeStpzwmfgtcXt5O7RD3UCjlvru3HtfEQLRrrQtUI3z+f/G2nIhJLkKfEocxMQ8/UCqUsDcsCpbAsUIrkkBukRT3WUtR8rkWNZf4SBM2/p7l+tKwvZi7+OFTN5t2k4GsoMlKw/keg4XeRlRrPnWnNyVelHXkr6N4kpb8OIzn0Ji4N+guZo0TZcoxS9t9ai97FyyQZuYyk1PC2ory7BYVn3CAxQ0FypgJbU30M9cS8SpZx5HECfxTL8/EGdWDHnTfU87FBrlSx/0EcQypry5TVvHKx4HwUU+q4IRGLiE/LIlWuxMpYjzS5klIuFpRyseBGZApPYtK1FDVfYlFTx8ea9dejCchnSlhcBnei0ljYWLsNR0tDzoYm0qmUPXoSMSefJuJlm9NiMCwug5uRqfSr4MjD12kaPaZYBGmy9ygi/mNIfhOFkVkuvMrUxq1oReY0KUhGcgKy1CRM3+6Jkt+8JPjiIQrXbffxBnXg3rEtFKz4Gwq5jEdn9lChg/Zc71m6Bhc3zaZmX0HmTU+KQ56eipGFFfKMNJwDgnAOCCLqwTXePH+kpaj5Eosa7/L1ubVvNXm9ChEfGcqrJ7doMHKZFt27CpkXt89zfPFoOiw+mYMmPjKUqIfXKfvH4LfBhrPnEvlPINf+cEXNo6h4JuwUsteoVGp61/THztKYTpV96Lj4JJXG7yaflQnlvLW1r58KfydrGs88zKvEdOoVcdFyewIhXsy47deoOG43IpEIfamYCc1KoCcR037xCTLkStRqNX5O1tQurH068SWY264swzZdZtGx+yiUahoUc6XyW9evqXtuYmdhTNsKBdh/8zmrTz9GKhGjVKloUsqDmoE5xzBqy1UmNhPMr30crHDObUa5MTuxMjVkdffKWn3/FxH37CGXVwuBXdUqJYWb9sXE2h7/ep05MqU9W3tWxDR3XhwCyn5xH7nd/dk7vCFpca9wL1Nfy+0JoEzniVxaOY6tPcsDIiR6+pTpMgmxVI/DE9sKmmu1Cht3f9yC6nzxWN7FyVm9kejpcXhytsBTf/JODM2tuLpuCsZWdvjWbodKqWRd20CUWXLk6cms+d0P7+qtKd46W4i7sHQkZTpPBMDG1QdzO2c2dyuDobkVNUau/Sbj/RF4HfaQI4uFgGkqlZLyrfthbmNPqcad2TS6HfPal8PCNh/uRcp9cR958/uzsl8DkmNf4VuhvpbbE0Cd3pM5tHAMc9uVQSQSIdUzoHbvyUikUjaMbINCloFKrSJf/gB8ytX94rG8i+1TeiLV02fjqDaaex1m78HYwopH5w9xduMcQIR1PhdaT1qv2RAdWz4Zcxu7T1ZcHZg3nDq9pgCCq5mVvQuz/yiFiYU1rSev/ybP8m/hfvAzRs9dDYBSqWJAh6bY21rTvUU9Wg+aQqlmPXGwy02F4gFf3EdgAXfqdBnOy5g4fqtaRsvtCWDaoM6MnL2SEk17IhKBgb4e0wYJcT1aDphIhkyOSqUm0Nud+pW/TUygrYdOM2LWCo2Vy4yVW9m7aBLe7k4fLJuwcB32ua3o2KQ2SqWSAjXbIs/KIiklHc9qv9P2t+qM6NZa08+Q6UuZNlg4dffL74qrgx1FG3XDxtKcTbO0Bb7/Ch4EhzF65nJAcJUb2LEFeW1t6N66Ia36jaNkoy4C75Qo/JGW3o/Agh7U7jiIl9Gx/Fa9nJbbE8BfQ3swYsZSSjTsLMgt+nr8NaQ7UqmUln3HkimTCbxT0JP6Vb98XXwX/do1pfOIafjW+B2JRMy8sf01blXj563C3taGTs3qsvvoOZZv2YtUKkWpVNKyXlXqVsrJv4P/XMhfQ4XTUj8vd1wc7SlavwPWuSzYPGfcNxnvj0BaxGPCtgnZzdQqJc51emKQyw6Hqh14ML8z10dVxcAqL7kKap8AfyrMnP24M60Z8oTX5C5WR8vtCcCj5XjCtkzk2sgqiEQiRFJ9PFqNQySR8mBeJ1TyTNRqFWbOftgU+TJl9Ofi9bkt5AlqrAne+Tee7ZyGvqUd+Sr9Qfj++WS8DuPl6XW8PL0OAIeqHXNYyYRsHItHK4FHTJ0KYpjbiavDK6JnZoVvb90Whv8FPI5JZ/KxcEBwd+pZJh925vp0KGlPl61PqLboDnktDCjj9uUxV3ztTWm+9iGvkuXU8bHWcnsCGFfTlYlHX1B10R1EgL5UzLgaLkjFIjpveUqmQoVKrcbX3oSa3h92YftUdAvKS99dIQTNuYlYJGJaPTeNW9VfJ8PJY6bPH8XsaFvcjqdv0qmy8C5SMeS1MGBaPbccbY09/JyxNVwAKGhngnMuQyotuI2VsR7Lm3t9k/H+aMSEPeTUMsHiTa1SUrplP8xs7Cn2Wxd2jGvH8s7lMc+dD5dCXy7z2nkGsGHgb6TEvsK7fH0ttyeAqj0mc3LJWJZ3KgsiERI9A6r1mIxYKmXHmDYo5JmoVSrsPAMoUPbb7IlKNuvFvj97sLB1EURiCTX7z9K4VZ1ZNRlTa3uK1Ps05dSxhSOo2kOYr/O4+2CZ15ml7UtjZGFN4/Hrvsl4vwYitVr96cQikTpm2ZedRP8oNPjrIN2r+epUzvzC18G200rUarUuq8nPgkgkUnc/GPsthvRV2D2kHoENe+hUzvyCNhbWsvkm3x8EHph8LuFbNPXdsKxXHco276lTOfML3xbDy+Z6L2+JRCJ12u2D//aQPhs1OgyhT5uGOpUzv/BtYRJY65PmIpFIpE5/cOLfGNJXoXrb/vRp20SncuYXPh/GPpU/mT8qrHn5bwzpq3BrSiMca3bVqZz5hW+L023yfjLvRI37+X+vjVc9oEvpvDqVM7/w+cg35tJXy8EikUg94mT8txrSN8O6fnUp2bSnTuXML3waJlWy+mr++O9HU/qFX/iFX/iFX/iFX/iFX/iFX/iFX/iFX/gfwQ93ffre2D3o3zHn/IX/Phr8ufdHD+EXfmJ0mrf/Rw/hF/5DOLzizx89hF/4j+LI6o+nLf6F/78oNGzHjx7CL/xHsb2dz8eJfuEXgN9nfX522V/49vhlUfMLv/ALv/ALv/ALv/ALv/ALv/ALv/ALv/CT4IdY1PwMcWN6rTzL2UcvqV3YhcktSgJw5E4447ZfQ6FUEeBsw5y2ZTE20H5F10NjGLnlMnKFiiyFig6VCtK2QgFUKjUdlpzkcVQCBnoSbMyM+Kt1aVxtzZErlFSflK2dzJAreBGbwsOZLcllYqDVx7uISc6gx4ozRMSmYqgvYcbvQVopvAHuhccxdOMl7kfEUdnXkZXdsqPqT9hxjZP3ozTXIa+TGN24KJ0q+3DyfiTjd1xDhJDWvGYhJ4Y1KIJIJGLfjWf8uecWsSkZPJ7130m9+zPEmzkxsyeRt87gFlSHsl2FAKzPrxzm4oqxqJRKcnv4U6nfPPQMc0arV6tUHJncnvgXj5DoG2JkYUP5XtOxsHfV1U0OpCfEcHx6d1Kiw5EaGFGh10zyFNDOcpaVmc7puf2Ie/YAtVqNlXMBKvaZjb6xGaHn93J13VQykmJpv/npt3kZ/xJ+hjgy2yd1J+TGGXzK1aFuX8Gq4tGFQxxaOAaVUkE+r0AaDZuP/j++u0qlYtPotkSHPUKqb4BprtzUHzgT63zCdw9/cI39c4ahVMhRZmVRqlEnTRDgc5vmcW3fWuIiQ/l9ysZPfv6U+Bi2TexKwqtw9AwM+W3QbBx9imrRHV48luAr2bE93oQHU6PbOEo37sLL4HvsnTmQV8H3yF+yKq0mrtHQydJT2TtzIC+D76JUKChW53fKtugFwL1Tezi+YgppiW8YuV87teb3xs8QQ6bzqJmcunKL+pWDmD6kKwAHz1xhxKwVKJRKCnl7sHhcP4yNtFOkqlQqJi5az44jZzEw0MchT252zheCa85es4PVOw8TEv6SbXNG53jGvpMWcPH2A8QiMXpSCeP7tKOijvTK/0R0XAIdR0wn/GU0hoYGzB/Vi2J+2pkYj164zqg5q4T1RKGgTsVSjOn5ByKRiPSMTHqMnytkgFKrKejhzIIxfTAzMWbUnFUcu3BD087T5xFM7Nue7i3rs+vYeSYuWseb+CTCT2/+3Nf8Q/EzxJvpPPxPTl6+Sf0qZZkxvCcAB05dZMSMpSgUSgr55GfJxEHv5bMJ89ew4/ApDA30yWdny65Fkz/aZ3RsPB2HTeVF1GuMDAyYN64/xf2930v/Jj6RYg06ULqwHxtnjwVg15EzTJi/mjfxiURc2PVlD/8D8DPEkHm0rC8JD86Ru2hNPFsLyQNibx0ldMsE1EolZi5+FOg4C4mBsVZdedIbHi3pRWZsJGJ9Q7zaTcPcXQiM/XTNMJKeXgWxCLFED7cmw8nlIwSqvjWlEbK4KCRGpoB2AOD34UP9vQtFZhrBa4aRGn4flTIL+3ItcarVTVOe8PA8oVsmonqbirhgtwWYOvnw6twWQjaOwdDGAQAjGyd8+6wEIObafp7v/At5cixlFjz45Pf7M+BniDfTd1cI58KSqOVtxYRarsgUKtpvesydl0K2nPtDir237ptUOb13hhCRKMNQKmZaPTcKO5h9tM/PqTfrdCTbbscA0CTQln4VBB7Y/yCO6aciiE3L+uAY/0v4GWLK7PuzB89unMarbF2q95oKwNOLhzm5RJB/7fIHUHfwfJ37nh3j2vLm2WOk+gaY5LKhZt+Z5Hor/67rV5fkmEj03wYMLt6wyyelzU6Nj2HvlK4kRUcg1Tek1oBZ5PPWlnFPLh1H6LVsGTcuPJjKXcZSrGEX7hzeyLEFw7GwE3QWlnbONJkgBBl+dGYPZ1dPIS0hlv67Q77gjX0c//OuTx9C75r+dKgkpCNMzcyi/9oL7BtcC7c8FvRbc56FR+8xsG4hrXqD1l9kWIPCVAtwIjoxnRIjt1OrsDM2poY0K+VJNX9HxGIRK04+ZOC6C+wYUBN9qYRTYxpo2lhy/AFnH778qJIGYNLO65TytGNbv0AuB7+m2/IzXJnUWCuffW5zI8Y3Lc79iHjOPMwZEG9Uo2KMaiRMRrEpGRQZupV6RYUfQHGPPJwYVR+JWEyWQkWdP/dT2NWWGoFO1C3iSoCzDdUm/XIL+hIUbtoHv7odAcjKSOXU3P78Nm0flvncOTW7D7d3LqBYy0Fa9byqNMOleHVEYjH39i3n9Nz+1J/ycUH18uqJ5PUtRdFJ23n14DLH/upKq+VXtXjl4eG1qBRZNFsopIE+Mrk9Dw6solCT3riXqUduz0C296nyDd7A/0+Ub9WHUo2EbDey9FR2TetL5/kHsXF0Z+fU3pzbNJ/K7QZr1StcozlepWsgFou5tGMpu6b1peOcPQDsmd6fqh1HUCCoBsmxr5nZsigFy9XBzMoW18AgCpatzc4/e3/WOI8uGY9LQGnaz9zJ87uX2DKhMwM23dDilxpdx1Kj61gAUhNi+auJP34VGwBgmsuG2j0n8TLkHiHXTueod3rdTCRSfXqvvkBWZjqLu1XH2b8kTj7F8KtYH4cChVjQqeJnjfl/DQPaN6VrcyH7V2p6Bj3Gz+XYyml4OOej+7jZzFm7k2FdWmrVm79hN8HPI7m+YzF6elKi47KDcZct4kfdiqXoMW6OVr1xvdtiYSakUr37JIw6XYbz4tQmrW/+T4yZu5oyRXwZsngSF289oP3wv7i7d7lWvdKFfLi4aS4SiYSsLAWV2w6kmJ8XtSuUZOWOw2RlKbi2fSEArQdNZtnWA/Rv14QJfdoxoY+QpeFNfBLetdrSsJqwAfytahkKF/SkbKs+n/paf+EfGNChBd1aNQAgNS2DHmNmcnzdbDycHeg2ejqzV21leHftVNHz1+4g+HkEN/asFPgs9tOCXo6evYKgIv7sWzaNizfu0X7wZO4dWvtePus7YQ7VypYgNS1dc++36uUp7OtFmabddNb5hQ/DqXYPTWpsRWYaT1YNotDwXRjbufF4xQAiDi3GpUF/rXph2yZj4VWSgMF9SXx6hYeLe1Ji2gVEIhFuTYYhNRYyDqWGP+D2n00Jmn9f8109Wk/4bAXVh/p7F+H75iKS6lF04glU8gxuTqiHRf7iWHgUQRb/iicrBuA/cAPG9h4o5RmolQpN3VwFy+LbSzt9r22xOpi5BHBj7K8kAV+KnmXy0q6EPQASkYgupfNiZaxH87UPP1hvyvFwSjibs+kPB66+SKbXjmDO9y700bXoU+tdfp7MgYdxnOghZG6su+w+pVzMKeliTh0fawLymlBz6T1dXfzCV6BUi74U+60TAPKMVA7O6Msfcw5g5eDO/um9ubx1PmX/0JZ//au1wLOUsO+5tmsZB2f2o9WM3Zryaj2nfrYS6tTy8Tj5l6bM7wOJuHeZPZO60G3ddS1eqdR5DJU6jwEgLTGW+S0C8K7QQFPuWqQ8jcau4Z/wLl8fe69CrOxaSavsW+GrXJ9m7L/NqC1XNNfxqZl49d1AmiyLs49eUnPKPiqN3035sbvYdTVMZxsN/jrI0TvhOq+jE9Npv+gk1SftpfzYXcw+cOdrhvtBnLwfSaCzDW55LABoU74Ae64900krEkFyRhYAabIszAz1MNaXIhaLqBHohFgsMEBRd1si4lJ1trHpwlNalPH8pLHtuf6MNuWFk8uSnnYY6km4/Vw7S5KdpTFF3GwxkEq0yt7FtkuhlPPOSx4LQaNpaqiHRCywgkyhRK5QIf4muXy+Htc3Tuf80hGa68zkeFY08yQrM43I22fZ0b8GW3tWZHO3sgSf2amzjd1D6vH8yhGd12nxrzk8qR3b+1Zlc7ey3Ngy67s9y4vrJ7D1CMAynzsAPrXaEnJ2txadSCzGtWRNRG+/SZ4CRUmJifykPkLO7cGnVlsA7H1KItU3ICb4lg5KEVmydFSKLFSKLBSZ6ZjY5P2Sx/ouOLn6Lw7MHa65Tk+KZ0JtN+QZaYRcP8OirtWY174cc9qU5s5x3f76y3rV4fGFwzqvk2Nfs2FkGxZ2rsycNqU5vXbGd3uWp1eOk88rEBtH4bsXb9COeye1lW5isRjvMrUQv/3uTr7FSYyOyCYQichMSwZAnpGGgbGZxirHwbsw1g5uWm1+DPdO7aZEfWFz7OJfCqm+AVGPdfFLNm4f2YJ70fKYWecBwNzGHkefokj1tJXOr0Pu41mikpA62MgE18Agbh/d9tnj/BCmLt3I4L+Waq7jEpNxLN+MtIxMTl25TcU/+lOqWU+KNe7GtsNndLZRo8MQDp29ovP61Zt4Wg2cRLlWfSnWuBt/Ld/yTcf/Lo6ev07hgh54OOcDoGPjWuw4clYn7dy1uxjfpx16esJ5Sx7r7FPVIr75cXfS/Xv+W0kDkJyaxkdkYg12Hj1Hh8ZCzLfShXww0Nfn5oNgLTpTYyMkEmENypTLkWcpNGuiSATpmTKyFAqyFArSMjLJl8dGq41NB05QsUQgdjZWnza4fwFTFq1j8NSFmuu4xCQcSjcgLT2DU5dvUqFlT0o26kKxBh3ZdvCkzjaqt+3PwdOXdF6/ehNHy75jKdusO8UadGTa0g3f7VmOnr9KYd/8eDgLp8sdm9Zlx+HTOmnnrNnGhH4ds/nsE7/JzsOn6dhMUECWLuKHoYE+N+4/0Um7ef9xbK1zUbao/2c+yffF8z2zCNkwRnOdlRrP+e4+KGXpJDw4x83xdbk+qirXRlQi+vJunW3cmtKI2NvHdF7LEqO5P68TN8bW4tqISrzYN/e7PUv83ZOYuQRgbCesE3kr/UHMFd0HcDFX95G30u8AWOYvgVjPgJRngvz9t5IGQJGe8tFN9afgQ/29i9SIh1j5VUAkEiExMMayQEliLglyX9TJNeQJaoSxvQcAEn0jpEYft874GTDrdCRjDj3XXMenZ+Ez9RrpciXnwpKou+we1RbdofKC2+y5pztDauNVDzj2JEHndXSKnE5bnlB76V0qL7jN3LOfJk9+CaQSEeXcLbEw/PA+BGDfgzj+KCrIEcWdzTGQijWWON+i3t77sTQOyI2RngQjPQmNA3Kz9/6PzzD7MZxb9xfHFuSUf2c2cEeekcazm2dY3bMayzuXZ2mHIB6c1C3/rutXl+BLR3Rep8S9ZsfYNqzsVoWlHYK4sOH7xUQLvXIce69ArBwE+bdw3XY8PKUt/4rEYvIHZe97HHyKkfSu/PuFeHR6D4Xfpul29BP2RK+efFjGvX9sC66Fy2Nqleer+/8W+CqLmmalPKgxZR9jGhdDKhGz80oYNQKdMDHQw9/Jmv1DaiMRi4lJzqDqhD1U9MmH5SdYkPyNHivPMqBOIKXy2yFXKGk04zCBrjZUKJgvB92Tlwl0XaZbAC9fMC9jmxT/aF+R8ak4WGcLsPmsTIhK0D1hzGlbljYLjjNp13US0mQs7FAeU0M9LboVJx9RXYd71+3nscQkZVDd/+OuX/GpmaAGa7Nsk+R8VqZEJaRRyDX3R+vrwuaLwQypn9Os9PbzWPqsPsezmGTalC9AVX/HL2r7W8OrSnN29KtG6Q7jEEukPD29A9eSNdEzNMHG3Z/f/jqAWCIhPSGGbb0r41i4EoZmlp/c/onpPSjaYgB5/UqjzJKzd3hDbD0L4Vi4Qg66+PAnHJvWRWcbjoXKU7rDuI/2lfomEjPb7PdqautA6puoD9QQcH/fClw/wYUrMzke1GqMLKyz+8jtQOqbl+TJn/N7+9RqQ/Tja6xuJZiiOxauSP6KjT/ax7+FwjWbs6hzVWp0H49EKuX2se0ULFMLfSMT8nkF0GXBIcQSCSnxMSzoWJH8JSpj9BnfffukblRsMxDXwCAUWXJW9K1PPu/CeBbLad0R/ewxW8d30tmGR9EK1Owx4aN9JUZHYmmX/d0t8ziQFPPx735pxzK8g2pqrhsNW8D6YS05smQ8GSmJNB25BANj04+28z6kJ8WjVqsxsczmF8s8DiTGROHgrW12/jduHNpA1Q4j3lv+LvJ6BXL/9F4Klq1NZmoywVdPYuPk8cVj1oVWdatQ/vd+TO7XAalUwtZDp6ldoSQmRoYEertzfNVfSCQSouMSKNOiN1VKFyaX+acL8J1GTmdo5xaUKeKHPCuL2p2HU9jHk8qlcr6jR6HhtBs2TWcblUoWYnL/Dh/tK+L1G5zss91aHextiYx+o0WXnJpOXGISO46eY9/Ji4jFYga0a0Kdip/mXjNh4Tq2HDxFYnIqG2eM/OhmKy4xGbVajU0uC809R7vcREa/oYhvfi36mw+e0nXsbELDX9KxSS1qlBXW4A6Na3H17mNcKwkmy1VKF6ZZLW2LqnV7jjG6+++f9Cz/FlrXr0a5Fj2ZPLCLwGcHTlK7UhAmxkYEentyYt0cgc9i4wlq2o0qQcXIZfEZfDZsKkO7/k6Zov7I5VnU6jCQIr5eVC6d00z7Uchz2g7W7XpUuXQRJg/UvU69i4hX0TjZZwuhjva2RL7WxWdpxCUks+PwGfaeOI9YLGJAxxbUrRT0wfbjEpNQQw5+cXjbR9F/uMu9jIll7prtHF09i11HdctxPwp2ZZpwc1wd3JqPQiyREn1pFzaFqyExMMbUxY9CI3cjEkuQJ73h+pgaWPlVQM/E8pPbf7y0N871+mFZoCQqhZw7fzbFzDUAK9/yOejSop7ycHF3nW1Y+ZTDvfnoj/Yli4vC0CZbdja0zocsXjsVeVaqIEfom1lr07oFAvBs5zSiL+5CkZ6ET6+cVnVhmyfwbNsUTBwL4t50BAZW9h8c16f09zfMXPx4c20/NoVroMhIJv7eaYzthA1getRTDG0cuT21CYq0RCy9g3BrMgzx2wOEpCeXuDaqClJDM5xq98A68OexGG4amJs6y+4xqpozUomI3XdjqV4gF8b6EvzsTdjdwReJWMSbVDk1ltyjvIcllkafvn3rszOEvuUdKOlijlyhotmahwTmM6Wcu2UOuqcx6fTYoa18ByjnZsGo6i5f8ZQ5EZ+ehVoNVibZe6d8Fga8TJIRmO/9cs3n1ItKklPKNXsOymuhz+UXyd/sGb4X/Ku1YFWPqlTuOh6xRMqDE9vxLF0TfSMT7DwD+GOOIP+mxsewsmtF3Ip9nvy7b2o3yrQehFOAsO/ZMLAB9l6FcCuacy1+8/wxuyd11tmGW5EKVO46/qN9JcVEYpEnW/61sHUg+RP2Pdd3LcOzdE4rtxNLRnNq+XjyuPtSsdMYzHN/+HA5PSkeUGP8zp7I3NaB5Jgo8hZ4v4x75/BGyrcbnuNe+J2LLOtUDgNjM0q16INnyWoffYZvha9S1DhYm+Jlb8nxe5HUCHRi88VgJjYTfOHjUjI1G3+JWExiuoyQ10kUddeOraILabIsLj59RdymTM29VFkWwa8StRQ1Xnlz5XAr+t5YcOQeYxoXo34xN0JeJ9FoxiH8naxxsM6eJOYfuUfwq0R2DKipVX/jhac0KuGOnvTfj+V889kb3iRnUNUvpyIm0MWGM2N/Iy4lk/aLT3I5OJpS+e3+9fH9E2a2DuRy8uLFtWO4lqzJk+ObCOo8CYDMpFhOze5N0sswRBIpstREEqNCsCug7X+oC1mZaby8d4FzyXHZ99JTSYh4qqWosXLyotn809/qsT4Zt7bPIyHiKfU+we3pcxB5SxCI26wXfLKPTevCrR3zKdSo5zft50thmceR3C5ePL18FO8ytbh5aCO1ewubk7SEWHZM6UlsZCgSiZSM5ATehAfj5PNpfsbyjDTCbp0nLTH7ZEWWnsqbF0+1FDV5XAvQa9W5b/dgn4izG+fy5sVTOrx1ewI4t2kuNbqPx7/Sb7wJD2ZF3wbk9fLHMs+/p1SNeHiD1IRYvEp/2iJVvnVfDi0czYKOFTGxtMG1UNDbxfPbwdHelgJuThw5f43aFUqyfu9xpg0ShIvYhCS6jZlNSPhLpBIJCcmpBD+Pori/dmwVXUjLyOTcjXvE/pkt3KWmp/PkWYSWosbb3YnLW+d/uwf7ALIUCuRZCtQqNWfWCwqRKu0GUdDDBTfHD2+MAEZ1/51R3X/n9NXbjJy9kuOr/0JfT/uw4UtR2Cc/V7ctJDYhiVYDJ3Hh5n3KFPHj1BXhJCv0+HoA2g2bxuw1O+jbppGm7vV7T3gTn6RR7vwscMybB293Zw6fvUKdSqVZt/sIfw0VNs+xCYl0HfUXoS+ikEgkJCSlEPw8guIBBT+p7bT0DM5eu8Ob+CTNvdT0dJ6EhWsparw9XLiyc+k/m/guEPgsC5VaxdnNCwh9EUXl3/vg4+GK23sstj4XPcbMZNKAzpiaGH2T9r4lDK0dMM6Xn/g7J7ApXJ3X57bi0UrYnGSlxPFkeX/So58hkkhQpCWQ/ioUCw/tmHC6oJSlk/j4EvKUbPlDmZFG+stgLUWNSb78FJtw/Ns92FfCteFgXBsOJuHhecK2TKTQyN2Ipfp4d56LoXU+1ColL/bN48HCrhQeuefjDX4inGr3JHTLBG6MrYmemRWWBUoLih5ArVKQFHyNgMGbEesb8nBRD8IPLMClQX+sA6tgW6IeEn0jUl7c4+70VgQO24FJ3k+zav/eyGdpgGduI04GJ1CtgBVbb79hXE0XAOLSshiwO4Rn8ZlIxCISMxSExmZQxPHTlMDpciWXnicTl57tIZAmUxL8JkNLUZPf1phj3QK+1WP9whfCIo8DuZ29CLl8jPxBNbl7ZBNVewjyb3piLPun9SIhKhSRREpGSiLxEcHkK/jp8u+L2xdIS8yed+TpqcSFP9VS1OR2KUCnZboter8nLm2eS2z4U1rPyJ476g9bhLmtAyqlkosbZ7FrQgfazD30zfuOenSD9MRYPN5RxHiWqk7Bir+hZ2DE6+C7bB7ahNYz92Lj7PXN+9eFr45R06y0J1suBeOc24zkDDkl327uB2+4SPUAJ1Z3r4xIJKLkiO3IFEqt+hKJCJU6+1qWJdCo1SBCxNER9T6q0PgWFjUOVqZcePxacx0Vn0a+XCZadHEpmRy6/YLFnSoA4GFngbdDLm4+e6NR1Kw4+ZCdV0LZMaCmVjDizCwFu6+GsWdw7Y+OCcDK1FDT799WNVHxqTrH9inYeP4pTUp5vPedWpsZUtk3H3uvP/spFDUABaq04MnxLZjbuSBLSyGvr3BqfGbBIFxK1KDGyDWIRCI2dCyOUp6pVV8skaJWqzTXSrkMEIJXIRLRePYxJNIPb1K+hUWNaW4Hou6c11ynxkRimjvfe+nv7VtO8Omd1JuyUyvwli4Ymgsm6RlJcRqrmtQ3kZjq0Do/OLgar8rNkOoLPOVRtgFPTm75aRQ1AEVqtuDm4c3kyutCZloyrgGlAdg9YwDeZWrSatI6RCIRM1oURfH2m76Lf373v2nUahUikYjuy05+9Lt/C4sayzwOhN3MVvYkRkdiYfv+735px1LuHN9Oh9l7NK5NaYlxPDx7gGajBR/73E6e2Ll5E/HwxhcraowtrDRt/21VkxgdieUHxnbj4HoKVW/20ff2N/QNjanff7rmes+MAeR21rbA+Fq0rleFDfuO4+JgR3JqGkGFfQHoM2kBtcuXYNNMwWokoF5HMmVyrfoSqQTVOwtRplygUalUiBBxbsNsjevH+/AtLGoc7XJz9lq2yX/kqxgc8mhbTlpbmmNqbETz2oJg5e6Ul8AC7tx5HPpJipq/UaF4IClp6TwIfk6hgu/ftFhbCu4OsQlJGiuJiNdvdI7tXdjksqBqUFF2HTtPmSJ+LN92kJZ1KmNooA9Ao+pl2bjvZA5Fzdo9R2lRp9JH3/ePQOsG1dmw5yiujvYkp6QRVERw1ekzfg61K5Zi85xxiEQi/Gv9oZPPpJJ/8NlbGpVajQgR57cs/DiffQOLGkf7PJy5eltzHfEqBgc7XXxmgamxES3qCNYH7s75CCzoyZ1HwR9U1FhbCjzyLr9EvqePq7cf0i1EmCPS0jPIkMlp0HUYuxdP+ehz/BuwK9OU1xe2YWjrjCIjBUsv4TDy6Zph2BSqhk/vFYhEIq4MLoMqS3sdEokloMpeh/6mUatUgIgiYw4h/sh8+i0sagys85Hw6KLmOjMuCgMr7W+oZyqsC/KUOI2Vy/tocxUsgyIzhbSIx5i5+mNoLawdIrEEh2odeb57BmqVSuPOoAuf05/EwJj8f2TzxdM1wzC293z7fA6YuQZqXLNsi9fl9YXtADmsdcyc/bDIX5yUsFs/jaIGoGkhW7bdfoNTLkNSZApKOAvPMWx/GNW8rFje3AuRSESZubeQKVRa9SViEWr1O3PLWxqVWnA5PdjZDz3Jh/dS/6ZFjZWxwPPxaVka65ioJBl5LT7sdfE59fJZ6BOVmP2bfJkkJ6+5/jcZ//eGf/UW3D26Ccu8zsjSknHyF/Y9h2cPxLN0DRqPF+J9Lfqj2PvlX9W78q+wN1KrhX1P+0UnPirHfQuLGgtbB17czt73JMVEYv6Bfc+1Xct4cHIHrabvzrHvMbd1ePtcEoo16sLZNX9+dG75W8ZNT4rTWNUkx0Ri/gEZ987hDfhWaZrj3bxrkWPn6Y+DbwlePr7531HU1CnswpitV1l45B7NS2dPeknpchxtTBGJRJx+GMWzN7rNzVxym3P7+RtqBDrx5GUC9yME7bipoR4lPfMw9/BdBtQJBAQFhVQi1sRW+RvfwqKmkq8DQzdeIiw6Cbc8Fqw581gTbPddWJrooy+VcOnpa0rltyM6KZ37EfHkt7cEYO3Zx6w9+4QdA2roDBR84OYLXG3N8c6XM0r7xJ3Xsbc01gQ3fhd1i7iw5sxj+tcRgglnZCkJcNb26/8YMuQKdl97xoGhOZVEoa+TcLU1RywWkSbL4sT9KBqV+Px4F98LbkF1uLBsFLd3LqBAlewMAvK0JMzzOCISiYi4eZqkV7pjCpnbuxDz9DauJWsSH/6E2LD7AOgbm2HvU5JbW+dQtOVAAFLeRCGRSDH+h2/it7CocSpSiXOLhpIYFYplPnceHFyNR9n6OmkfHFrDg4NrqD91F4ZmOXnl0qoJmNrYa4IUvwv3svV4cHA1RVsM4NWDyyhkmdh6BGrRmds5E37zFO5l64NaTcSNk1g7vz8jx4+AT4V6HJg/kvOb5lO4ZnYw1czUJHLZOSESiQi+dor4KN3xr6zyuRD5+BbeZWoR/ewxr0KEoHEGxmY4+5fizPrZVGorBHJOjI5EItXTxF35G9/CoiZ/icrsnTWY2IhQbBzdubp7FX6VGuikvbp3NVf3rqbD7L0Ym2d/dyMzSyR6+jy7fQHXwCBS4qJ5FXwfW5ePLxRHFo/DPLe9Jrjxu/CrUJ8re1ZRqc1Ant+9hEKWSV6vQJ3tZMkyuHtiJ10WHtFZrguZaclIpHroGRjxKuQ+D88eoMeKU59c/1PRoHIQw2YsY86anbSul23SnpSShnPePIhEIk5cukloxCud9d0c7Lnx4Cm1K5TkUWg4d58IPGVmYkzpwj7MWLWVoZ0FHox8/QapVKIVP+VbWNRUDSpC/6mLCHkRhYdzPpZvP6gJqPtPNKlRnmMXbtC+cU1i4hO59/QZBT2cP9i+Wq3m6fNIvFwF5d7NB095E5+Ii4OglB89dxV5bW00wY3fxW9Vy7Ji+0GGdGrBxVsPyJTJKFRQ240t+EUk7o55EYvFpGVkcuzCdZrVFBRKLvnsOH7pJg2rlUWtVnPswo0cY87IlLH98FlOrPl+MaO+Bg2qlmXotEXMWbWV1g2y3VETU1Jxymcn8NnF64SGa7uUALg62nPj/hPqVCrNo5Dn3H0sZIkwMzEmqIgf05dvYlg3weUr8lUMUqkUu9z/4LNvYFFTtUwx+k+aS8iLSDycHVi+dR8Na1TQSdukViWOnr9Gh6Z1iIlL4N6TUAp6CrLR6FnLsbe10QQpfhcNq5Vj+ZZ9DO3amos37pEhk1HYR1tJG3Vpt+bvdbsOc+jMZU3Wp58BuYvWInTTWCIOLcauTFPNfUVaEoY2DohEIuLvnyEjRrf8YWTrQsqzO9gUrk5a1FNSwwUrVqmRKRZeJQg/MB+X+v0AQUEhkuhhYJnT8vxbWNRY+VUkeN0I0l+HYWznxsuTa7Etrv07B8hdvC4vT67Dpb4Q3Fclz8TMxR+1Wk36qxCNgiP52R2ykuMwtHVCpVSgSE1A30JQxsVc3o2pQwHNRips62T0c9lpght/Sn//hCIjBZFEikTfiNTwh8TeOESRcULcuTylfiNs+1Sc6vREJNEj/v5pTJ0EeVoW/0rjgpUZG0lyyE2c6/1cgclre1sx7vBzFl98SZPA7O+fnKnEMZcBIpGIs6GJPI/XPowEcM5lwO2oVKoVsOJpTDoPXwuhG0wNJBR3MmP+uZeajEdRSTL0xCJszXIqLf5ti5o6PtasvR5N3/JCUODMLBX+9sIh9JRjL7Az19cEKf7Uev+kG33oOW2KC3Ld9jtvmFDL5bs+07dCgXJ1Ob5oJFe2LsC/egvN/czUJCzeyr9h198v/+bK68LLJzfJH1STN88fEx0i7HsMjM1w8ivFxU2zKfu7IP8mx0QiluppxWT5FhY1bsUrc2TeEOIjQ7FycOfmvlU5gvS+i5v7V3Nr/2pazdiD0Tvyr0qpID0pHlMr4Xfx4OQObN0KauaWU8vGY2pjrwlg/C68y9fn5t5VmmDCWbJM7PMH6uw/S5bBw5M7aTPvcI77yW9eatyskl5HEPXwBmVaD/zcV/HF+GpFjbGBlBqBTmy6EMz1KU0090c2KsqQDZeYe+guBR2sKJhPdwC6XjX86Lj4FCfuR1LQwQpfp2y6hR3LM3rLFcqPFdw+TAz1mNOmjJai5lvA1FCPGX8E0WreMZQqNX5O1kxsLpycvE5Mp8Wco5wa0wCJWMzSzhUZueUKSpUKlUrN4HqFKJAvF6mZWQxafxFHK1OazBQ2MwZ6Yg4Pr6fpZ9OFYFoEaQsrDyPjCXC21roPwrvsvuIMW0aEYKgnYUH7cprgjP3WnKd6gBM1Ap0Ij02h7p8HyJArkCmUBAzazOB6hWlVVujvwM0XeNpZ4JU358b/0J1wtlwIFqybVGpqFXKmdZl/R1P4KdAzNMa1ZA0eH99E65U3NfdLth3N2YWDuLltLtauBbF29dFZv1Dj3hyd0p7w68exdvXBxt1PU1Z10GLOLxvJ5m7CZkjP2JRKfedqKWq+BfSNzajQawYHx7ZEpVKR292PwEY9AEiLe8X+MS1oNv808vQUzswfiJmtI3tHCHFjJFJ9Gs8+CkDc8wfYeupeTEu1HcXx6d3YcGIzEn0jKg9cmD2Zze6DS8kauJasSdGWgzg9rz+bu5UBwMbVhyLNtbM//EjoGxpTsEwtbhzawKCttzX3q3cdw96ZAzmzYTZ27gWxc9f93cu36svGUW15evk4du4+2HtmC37NRi/lwLzhzGkjWOkYGJvScOh8LUXNt4CBsRm/DZrN2iHNUamU5PX0p05z4VQwOfYVawY1pdeqc8jSU9gzvT+Wdo6s6v8bABI9A7ovPY5YIqHFuJUcmDsclUqJSqWkcoeh5HEVlGtnN87l4vYlpCXGsn1KD6T6hvRddwlDE3Nehz54r/KletcxbJ3QhRmHN6Gnb0iTkYs1wYx3Tu2Nd5kaeJcRAsg+OLOP3E75yeOa020o4VU4S3rUJCszHYVcxtSGPlRpP5SidX4n/uULNo1uh1giRU/fgKajl2Ju8+kWH58KYyNDalcoybo9x3l4YKXm/vjebek3eSEzVm3D19MVX0/dKe77t2tM60FTOHrhOr6ergQUcNeUrZw8iCHTl1GssZB5xszYmEXj+n6XQLdmJsbMH9WLxr3HolSpCPByp89gwdrkVUwcv/Uco1EGje3Vhq5jZrFw015EIuH6bwXMrNXbWbhxD7EJSXQZPQsDfT1u7FyCqbEhvSbMJT4pFalEgpGhPmunDdPE7Ln/9DmFvHWfMo/v05YOI6azYe8JDA31WT5xoIZXuo+bTe3yJaldoST7T11mw97jSKQSlEoV9SqVom1DQakxrEtLek2YR7FGwrv0ze/K4I7Zyvc9Jy6S39UBb/ePx2/7ETA2MqR2pdKs23WER0fWa+5P6NeRvhPmMmP5Jnzzu+GbX/dBx4AOzWnVfzxHz1/FN78bAd7Ziq6Vfw5nyJ8LKdZAUMCbmhixeMIgLUXNt4CZiTHzxvanUfcRKJUqArw96DtUkN9exsTyW9fhGmXQuL4d6DJiGos27EIkEjGuTwe83ITvc+9p2Hstscb360SHoVPYsOcoRob6rJgyTMMv3UZPp3aF0tSpVPqbP9u3hsTAGOtC1Xl9bgslZ1zW3HdrOpzgtcMJ378AE0dvTBx1H3Q41e7Bg/mdibt7ElNHb8ycfDVl3l3mE7pxDNdGCBlDJIYmeHWYqaWo+RaQGpni1W4a92b9gVqlwszZF8e3qa1lCa+5O7O1Rhnk1mQ4j5b05MqFbYj1DPHuMheRWIxapeLpqsFkpSUikkiQ6BlRsMdi9EwsUcrSuTvzd9SKLECNfi47CnZfpOk/NfIRdq66g0W/rz+AxysGYFOoGjaFq5MR84KHC7oikkgQ6xng3XU+BrkEJbOFZzGs/StxfVRVRGIJps5+ONcVsiBGnVhN7M0jiCTSt/0NxczZT+dYfhSM9CVUL2DFllsxXO6b7VY7vKoTw/Y/Y/65KLzzGOOdR/f+p0eZfHTZ+pRTIYl45zHGxy5bcTG/kSdjDz+n8oLbAJgYSJhZ3wPb7xRrudaSu7xKlpOUoaDIjBtU9LBken13XifL+X3DI40yaHgVJ3rtDGHb7VsY6YmZ09BTs7d5GJ2OX17dsWo+VG/gnlCqeeWiWgErSrtaUNPbisoL7qAGGgfkppSLhc42fzboGRrjGVSTu4c30mPDbc39ip1Gc3jOIC5tmo2tmw+2brrl31LN+7BzXDtCr57A1q0gdp7Z/F5/xBKOLRjB0g5CrDF9I1PqDJ73XYLnGhibUbP/LLYMb4FapSSPhx8lewjyb0rsKzYPa0anZWeRpadwaNYALPI4snFQQwCkevq0W3gchVzGluHNUSnkqNVqzGzs+W3kck0f0WEPsMuve09UsdNo9kzuyt2jm9EzMKT+sEWauWX/9N7kL1WT/G9jQT45tx9rJ09yu+SUcW/sWcHTCwcRv50/KnYciZ2n7rnse0D0rqncR4lFInXMMm1t+H8RvVaeJdDFRqcFy78NlUpNran7ODi0rmay+ZkQHptCtUl7eTwrZ856204rUavVXz1gkUik7n7w54/E/rk4MbMntp6BOi1fvhRqlYod/WvQaObhD5r8fS2So8PZ3qcK7Tc/fS/Nwlo23+T7g8ADk88lfJzwP4Dtk7qTr0CgTguWfxsqlYrFXavRdfFRzSbpZ0LCq3AWdKrIyP2hOe4PL5vrvbwlEonUabcP/ivj+97oPGomhX08dVqw/NtQqVRU/KM/p9bO/Cl55UVUNGVb9SH89GatMpPAWp80F4lEInX6gxPfZXw/MzoP/5NCPl46LV++FCqVigote3F647zvyi8vol5Tpmk3Ii58eZw2Y5/Kn8wfFdbotob6r+HRsr6YufjrtGD5t6FWqbg5oS6FR+37rnLLlyLjTQQ3xtagzIIHWmWn2+T9ZN6JGvdpwdz/l9B3VwgBeU10Wr58KVQqNfWW32dvR9/vuieKSMik5tJ73B/yafFddCHfmEtfLQeLRCL1iJPfNnbfj8K+P3tglz9Qp3XL94BapWJ1z2q0nX/0h80tia/DWdm1Ev13h2iVTapk9dX88fPNmP8SzI31WXbiIcM3Xf448XeGWCzi8PB6P6WSZt+NZ/w+/zi5zX6+QH8/O/SNzbm7ZynnFg/7Zm2KxGIaz/6+E1Lo+b0cHNsKI8svyyr2/x0GpuZc3L6UfbOH/OihIBaLBYucn1A4vndqD2uHNsc017c/Pf6vwNzUmEUb9zDwz8U/eiiIxWLOrJ/9U/LKrmPnadxnLLZWlj96KP9JmJuZsGjDTgZM/nbBrsViMWc3L/iu/LLryBka9xiJrXWujxP/Qg5IjcyIOraS4PUjf/RQEInFFBlz4KdU0sRc28/92W3QN/8l73wJzA0krLjymlEHdbv+fQnEYhH7O/t91z3R/gdxtN34mNwmH47T8gufBwMTM67vWsqReUP/lf5EYjHtFh7/YXPLozN72DqiBSa5vt/88f/WouYXvh6/LGr+f+OXRc0vfC/8f7Go+YVvg18WNb/wIfx/tKj5hW+DXxY1v/Ah/LKo+YUP4T9jUVNk6FYeRf1cm7ALT15RdWLOtIGPohIoMnTrDxqRANtOK0nNzPri+tP23kT+TnatqXtusvua7mBT/0Wsa1uIuOePfvQwciA5OpxFdfKwpWcFNncvx47+NYgNvffV7e4eUo/nVz49cOs/8fjYJhIjs03xnl0+xMUVY756XP8lTGviz+uwhz96GDmQ8CqckRVsmNeuLHPbBLGoazVeBn89vyzrVYfHFw5/nPA9uHFwI7Hh2fzy6PxBDi0Y9dXj+pngXbMtD0Ke/+hh5MDZa3cp07J3jnsPQp7jXbPtjxnQW5gE1iI1PeOL609atB55VvZaNmHhOrYf0Z2d8WdEgaoteRD87U6JvwXOXr1NUNNuOe49CH5Ggaot31Pj34GxT2VS076cVyYuWINcns0r4+etYvuhbx90/Efh0oDipEY+/tHDyIGMNxGcbufItVFVuDaiMjfH1yXlxf2vbvfWlEbE3j72xfVfndtC+utsV9jYm0cI3fzx7DL/JZSYdZPH0ek/ehg5cPFZEjWX3M1x73F0OiVm3XxPjX8H+cZcIk2mnTH4UzHjVATyd7Jk/XUynD33/3cOhue3CCDm2c8l4ya+Dmdyldws61SOZR3LsLpnNV6HfL2Mu65fXYIvffme6M7hjcRFZMu4Ty8c4sTij2fM+9H4+ewQ/8egUGqn0fuemL7vdo5JaWj9wjQo9vNkcPpfhYGpBc3mn6b5wrN4lPuNk7N7a9GolIp/dUyPj28iMSpb4HEtWfOT0oj/wveHoakFvVado/eaC/hXbsjOKdpp0ZWKf5dfbh7aSOw7i5h3mVqflH78F/4bUCi+XNj9EkxeshF5VjYPj+r+O42rl/9Xx/ALX4Z/nVcWrs3BK6N7taPx20xhv/D9IDU2p9iE4xSbdALbkvV5skI7ocC/Lbe8Pr+V9NfZh4s2hat/UvrxX/hvQKH8dC+Ob4GZpyPJeqfPQZWcqO/7+Vlzf+HzYGhqQadlZ+m0/DwFKzZk/7ReWjT/9txy98gm4iOz90T5g2p+UorxH42vzvr0Lq6FxjBu+1WNRciYxsWp6JMzX/nCo/fYffUZCpUKAz0J01qVxs/JmnSZgl6rzvLkZSJSiQiPPBYs71qJkNdJ9Fp1lgy5ApVKTbPSnvSo/v2jtf8dQPePcl4cvxdJhlzBrDZlKOlppylrVtqTy09fk5ml5M+WpSiZP7usfUVvzj56SeMSHpQrmJdB6y4Qm5KJVCJmxG9FqOQrpMnbf/M5k3fdwNLEgCpv773b/98BfP95ffROOH/tu0WWUoVYJGJe+3KsPSOc2NSeuh+xSMTuQTUZufkKgS42tAjKT+GhW7gwvhHWZoYAjN56BTNDfQbVK8SNsBgm7rxOSobw7YbUL0xVf8fv/p7fh9ePrnFxxViyMlIBKNVhLE6Fcwput3cuIPjMLtRKJRJ9A8r3+Asbdz+yMtM5ObMn8S8eI5bqYZnPg+rDV5AQGczJmb1QyDJQq5R4VWlOoUbaG+SvhWPhClxZMwkQLIC8q7Ui8u45zO1cKNtlEucWDSMm+BYA+Ss1pXATQakTH/6EkzN7oVJmkcvJC6VcpmlzXdtC1Bq7EWsXb63r+PCnnF8ynPSEGFCrCWzUA7VKRUzwHc4vGc6VdVMo3WEcabEveX71KDVGrGLPsN/wr9cJ11JCRp/nVw5ze9ciGkzdQ1r8a84tGkbqm0gUskw8KzSkSLN+3/w9fUuE37/KoYWjkaUL/FKz+3g8i1fKQXNu83zuntiJSqlAqm9I/QEzyOvphzwzne2TuhP97DESqRQbJ09ajl/Fm/Bgtk/uQVZmOiqVkiI1W1K2hfZi87XwKFqBo0sFhci0Jv4Urf07oTfPYpXXhTq9p7Bv9hAiHwunWoWqN6N8q74ARD97zI4pPVEpsrB18ULxDr9Ma+LPH39uxs6toNZ1zPMn7J87jNS4aNSoKdu8F2qViqgnt9k3ZyjHlk+iZo8JJMW85PHFI7SauIblfepTunEXCpYV+OXRhUOc37KQTnP3kRz7mn2zh5AUE0mWLIOAyo2o8MeAb/6ePgdX7jxixKwVpLy1CJnUtwNVShfOQTNn7U62Hz6DQqnE0ECf2cN7EFDAnfSMTDqPmsmjsBdIpVLyO+dj3V/Defo8ki6jZ5KeKUOpVNG6XhX6tmn03Z/l7yC67RvV5Mj5a2Rkylg4ti+lC/loylrVq8KFG/fJkMmYPbwHQYV9NWVdmtXh1JXbNK9dkYolCtFr4jxiE5KQSiSM7dWGakFFAdhz4gJj560hl7kZ1csW1er/7yC+/7w+dPYKkxZvIEuhRCwSsXTCAFZuF1zTKrUZgFgk5vDyqQz+aymFfTz5o35VCtRsy81dS7DJJWTgGDpjGeYmxgzv2opr9x4zes5qktOEE+dR3VpTo1zx7/Z+r9x+wPDpS0l929+kgV2oElQ0B82c1VvZdvD0W17RY86ovgR4e5CekUmn4X/yKOQ5elIpnq6OrJ85mqfPIug84k8yMmQoVSpaN6hO33ZNdXX/TfF34N32Tetw5OxVMjIzWTR+IKWL+GnKWjeozvnrd8mUyZk9qjdBRfw1ZV1aNuDUpZs0r1uFSiUL02vcLGITEpFIJIzr04FqZYXvsPvYOcbOWUEuCzOqly2h1f/fgX//eX3w9CUmLVyLIkuBSCxm2eTBrNi6H4BKrXshEok5snomg6cuoJCPF20a1sCrSgtu7V+dzSvTFmFmasKI7n9w9e4jRs9cls0rPdtSs3zJ7/6e34ekkOuEbp6AMlNIjezebCRWfhVy0EQcWkzMlT2olQrEeoZ4tpmCmbMvSlk6j5f1JS3qCSKJHsZ27vj0XEL6qxAeL+uHUi7ILXZlmuJUq5uO3r8OuXzKEbZNyMZyaUBx7Mu1IPHhBQxtnfBoNYGQdSNIfnYHALugRjjVFmSntKinPF7eD7UyC+O8+VFlZa9DlwYUx6/fWkwdCmhdp70MJmT9KORJbwA1jjW7olapSHl2h5D1o3i240/cm49GFv+KuNvH8e21jNt/NsWhantsCtcAIPbWUSIPLyVw2HZkidEErxuJLC4KVVYmtiUbaLI+/Shcj0hh4tEXpL61CBlVzZnyHpY5aBZfeMne+7EoVGoMpGKm1HHD196EDLmSPrtCePomA6lYhLuNEUua5ickNoN+u0LIyFKhUqtpGmhL16C83/1Z/g6827pIHk4GJ5CRpWJGfXeKO5trypoG5ubK23TZk+u4UeKdsnbF7TgXlkRDfxvKulkwZF8Y8ekKJGIRQys7UtFTiEN18GEcU0+EY2kkpZJnLq3+/w78+8/rY08SmHk6giylGrEIZv/mwfrr0QDUX3EfkQi2t/VhzOHnBOQ1oXkhW4rNusnZnoFYvY1TM+7wc8wMJPSv6MjNyBQmHwvXfLuBlRypkv/HxcqKfHCVE0vGIH8r41buMg63Yjll3Mtb5/Pw1K63Mq4BNfrOwM5D2BPtndqd2BePEUv0sHb0oOGYVcSFB7NvWg+yMoW5xb96C0o2+/YyrmuRCpxeMREQLIACarXmxa1zWNo7U63nFI7MHcKrJ8KeyLdqM0q36APAm+eP2T+tJ0qFgtwuXijk2anp57cIoOnkTdi6FtS6jn3xhKPzh5GWEINaraZk056oVSpePbnN0flDOb1yElW6jif5zUtCLh+h0dg1bBjQgKINO+MVJMi4Ty8e5ur2hbSeuZeUuNccnTeEpOgoFPIMfCo1IqjVv5cl95spahLSZLRdeIJV3SpR3CMPSpVKs+l/F01LedC9mqBoOfMwisHrL3JoeF1OPYgkMV3G+fFCWq7ENGGyX3X6EVX8HBlQJzDH/X+i/aKTPItJ1ll2cFgdjPQ//1HjU2UUdbNl+G9F2X45lAk7rnNgaB1NWcF8uRjXpDgXn7yiy7LTXJ3cRFOW396SwfWEjUGNyXv5vWwBWpXNz5OXCdT/6yDnxzdErYYBay9wYGgdPOwsmHf47nvH8i5CXyfRb+0F9g2uhVseC2RZSrKUKv5sVZpVpx9zYGgdTA1zBsgyNpBSI8CJnVdD6VTZB4VSxa6rYRwYWoekdBmD1l9kU+9q5LE0JjoxnWqT9nJ23G9YGBt89nv7WmSmJHBoYhtqjFiNfcHiqJRK5OkpWnRelZsR2FBIbx1x6wxn5g+k0awjRNw8hSw1kRZLLr5tLxGA+/tX4Vy0CkVbDsxx/584PKkdSa90m7w3mnEIqcGHAyuHntuTIwV4WkI0DaYKbnaXVo5DrVbRbOE5sjJS2dG/BtYuBXEuVoUT07vhV68zBao05/Xj6+waWOuD/YCgkT40vjUl2ozAo2x94bmS4zE0t+LJic0ENuyBSwkhNe7jY5s09QpUacHjE1s0iprHxzZrzOdPTO9B0RYDyOtXGmWWnL3DG2LrWQjHwhU+Op4fgfTkBNaP+J1WE9fi7FcClVKJTAe/FKrenLLNBeEy5Ppp9kzvT7clxwi+epKMlET6rRcCi2e85YvLu1bgVbIqldoOynH/n9gwsg3xUbrdC7suPoreR/jl/uk95H0ndWJK3Gs6zd0HwOFFY1CrVfRZcxFZegqLu1bHzt0Hr5JV2TaxK6Ubd6FwzRaEP7jGku41PtgPCFY664a1olrnkfhVbABAelI8xhZW3Dy8ibLNe1IgSGjnxsGNmnpFarbg5uFNGkXNzUObKFJLUBpvn9SNim0G4hoYhCJLzoq+9cnnXRjPYj/mRDw+KYXm/SeyacYISgYWRKlUajZy76Jlncr0+UNYb05evkWfSfM5vW4Wxy/dJCEllRs7lwCQkCzw0tIt+6lepihDO7fMcf+faDVwEqHhr3SWnVo7AyPDz59T4xKTKRFQgLG92rD5wClGzV7JiTUzNGW+nq5M6d+Rc9fv0Xbon9zfv1JT5uXmyIhurQEo37ov7RvVpM1v1XkUGk71DoO5sXMJatT0HD+XE2tmkN/FgZmrtn3SuIJfRNJ93FyOrZyGh3M+ZPIs5FlZzBreg6VbD3ByzQxMjXPy/9+p1LceOk33lvVRKJRsO3yGk6tnkJicSu+J89k5fzz2ua149Saecq36cG37IizNdadq/RrEJybTrPcYNs8ZR8lCPgKvpOrglXrV6NNWULScvHSD3uNnc2bTfI5duE5icio3960CICHpLa9s3kP1siUY1u33HPe12u07ltBw3TFRTm+c9xW8UpBxfTqwef9xRs5cxskNczVlvvndmDKoK+eu3aHNoEk8OLxOU1bAzYmRPdoAUK55D9o3qU3bRrV4FPKcam36cXPfKtRqNT3HzODkhnnkd3Vk5grtLFy6EPw8gu6jZ3B83Ww8nB2QyeXIsxTMHtWHpZv3cnL9PExNdPBKpdJsPXCC7q0bolAo2XrwFKc2zBV4Zdxsdi2ejH1ua169iaNss+5c373iu/DKx5CVmsD9uR3w7bUcC89iqFVKFBna3z1PUBMca3YFIP7BWZ6uGUqR0fuJv3eGrLREik8R3AOz0hIBiDqxBquASrjU75fj/j9xf14nMmJ0yy2FR+1Dov/hdejN1X2YOmenDpcnxhA4bDsAoVsmolarKTbpJMrMVG6Or4uJQ0GsAyrxaEkvHKp1wK5MU5JCbnBrYv0P9gOC3HJ/djtcGw/BtriQ8S4rNR49UyteX9iGY82u2ARWBQRXqL9hV6Ypr89v0yhqXp/fil3ZZgA8Xtob53r9sCxQEpVCzp0/m2LmGoCV74+x4ktIz6Lj5icsa+ZFMSczlCo1KTpceJoE5tYoWs6GJjJ0fxj7O/lxOjSRpEwlp3sGApCYIVgfrL36mkqeuehXwSHH/X+i05YnPI/P1Fm2t6MvRnqSL3gmBUUczRhaxYmdd98w6Vg4ezr6asq885gwuroLl54n0X17MBf7FNKUeeQ2YkBF4fC3ztJ7tCpiS4sieXgak07DVQ840zMQtRoG7Q1jT0dfPGyMWHg+6pPGFRqbwaC9oexs74ObtREyhYospZrJddxYcy2aPR18MTHI+bxG+hKqe+Vi171YOpS0R6FUs+d+LHs6+JKUoWDovjDWtfYmj5k+0Slyai29x8nuAVgYfVP7hk9CRnIC20f/QeNxa3Dwfb+M61etOSWbCjLusxunOTSrP+0WHCP02kkyU5PosiqnjHtj7wrcS1Sl7O8flnF3jG1DfJTuuaXt/CMflXEfndlDHo9sGTc1LprWM/cCcHLpWNRqNZ1WXECensLqntWxdSuIR4mq7J3SjWINO+NfvQVRD6+xpnfND/YDwtyybVRrKrQfgXeFBkC2jHv36GZKNu2JZylhT3TncLaM61+9BfeObNYoau4e2Yh/DUHW2ze1G2VaD8IpQNgTbRjYAHuvQrgV/Xdk3G/GcddDY/Cyt6S4h5CHXSIWY2miLWTcfRHH7IN3SEyTIRKJCIsWlCs+jlaEvEpiyIaLBHnZU8VP+EGX9LRj3LarZCmUBHnZU6aA7hRwK7tV0nn/fXhfZJ9375sYSKkW4ARAEbfcjNl2VVOmLxXTpKQHAKW97DHUlxISnYSZoR6GehLqF3UFIDUzi/sR8bQI8gTAK28ufBytuBH2BrUa/Jys8bATTor+KOfFhB3XPzr204+iqOLngFseoZ6BngSDT5h0m5f2ZMSWK3Sq7MOJ+5Hkt7fEycaM4/ciCI9Npfmco9nvQSTiWUwKgS7/vqLm9aNrWDnmx76gcHonlkgwNLPUonsTfIcbW2YhS00EkZikt24+1q4+JEQEc3bBYPL6B+FcTFjw8/qW4uKKMSgVWeTzDyJfQFmd/dcYseqzxyxLTWJLzwqgVmNu50zl/vM0ZV6Vm2n+jrx9hjJdJiMSidA3NsOzfEMib5/B3qcEcc8f41VJ2AzYFSiKlcvHU8cnRoagVik1ShoAQ3Orj9ZzC6rDhWUjyUiKQyQS8fL+RSoPXEBWZhov713gXHKchjYrPZWEiKc/raIm/P5VbF28cPYTTnbFEglGOvjl5dPbnF43k/TkBMQiMbFvTSDtPXx5Ex7MnpkDcStUBq9S1QBwDSjNoYWjUCrkuBUqi1th3fzSauKazx5zZmoS89qVRa1WY5XXhcbDF2rKCtVorvk75PoZ6vSZgkgkwtDEHP8qjQi9fgZnvxJEP3tEYHWBt5x8immsZz6E2IhgVEqFRkkDYGzxcX7xqVCPA/NHkJYo8Muz2xdoMmIR8ow0wm6dJy0x2+dblp7KmxdPf5ii5uqdRxRwc6RkoPA+JBIJuczNtOhuPQpm+ootxCelIhaLCHkhCIV++V15+iyCfpMXULaoPzXKCid2ZYr4MnzmCuRZCsoV86d8sQCd/W+YPuKzxisS6V6N3r1vamxEzXICfxf3L8Cwmcs1Zfp6UlrUFt512aJ+GBkY8PR5JOYmxhga6NOoWjkAUtLSufskjN/rC/Oht7sTfl5uXLv3GLVaTUABd/K7CMJ/+0Y1GTXn4/PgyUu3qF6mKB7OguWsgb4eBvofz6LRul4VBk1bQveW9Tl64Tpero4458vD4XPXeBEVzW89sl0dRCIRYREvKeyT/6Ptfi6u3HmIt7szJQv5AG95xUIHrzx4yl/LNpKQlIJYLCL4eSQA/l5uPHkWTt8JcyhXPJAab79RmSL+DJu+BHmWgvLFAylfIlBn/xtnj/2s8X4qr9SqIAQ1Le5fkKHTsjOK6evp0aJuFQDKFgsQeOVZBOamJgKv1KgAvOWVx6H88ZuwIfb2cMG/gAdX7zxErYbAgp7kdxVktPZN6jBy5rKPjv3ExRtUL1cCD2eBxwz09THQ1/9ovd8bVGfglAV0b92QI+euUMDNCed8dhw+e4UXUa9o0CU7q6JIJCI0PIoivl4fbfdbIznkBiZ582PhKcwXIrEEPRNLLbqU53cJ3zeXrLRERCIx6dGCkt/UqSDpr0J5unYYlgVKYx1QGQBLr5KEbh6PWpGFpXdpLL2DdPbv2+vj3+CfUKQnc21UFVCDUW4nCnSarSnLE9RY83fCg3N4tB6PSCRCamSGbckGJDw8h0X+YqRFPSFPaYHWwqMIJo4FPtpvxqtQ1CqFRkkDoGf68XUod9FahGwcgzxFWIcSH1/Cu/NclLJ0Eh9fQp6SLbcoM9JIfxn8wxQ1NyJT8cxtRDEnYT6RiEVY6tjk332ZyrxzUSRmKBCLRITFCVagBfOYEBKbwfD9YZRytaCKpyUAJVzMmXDkBVlKFaVdLQhyNdfZ/7Jmn/cbeM/UknNPpC+mqpdgVVLYwYzxR15oyvQlIhr5Cy5FpVwsMJSKCY3NwMxAgqFURD0fawBSZUoevE6jWSEh22N+W2N87Ey4EZkCavCzN8HDRtj4tyqSh0nHwj869nOhSVTytMTNWqhnIBVj8Am726aFbBl96DkdStpzMiQBDxsjHHMZcuJpAhGJMlqvz46HKQKex2cSkO/fVwJHPryGjbMXDr4flnFfP73NhQ2zyExJQCQWExchyLh53H2JC3/K4TmDcA4IwqOkIOM6+Zfm+OLRKLPkuASWxbmQbhm30dgvk3GXdSoHajWW9i7UHbJAU+ZfLXtP9OzGGar1FGRcAxNzfCo14vnNMzj6luDN80f4VRVo8xUsRm7Xj8u4ceGCjPu3kgY+TcYtUK4uxxaOID0pDhARfuci9YYKMu6L2xdIS8yeW+TpqcSFP/3vKWo+JXuUXKGk/eKT7B1UC39nG14npuM/SDiNccltzoUJjTj76CUn7kcyadcNzoxtQN0iLhRzt+X0gyjmHr7LxgvBLOqoPfF+rkWNtZkhCak5rXPiUzOxMTfUXL+r/JCIRShV7483o1arNROasYFUIzi9772IABXvf2dSsRiVKrtclvWOJv4LXTxL5rcjNTOLh5HxbL4YTLPSnm/HCAUdcrF3cO0va/hb4xN4SZkl5/Dk9vw2bS+5PQJIi3vFmt8Fja2FvQstllwk8vY5wm8c58qaiTRbeA73MnWx8y5KxM3T3Nw2l0fHNlJ1kHZa3C+xqPk7Ro0u6BmavPNoarTUhG955X1COIBIIkWtzuY/xVvz4s/J2pZzTMa4lKxJ8JmdALiUrImeoYlguSQS0Xj2MSTS/0jawk94B4osORtHtaXTvAPk8wogOfYVU38TJn2rvC70W3+Z0OtneXLlGEeXTqD36gv4VqiHk28xgq+e4syG2dw4sJ6mo5dqtf0lFjV/x6jRBX2jbH5BrUb0BfwilkhRvzNf/e0W9aX8om9ojHeZWtw5vgMQ4tfoG5kgS09BJBLRfdnJn4Zf1J8wQcqzsmg9cDJHVk6jkLcHr2Li8KgmWD+4Othzc9cSTl+5zdELNxg7bw1Xty+kQZUylPD35vilm8xYuY21u4+xcvIgrbY/16LGJpcF8Yk5T8fiEpLJbWWhuX5X+SERi1Eq3x9DRI1aI3SbGBm+sxbppheJyLHW/BNSqQTVO7yUKZe/09eXIaiwL6lpGdwPfsb6vcdoXa8Kfw/SN78LR1f+9YUtfx4+SW6RZ9Gq3ziOrp1FoYL5eRkTi0dFQXh0dczLrX2rOHX5JkfPXWXM7BVc272cBtXKUTywICcuXGfGik2s3XWIlX8O12r7cy1qBF7JKefEJSSR+5205Tl4RfIRXlGrNfyRk1feI7eIRKjU75eDJBJJDl7KlL3DK1/ILEFF/AVeeRrG+t1Had2gumaMvvndOLZ29pc1/I3xKfOOSiHnwfxOFBq+EzMXf2QJr7nUV7C8NrJ1pviUMyQ8PEf83VM82z6VohNPkLtYbcw9ihB//wzh++fz6uxmCnbVTrP+JRY1f8eo0QXJO3IL6FiH/saH5BaxFN6ZO/52i/qUd6VzTAbG2BSuTszl3YAQv0ZiYIwiIxUQUWTMIcQ/yzr0CY8oV6jovPUpO9v54JfXlNfJcorMuAGAs5UhZ3oGcj4siZPBCUw9Hs6J7gHULmhNEQczzoQmsuB8FFtuxTCvkadW259rUWNtrEdCek7rnPj0LGzeSV+tL80OayoRgeID6wbvrENG+pJP2BOJPrgnkohFOerKFNl/fyk/lXA2J1Wm5FF0GttuvaHpW+WRGvDOY8zO9r4fbuDfwifuiXaMbcfvs/djnz+AlNhXzG0qHEDkyutCl9WXeX7zLKFXj3NqxUQ6rzhPgXL1yFewGGHXT3Fx02zuHN5A/eFLtNr+Eouav2PU6IKe0T/2RFpTiOgf/2tDkHGz34tGxv1CXtAzNCZ/UE0enBBk3PxBNTUyLiIR7Red+GEy7jcLJlzMIw9PXiVyLTQGAKVKpeWmJMtSolSqyWslfKRVp7K1lS/j0xCLRNQq5MyEpiWIS8kkMU1OWEwytuZGNA/yZGDdQtx69kZn/yu7VeLUmAY6/+lye3KzFYTgk/cjNeNdd/YJFQrm06LVBblCxY6rgrby8tPXyLKUGsuYd2FmpI+voxVbLgUDEPwqkYcRCRR2y01RN1vuR8QRFp0EwPpzTzX1bC2MyFKqCHurfNpxNXsjWNEnH8fvRWrqybKUmrhApoZ6pGRkC0f/RNNSHiw6ep/LT6OpU9gFgGLutoTFJHP+cfbm4tazN1+8qfta2BUsTnzEU14/ugaASqnUclNSZslQKxWY5ha+1/392ae/qbEvEYkluJWuRVCniWQkxSFLSSDpZRjGufJQoGoLirUcRMwT3dHsa4xYRbP5p3X++5jb08fgWKgCj46sR61WI09PIeTsLhwDy6NvbIaVcwGenhZMjaOf3CT+eXYkdwt7F2KeCj6ckbfPkpEg/M5yOXoiEksIOZedwSwzWUjzp29shjxdt/ISoECV5jw5voknxzfhXbWFpo69T0lubZ2joUt5E0V6fPRXPff3hJNfCWKePyH8vmDxplIqtUw4FfJMVEoFFrYCv1zetUJTlhQThUgsoWC52tTuNZm0xFgyUhKIiwzD1CoPRWq1pHLbwUQ80s0vrSauodeqczr/fcwk9GPwKFaBa/vXoVarkaWncPfEDjyKlsfQxJw8rt7cOSa4qEQ8vJEju5V1XleiHgv8EnL9DKnxAr/kdsqPWCLl3qndGtr0JIFfDEzMyEx7P78UrtmCm4c2cvPQRorUEkxCDYzNcPYvxZn1szV0idGRpMT9OH4pEVCQx2ERXLkjrC9KpVLLTSlTloVCqcQhT24Alr6NkwEQFR2LRCymbqXS/DmwE7EJSSQkpRAa/pI8Nrn4vX5VhndpyY37T3T2v2H6CC5vna/zny5XFg8nwez92MUbmvGu3HGIyqUKa9HqgjxLwZZDpwG4cPM+mTK5xjLmXZibGuPv5cb6vcLG7MmzCO4/DaOobwGKB3hz90mYxqpo9a7szAp5rHORpVBqFApb3/YFUKVUYY6cv66pJ5NnkfLWzczMxIjklLT3jrtl3UrMXbuLCzfv06CyYCVQItCbkPCXnLl2R0N34/7T77YWlQz04VHoC67cfgC85ZV/uCllyuUCr9gJQvzSTXs1ZZGv3yARi6lXuQzThnQnNiGR+KRkQl9EYWdjxe+/1WB4tz+4fk93xp+Ns8dyZedSnf908spba5Rj569pxrty2wEqly6qRasL8qwsthwQ0pNfuHGXTLmc/C7asejMTU3wL+DO+j2Cle2TsHDuPQmlmL83JQIKcudRCCEvBNlp9Y6Dmnp2NlZkKRSEvuWHv/sCqFqmKEfOXtHUk8nl7/CKMUmpqe8dd8t6VZm7ehsXbtylQVXh1LdkoA8hL6I4c+WWhu76W+uwHwELj6KkvXxKUohgFa1WKbXclFRZMtQqJQZWwjoUdSL7pDoz/iUisZjcRWri0XIs8pQ4FGmJpEc/Q9/CFvuyzXBp0J+UsNs6+/fttUwIDKzj38fcnj6GXD7leHVmI2q1GkVGKjFX9pDLpxxSIzNM8nkRfUmIQZQceou0iGxeN7J1JuWZMN6EB+fIShLkd2N7D0RiKTFX92los1KFdUhqaIpSh1vH37Ar04zX57by+ly225PUyBQLrxKEH8hWYGXGRSFLjPmq5/4aFHU0JfhNBtcjhGdRqtRabkoyhQqlSk1eC+G3vubaa03ZyyQZEhHU8LZiXA0X4tOzSMxQ8CwuA1tTPZoVsqV/BQduRen+3Sxr5sWxbgE6/+lye3K1Fg6pT4ckasa74UY05dy19zW6IFeq2XVPsKy98iKZTIUad2ttvjMzlOJjZ8K2OwIvhLzJ4OHrNAo7mFLEwYz7r9M0VkWbbmZ/P1tTfbKUap69Ldt1L3svWN7DkpPBiZp6MoVKE1vG1EBCsuz9QWsbB+RmycVXXH6RTG1vwfKiqKMZz+IyufAsSUN3Oyr1h80tDj7FiX3xhMgHH5dxzd/KuDf2rNSUJb+JQiyW4FWmNlW7TyI9MZaM5ATiowQZN6BGS8q2GczLx7pl3EZj1wiBgXX8+1oZ161oBW4fyJZxH57aiWuR8hiYmJPb1Zv7J4Q9UdSjG7x5J7tVrrwuvHq7h3t28wxpb/dENm9l3Eend2toNTKusRmyD8i4/tVbcvfIJu4e2URAjVaaOk5+pbi4abaGLjkmktR/cU/0zSxqcpkYsKpbJUZvvUK6TDDhG9ukGOXfUXyYGekzuH4hqk/aRz4rEyq/Ezz3UVQ8E3YKC5xKpaZ3TX/sLI2ZfeAOO66EoicVIxKJmNS8hFbfXwI9qZhV3SszeusVJuy4jkqtplR+O/rU0m3O/k9YmRoQFp1Mjcl7yZArWdKpAvpS3e5HCztWYNC6Cyw+9gCpRMyCDuWwMROYe/rvQbSefxxLEwONuxSAVCJmUvOSNJ15GAdrU4K8sl2+3PJYMPOPIDotPY1SpUIiFjOvXVkKOljRraovDWccwlBPyu5B2v58zUp5UHTYNloEeWL81jbQ0sSAdT2qMG77NUZuuUyWQoVzbjPW96z6ocOS7wZDs1zUGLGaC8tGkZWZjkgspnSHcTgWyrak0jc2o3jrIWzvUxXT3PlwKlpFUxb37CGXVwvBWdUqJYWb9sXE2p4bW2bx9NR2JFJ9EEGZLpP/9Wcr2mIAZxcNZUt3QdjMX6kpTkUFE+fKAxdycmYv7uxaRG6PAPJ4ZQvfxf8YxskZPXl0eB12BYtjmlv47YglUmqOXs+5RUO4vnE6IrGYwIY98KrclII1/uDiijHc3rGQUh3Gao0lr28pTewfe5/sAIxVBy3m/LKRbO4mjFHP2JRKfedibJXnu7yTr4WxeS5aTVzLgfkjycpIQyQWU7PHBDyKVtDQGJqYU6X9MBZ2roRlHgfyl8jml9dhDzmyWMiGpVIpKd+6H+Y29pxeO4Pbx7Yj0dNDhIg6fab8249GxTaD2DdrMHPalAaEYMJ/j73xiEXsmNKTC1sWktcrEMeC2fxStdMItk3qzrV9QtweyzwCv0ikUn6fsoG9swZzcvU0RCIxZZv3pFCN5hSv24aDC0dzbvN8anbXjoTvGlBa4xft4l9Kc7/Z6KUcmDdcM0YDY1MaDp2PmfWP4RcrCzM2zRjB0BnLSMvIRCwSM7l/ByqVLKShMTc1ZmS31pRr1QdH+9xUfSd47P3gZ4yeuxoApVLFgA5Nsbe15q/lW9hy8BR6eoLF5LTBXb7JePX0pGycOZJh05cxavYqVGoVZQr7MqhDs49XBqwtzQl98ZLyrfuSnilj9dQh6OvpPvlZOXkwvSbOY/6G3UglEpZNHKix3Jk3qhdN+owjl7kZDatlm0BLpRKmDe5C3a4jcLK3pVwxf02Zh3M+FozuzR9DpmrWoqUT+uPr6Urv3xtSq/MwDA0MOLx8qtZYWtWtQsHa7fm9fhWMjYRNQi5zM7bNHsOIWSsY/NdSsrIUuOSzY/vcMR+0IPtSWFmas3nOOIZMW0R6RiYikZgpg7pQqVQRDY25qQmjeralbLPuONrbagLqAjwIDmP0Wzc0pUrFwI4tyGtrw7SlG9iy/wR6enqIRPDXsB7fZLx6elI2zRnL0D8XMXLmMtRqFUFF/Bnc+dPSc1tbmhPyIopyzXuQkSljzV8j0H+Pq9qqP4fTa9ws5q/djkQiYfmUoRrLnXlj+9O4x0hyWZjRqHoFTR2pVMJfw3pQp9NgnPLmoVzxQE2Zh7MDC8b15/cBE1ApVYglYpZNHoJvfjd6t21CrfYDMTQw4MjqmVpjaV2/Gt7VW/P7b9WzecXCjG3zJzBixlIGT12IXKHAxcGeHQsmfhde+Rj0THPh22s5oRvHoZSlg1iEe/PRWPmU09BIjcxw/W0gN8bVxNAqH1b+2S77aRGPCdsmyCRqlRLnOj0xyGXHi31zib64U7AUEYnwaPXvZylxrt+P4HUjuDZCGK9dUCOs/QWzf+/Oc3m8vB+RR5Zg5uKPuXu2gtm10RAeL+vDyzMbsfAshoG1sB8QS6T49l1F8LoRvNgzC0RiHGt2xS6oMfYVWxO6eTwRhxbh1nyU1lgsvUqgzBSUE5b5s/cD3l3mE7pxjGaMEkMTvDrMxMDS9vu8lI8gl7Eey5p5Me7wczKyVIhEQjDhcu6WGhozQyn/196dhVhdxXEA//3nztwlc3LSXBqXUivDNglSo1IzA8WMNi0hNCPa7CGQrIwsKyGDEC0rjUpbHjLowbJsp4jqpaLFgsAKimak5SmdcZy5PYw4ZdmMzWhH7+fzeg9/Dvx/HM75/s+5Z8GkITFt9edRf0Q+Jo3s+LPar7dui6W7jv20lcsx/6z6GFibjxXv/hAvfvZz1OSyyLIslkw9pkf6W5OriscvPyHuevW7uO/176Ncjhg7rHfcdE7XPl7XHVYd3/7SFNNXfx7bW1pj1aXH/WUHzp+tvGRkLNywJdZ88FPkqrJYcfHI6Ltr586yC4bH3Oe+jj6l6rhgdMftTNW5LJZMPTauWPdVDO5TiDOP6TjyNbxvKZbNGB7Xr/8mWtvKkavKYvlFI+LEAb3i2vGDYuZTm6NYUxUvzB39t77MPO2oGLf845g1pn+U8u1ruD6l6nhy9qi497XvY/Er30VLazmG1hVi7exR/8uaqFRbF5fevTbeeOSOaGnaFpFVxXnXLYljT5+4u02hV21MuOq2ePL6yVHbf3CM+NMcd+uWzfH2mvZxo9zWGmfOvjl69xsU7z/7YHzxxvrI1eQjIospNx74NdFZVy6ITSsWxpqr2z/WnDRlVow4o73vM25dFS8tmx8frV8Vg44/NepP7JinTZi3KDbcf0N88vK6GHLS2Kjt37EmuuyeZ2LTioXx3tMPRJZVxbiZ8+Pk82fFmOlz4s1H74wPn38oJl/79xtwh54yfvccd8jJHWuiCxc9Fq8/vChW7+pjvnR4TL9lZRx+gNZE2b4khFmWlbeumbcfu3Nw2PMGpkrV/5onolwud3vYyrKsfMPGnztvSFJWTevXI+8/or0Glr73W088ikPA7WfX7bW2siwr//7pxn/6qeLseQNTpep12rQujUVZlpW3fflmZ80OSXvewFRJDhs9ucv1MXHtPx9FozK9M+foLtfOj3eP76zZIWnPG5gqSf3iD7o9D86yrLzorV97qksk5L5zj+x2ffTY0ScAAAAAukdQ8x8M7de74nfTAPD/GlY/oOJ309A1w+oHVuRuGmD/GlJXrMjdNHAgCGoAAAAAEiGoAQAAAEiEoAYAAAAgEft061MpX93Q1NKa5h29HHDFmlzj9h07B3b3OdWFUkPrjiZ1dZDJ5YuNO5u3d/v9R0TUFEoNO9UAu1Tni40te6mtUrHQ0NS8Q62wW7GQb9ze1NzpWKR2KlNX6yOXLza0tTSrD3arqik0tu5o6rR2ijVVDc07y2qnwhSqs8amlrZuzYPNfw9d/zaX7ap9CmoAAAAA2H8cfQIAAABIhKAGAAAAIBGCGgAAAIBECGoAAAAAEiGoAQAAAEiEoAYAAAAgEYIaAAAAgEQIagAAAAASIagBAAAASISgBgAAACARghoAAACARAhqAAAAABIhqAEAAABIhKAGAAAAIBGCGgAAAIBECGoAAAAAEiGoAQAAAEiEoAYAAAAgEYIaAAAAgEQIagAAAAASIagBAAAASISgBgAAACARghoAAACARAhqAAAAABIhqAEAAABIhKAGAAAAIBGCGgAAAIBECGoAAAAAEiGoAQAAAEiEoAYAAAAgEYIaAAAAgEQIagAAAAASIagBAAAASMQf51q1LW04GgAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure(figsize = [20.0, 8.0])\n", "\n", "_ = plot_tree(tree, \n", " feature_names = X.columns, \n", " class_names = [\"Unproductive\", \"Productive\"],\n", " filled = True, \n", " rounded = False, \n", " proportion = True, \n", " fontsize = 11) " ] }, { "cell_type": "markdown", "id": "cb334c09", "metadata": {}, "source": [ "\"The graphic above was created using predictions produced by the algorithm we implemented — a Decision Tree. We chose this algorithm because, despite how intimidating the graphic appears to be, we'll have you interpreting the results in just a few minutes!\n", "\n", "The graphic illustrates which aspects of the factory are best at predicting if a team will be productive or not. When we say aspects, we mean variables like the date, department, team number, etc. In our case, we discovered that the \"incentive\" and the \"smv\" variables were the ones with the greatest influence on the final prediction. To provide context, the \"incentive\" variable represents the amount of financial incentive offered to motivate a particular course of action. The \"smv\" (Standard Minute Value) variable represents the time allocated for a specific task.\n", "\n", "How do we know that these two variables are the most predictive? We know this because of the information included in the square boxes in the graphic! For example, if we focus on the top part of each box, we will see that those two variables are the ones that appear most frequently. In fact, there is only a single exception in the lower left of the graphic where the variable \"number of workers\" appears at the top.\n", "\n", "You may be wondering why the algorithm is called a Decision Tree. Well, you can think of the graphic as an inverted tree with the top box, called the \"root\", representing the most predictive feature and the boxes at the bottom, called the \"leaves\", which provide the predictions. These final boxes (leaves) are the ones that tell us whether a team in a specific department was productive or not. The prediction is shown in the \"class\" component at the bottom of the box. Keep in mind, even though all boxes feature a \"class\" component, we are only interested in the classes found in a leaf, not before.\n", "\n", "**\"But how do I know which path to take from the top box to the final ones?\" you might ask. Good question! Basically, we need to use the thresholds associated with every variable at the top of every square box. We have to compare our inputs with those thresholds – starting from the root – until we reach the leaves at the bottom.** When we say \"input\" we are referring to the corresponding \"incentives\" and \"smv\" values for a particular team. We can obtain these values from any date we choose in the dataset or we can select the values ourselves to test hypothetical situations. This is excellent for us since it means we can use the Decision Tree to predict the outcome for future and/or hypothetical scenarios so long as we have their respective incentive and SMV values.\n", "\n", "**We get it, that last part was a bit overwhelming, so to show you how all this works, let's use an example:** a fictional date where the \"incentive\" is 22 and \"smv\" is 4.44 to predict if a team will be productive or not under these conditions. Starting from the root, we see that our first comparison will be 22 <= 22 when we **substitute \"incentive\" for 22**.\n", "\n", "So, is 22 less than or equal to 22? Yes! Since the assertion is True, we follow the arrow to the lower left box. This is a universal rule of Decision Trees: if the assertion is True, we continue to the left; otherwise, if it's False, we continue to the right. \n", "\n", "True = Left. False = Right.\n", "\n", "Now we repeat the process for the rest of the boxes. We apply the same approach to the next box, which has the comparrison 4.44 <= 3.92 after **we substitute \"smv\" for 4.44**.\n", "\n", "So, is 4.44 less than or equal to 3.92? No! Since the assertion is False, we follow the arrow to the lower right box. Again, **after substituting \"smv\" for 4.44** in that box, our final comparison is 4.44 <= 4.865.\n", "\n", "So, is 4.44 less than or equal to 4.865? Yes! Since the assertion is True, we follow the arrow to the final lower left box, the leaf, which predicts the team will be \"Productive\". In other words, if we have a team with an \"incentive\" of 22 and a SMV of 4.44, it will be a productive team!\n", "\n", "To summarize, the Decision Tree not only told us which variables have the strongest predictive power (\"incentive\" and \"smv\"), but it also allows us to make predictions using values of our own choosing. This is the power of Decision Trees! Any questions?\"" ] }, { "cell_type": "markdown", "id": "fcd92964", "metadata": {}, "source": [ "- - -\n", "\n", "## Using Random Forest\n", "\n", "To confirm and validate the results from our Decision Tree model, let's use a Random Forest to compare results." ] }, { "cell_type": "code", "execution_count": 85, "id": "e4beecee", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy: 0.85\n" ] } ], "source": [ "from sklearn.ensemble import RandomForestClassifier\n", "\n", "forest = RandomForestClassifier(\n", " oob_score = True, \n", " random_state = 24\n", " )\n", "\n", "forest.fit(X_train, y_train)\n", "\n", "y_pred_forest = forest.predict(X_test)\n", "\n", "print(\"Accuracy:\", round(accuracy_score(y_test,y_pred_forest), 2))" ] }, { "cell_type": "markdown", "id": "a069e78e", "metadata": {}, "source": [ "Let's also check the Out of Bag Score. As a reminder, when Random Forest generates training subsets for every individual Tree, it leaves out some observations of the dataset, and if we activate the OOB Score then those observations will be used as test subsets." ] }, { "cell_type": "code", "execution_count": 86, "id": "fb354648", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Out Of Bag Score: 0.83\n" ] } ], "source": [ "print(\"Out Of Bag Score:\", round(forest.oob_score_, 2))" ] }, { "cell_type": "markdown", "id": "8b6a2afa", "metadata": {}, "source": [ "Since the evaluation metrics of our Random Forest are similar to the scores of our Decision Tree, we can be confident about our results! \n", "\n", "Because of their tendency to overfit the data, it's always considered good practice to double-check Trees with a Random Forest." ] }, { "cell_type": "markdown", "id": "43c859e9", "metadata": {}, "source": [ "# Final Thoughts" ] }, { "cell_type": "markdown", "id": "1b171ef9", "metadata": {}, "source": [ "After completing a project, it is helpful to reflect on and highlight important aspects of the entire process to help solidify our learning.\n", "\n", "- It's critically important to understand the data we're working with. Keeping the dataset description close at hand and referring to it often can help avoid confusion! Faulty assumptions early on can easily lead us to confusing results later on.\n", "\n", "- As part of the Exploratory Data Analysis phase, always ensure the consistency and validity of the data. It's vital to identify any outliers, incorrect data, or any other error that can compromise the integrity of the data.\n", "\n", "- Exercise good judgement when selecting the columns to train the model while making the necessary transformations (like a correct encoding) to ensure the model interprets the data correctly.\n", "\n", "- Take all the time you need during the Data Cleaning phase to ensure there are no incorrect observations that could potentially foul the model during training. \n", "\n", "- When creating the Decision Tree algorithm, under no circumstances should we skip the evaluation phase! It can often provide us with clues about which hyperparameters to add or change when optimizing the model later on.\n", "\n", "- It's good practice to double check our Trees with the Random Forest technique.\n", "\n", "- Finally, if we're going to explain our findings to an audience, it pays to come prepared. While it's true that Decision Trees are easier to explain than other machine learning algorithms, it is still a machine learning algorithm and non-technical audiences will naturally be aprehensive!\n", "\n", "You may have noticed that we made sure to comply with all these points throughout this project. This explains why we were able to create a highly accurate Decision Tree. While the steps that involved the *scikit-learn* library were of vital importance, we should never underestimate the value of all the preparation we did prior." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" } }, "nbformat": 4, "nbformat_minor": 5 }