{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pandas\n", "\n", "movies = pandas.read_csv(\"fandango_score_comparison.csv\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
FILMRottenTomatoesRottenTomatoes_UserMetacriticMetacritic_UserIMDBFandango_StarsFandango_RatingvalueRT_normRT_user_norm...IMDB_normRT_norm_roundRT_user_norm_roundMetacritic_norm_roundMetacritic_user_norm_roundIMDB_norm_roundMetacritic_user_vote_countIMDB_user_vote_countFandango_votesFandango_Difference
0Avengers: Age of Ultron (2015)7486667.17.85.04.53.704.30...3.903.54.53.53.54.01330271107148460.5
1Cinderella (2015)8580677.57.15.04.54.254.00...3.554.54.03.54.03.524965709126400.5
2Ant-Man (2015)8090648.17.85.04.54.004.50...3.904.04.53.04.04.0627103660120550.5
3Do You Believe? (2015)1884224.75.45.04.50.904.20...2.701.04.01.02.52.531313617930.5
4Hot Tub Time Machine 2 (2015)1428293.45.13.53.00.701.40...2.550.51.51.51.52.5881956010210.5
5The Water Diviner (2015)6362506.87.24.54.03.153.10...3.603.03.02.53.53.534393733970.5
6Irrational Man (2015)4253537.66.94.03.52.102.65...3.452.02.52.54.03.51726802520.5
7Top Five (2014)8664816.86.54.03.54.303.20...3.254.53.04.03.53.51241687632230.5
8Shaun the Sheep Movie (2015)9982818.87.44.54.04.954.10...3.705.04.04.04.53.562122278960.5
9Love & Mercy (2015)8987808.57.84.54.04.454.35...3.904.54.54.04.54.05453678640.5
10Far From The Madding Crowd (2015)8477717.57.24.54.04.203.85...3.604.04.03.54.03.535121298040.5
11Black Sea (2015)8260626.66.44.03.54.103.00...3.204.03.03.03.53.037165472180.5
12Leviathan (2014)9979927.27.74.03.54.953.95...3.855.04.04.53.54.014522521640.5
13Unbroken (2014)5170596.57.24.54.12.553.50...3.602.53.53.03.53.52187751894430.4
14The Imitation Game (2014)9092738.28.15.04.64.504.60...4.054.54.53.54.04.056633416480550.4
15Taken 3 (2015)946264.66.14.54.10.452.30...3.050.52.51.52.53.024010423567570.4
16Ted 2 (2015)4658486.56.64.54.12.302.90...3.302.53.02.53.53.51974910264370.4
17Southpaw (2015)5980578.27.85.04.62.954.00...3.903.04.03.04.04.01282356155970.4
18Night at the Museum: Secret of the Tomb (2014)5058475.86.34.54.12.502.90...3.152.53.02.53.03.01035029154450.4
19Pixels (2015)1754275.35.64.54.10.852.70...2.801.02.51.52.53.02461952138860.4
20McFarland, USA (2015)7989607.27.55.04.63.954.45...3.754.04.53.03.54.0591376933640.4
21Insidious: Chapter 3 (2015)5956526.96.34.54.12.952.80...3.153.03.02.53.53.01152513432760.4
22The Man From U.N.C.L.E. (2015)6880557.97.64.54.13.404.00...3.803.54.03.04.04.01442210426860.4
23Run All Night (2015)6059597.36.64.54.13.002.95...3.303.03.03.03.53.51415043820660.4
24Trainwreck (2015)8574756.06.74.54.14.253.70...3.354.53.54.03.03.51692738083810.4
25Selma (2014)9986897.17.55.04.64.954.30...3.755.04.54.53.54.03164534470250.4
26Ex Machina (2015)9286787.97.74.54.14.604.30...3.854.54.54.04.04.067215449934580.4
27Still Alice (2015)8885727.87.54.54.14.404.25...3.754.54.53.54.04.01535712312580.4
28Wild Tales (2014)9692778.88.24.54.14.804.60...4.105.04.54.04.54.0107502852350.4
29The End of the Tour (2015)9289847.57.94.54.14.604.45...3.954.54.54.04.04.01913201210.4
..................................................................
116Clouds of Sils Maria (2015)8967787.16.83.53.44.453.35...3.404.53.54.03.53.536113921620.1
117Testament of Youth (2015)8179777.97.34.03.94.053.95...3.654.04.04.04.03.51554951270.1
118Infinitely Polar Bear (2015)8076647.97.24.03.94.003.80...3.604.04.03.04.03.5810621240.1
119Phoenix (2015)9981918.07.23.53.44.954.05...3.605.04.04.54.03.5213687700.1
120The Wolfpack (2015)8473757.07.13.53.44.203.65...3.554.03.54.03.53.581488660.1
121The Stanford Prison Experiment (2015)8487688.57.14.03.94.204.35...3.554.04.53.54.53.56950510.1
122Tangerine (2015)9586867.37.44.03.94.754.30...3.705.04.54.53.53.514696360.1
123Magic Mike XXL (2015)6264605.46.34.54.43.103.20...3.153.03.03.02.53.0521193793630.1
124Home (2015)4565557.36.74.54.42.253.25...3.352.53.53.03.53.51774115877050.1
125The Wedding Ringer (2015)2766353.36.74.54.41.353.30...3.351.53.52.01.53.51263729265060.1
126Woman in Gold (2015)5281517.27.44.54.42.604.05...3.702.54.02.53.53.5721795724350.1
127The Last Five Years (2015)6060606.96.04.54.43.003.00...3.003.03.03.03.53.0204110990.1
128Mission: Impossible – Rogue Nation (2015)9290758.07.84.54.44.604.50...3.904.54.54.04.04.03628257983570.1
129Amy (2015)9791858.88.04.54.44.854.55...4.005.04.54.54.54.06056307290.1
130Jurassic World (2015)7181597.07.34.54.53.554.05...3.653.54.03.03.53.51281241807343900.0
131Minions (2015)5452565.76.74.04.02.702.60...3.352.52.53.03.03.520455895149980.0
132Max (2015)3573475.97.04.54.51.753.65...3.502.03.52.53.03.515544434120.0
133Paul Blart: Mall Cop 2 (2015)536132.44.33.53.50.251.80...2.150.52.00.51.02.02111500430540.0
134The Longest Ride (2015)3173334.87.24.54.51.553.65...3.601.53.51.52.53.5492521426030.0
135The Lazarus Effect (2015)1423314.95.23.03.00.701.15...2.600.51.01.52.52.5621769116510.0
136The Woman In Black 2 Angel of Death (2015)2225424.44.93.03.01.101.25...2.451.01.52.02.02.5551487313330.0
137Danny Collins (2015)7775587.17.14.04.03.853.75...3.554.04.03.03.53.533112065310.0
138Spare Parts (2015)5283507.17.24.54.52.604.15...3.602.54.02.53.53.57473774500.0
139Serena (2015)1825365.35.43.03.00.901.25...2.701.01.52.02.52.51912165500.0
140Inside Out (2015)9890948.98.64.54.54.904.50...4.305.04.54.54.54.580796252157490.0
141Mr. Holmes (2015)8778677.97.44.04.04.353.90...3.704.54.03.54.03.533736713480.0
142'71 (2015)9782837.57.23.53.54.854.10...3.605.04.04.04.03.560241161920.0
143Two Days, One Night (2014)9778898.87.43.53.54.853.90...3.705.04.04.54.53.5123243451180.0
144Gett: The Trial of Viviane Amsalem (2015)10081907.37.83.53.55.004.05...3.905.04.04.53.54.0191955590.0
145Kumiko, The Treasure Hunter (2015)8763686.46.73.53.54.353.15...3.354.53.03.53.03.5195289410.0
\n", "

146 rows × 22 columns

\n", "
" ], "text/plain": [ " FILM RottenTomatoes \\\n", "0 Avengers: Age of Ultron (2015) 74 \n", "1 Cinderella (2015) 85 \n", "2 Ant-Man (2015) 80 \n", "3 Do You Believe? (2015) 18 \n", "4 Hot Tub Time Machine 2 (2015) 14 \n", "5 The Water Diviner (2015) 63 \n", "6 Irrational Man (2015) 42 \n", "7 Top Five (2014) 86 \n", "8 Shaun the Sheep Movie (2015) 99 \n", "9 Love & Mercy (2015) 89 \n", "10 Far From The Madding Crowd (2015) 84 \n", "11 Black Sea (2015) 82 \n", "12 Leviathan (2014) 99 \n", "13 Unbroken (2014) 51 \n", "14 The Imitation Game (2014) 90 \n", "15 Taken 3 (2015) 9 \n", "16 Ted 2 (2015) 46 \n", "17 Southpaw (2015) 59 \n", "18 Night at the Museum: Secret of the Tomb (2014) 50 \n", "19 Pixels (2015) 17 \n", "20 McFarland, USA (2015) 79 \n", "21 Insidious: Chapter 3 (2015) 59 \n", "22 The Man From U.N.C.L.E. (2015) 68 \n", "23 Run All Night (2015) 60 \n", "24 Trainwreck (2015) 85 \n", "25 Selma (2014) 99 \n", "26 Ex Machina (2015) 92 \n", "27 Still Alice (2015) 88 \n", "28 Wild Tales (2014) 96 \n", "29 The End of the Tour (2015) 92 \n", ".. ... ... \n", "116 Clouds of Sils Maria (2015) 89 \n", "117 Testament of Youth (2015) 81 \n", "118 Infinitely Polar Bear (2015) 80 \n", "119 Phoenix (2015) 99 \n", "120 The Wolfpack (2015) 84 \n", "121 The Stanford Prison Experiment (2015) 84 \n", "122 Tangerine (2015) 95 \n", "123 Magic Mike XXL (2015) 62 \n", "124 Home (2015) 45 \n", "125 The Wedding Ringer (2015) 27 \n", "126 Woman in Gold (2015) 52 \n", "127 The Last Five Years (2015) 60 \n", "128 Mission: Impossible – Rogue Nation (2015) 92 \n", "129 Amy (2015) 97 \n", "130 Jurassic World (2015) 71 \n", "131 Minions (2015) 54 \n", "132 Max (2015) 35 \n", "133 Paul Blart: Mall Cop 2 (2015) 5 \n", "134 The Longest Ride (2015) 31 \n", "135 The Lazarus Effect (2015) 14 \n", "136 The Woman In Black 2 Angel of Death (2015) 22 \n", "137 Danny Collins (2015) 77 \n", "138 Spare Parts (2015) 52 \n", "139 Serena (2015) 18 \n", "140 Inside Out (2015) 98 \n", "141 Mr. Holmes (2015) 87 \n", "142 '71 (2015) 97 \n", "143 Two Days, One Night (2014) 97 \n", "144 Gett: The Trial of Viviane Amsalem (2015) 100 \n", "145 Kumiko, The Treasure Hunter (2015) 87 \n", "\n", " RottenTomatoes_User Metacritic Metacritic_User IMDB Fandango_Stars \\\n", "0 86 66 7.1 7.8 5.0 \n", "1 80 67 7.5 7.1 5.0 \n", "2 90 64 8.1 7.8 5.0 \n", "3 84 22 4.7 5.4 5.0 \n", "4 28 29 3.4 5.1 3.5 \n", "5 62 50 6.8 7.2 4.5 \n", "6 53 53 7.6 6.9 4.0 \n", "7 64 81 6.8 6.5 4.0 \n", "8 82 81 8.8 7.4 4.5 \n", "9 87 80 8.5 7.8 4.5 \n", "10 77 71 7.5 7.2 4.5 \n", "11 60 62 6.6 6.4 4.0 \n", "12 79 92 7.2 7.7 4.0 \n", "13 70 59 6.5 7.2 4.5 \n", "14 92 73 8.2 8.1 5.0 \n", "15 46 26 4.6 6.1 4.5 \n", "16 58 48 6.5 6.6 4.5 \n", "17 80 57 8.2 7.8 5.0 \n", "18 58 47 5.8 6.3 4.5 \n", "19 54 27 5.3 5.6 4.5 \n", "20 89 60 7.2 7.5 5.0 \n", "21 56 52 6.9 6.3 4.5 \n", "22 80 55 7.9 7.6 4.5 \n", "23 59 59 7.3 6.6 4.5 \n", "24 74 75 6.0 6.7 4.5 \n", "25 86 89 7.1 7.5 5.0 \n", "26 86 78 7.9 7.7 4.5 \n", "27 85 72 7.8 7.5 4.5 \n", "28 92 77 8.8 8.2 4.5 \n", "29 89 84 7.5 7.9 4.5 \n", ".. ... ... ... ... ... \n", "116 67 78 7.1 6.8 3.5 \n", "117 79 77 7.9 7.3 4.0 \n", "118 76 64 7.9 7.2 4.0 \n", "119 81 91 8.0 7.2 3.5 \n", "120 73 75 7.0 7.1 3.5 \n", "121 87 68 8.5 7.1 4.0 \n", "122 86 86 7.3 7.4 4.0 \n", "123 64 60 5.4 6.3 4.5 \n", "124 65 55 7.3 6.7 4.5 \n", "125 66 35 3.3 6.7 4.5 \n", "126 81 51 7.2 7.4 4.5 \n", "127 60 60 6.9 6.0 4.5 \n", "128 90 75 8.0 7.8 4.5 \n", "129 91 85 8.8 8.0 4.5 \n", "130 81 59 7.0 7.3 4.5 \n", "131 52 56 5.7 6.7 4.0 \n", "132 73 47 5.9 7.0 4.5 \n", "133 36 13 2.4 4.3 3.5 \n", "134 73 33 4.8 7.2 4.5 \n", "135 23 31 4.9 5.2 3.0 \n", "136 25 42 4.4 4.9 3.0 \n", "137 75 58 7.1 7.1 4.0 \n", "138 83 50 7.1 7.2 4.5 \n", "139 25 36 5.3 5.4 3.0 \n", "140 90 94 8.9 8.6 4.5 \n", "141 78 67 7.9 7.4 4.0 \n", "142 82 83 7.5 7.2 3.5 \n", "143 78 89 8.8 7.4 3.5 \n", "144 81 90 7.3 7.8 3.5 \n", "145 63 68 6.4 6.7 3.5 \n", "\n", " Fandango_Ratingvalue RT_norm RT_user_norm ... \\\n", "0 4.5 3.70 4.30 ... \n", "1 4.5 4.25 4.00 ... \n", "2 4.5 4.00 4.50 ... \n", "3 4.5 0.90 4.20 ... \n", "4 3.0 0.70 1.40 ... \n", "5 4.0 3.15 3.10 ... \n", "6 3.5 2.10 2.65 ... \n", "7 3.5 4.30 3.20 ... \n", "8 4.0 4.95 4.10 ... \n", "9 4.0 4.45 4.35 ... \n", "10 4.0 4.20 3.85 ... \n", "11 3.5 4.10 3.00 ... \n", "12 3.5 4.95 3.95 ... \n", "13 4.1 2.55 3.50 ... \n", "14 4.6 4.50 4.60 ... \n", "15 4.1 0.45 2.30 ... \n", "16 4.1 2.30 2.90 ... \n", "17 4.6 2.95 4.00 ... \n", "18 4.1 2.50 2.90 ... \n", "19 4.1 0.85 2.70 ... \n", "20 4.6 3.95 4.45 ... \n", "21 4.1 2.95 2.80 ... \n", "22 4.1 3.40 4.00 ... \n", "23 4.1 3.00 2.95 ... \n", "24 4.1 4.25 3.70 ... \n", "25 4.6 4.95 4.30 ... \n", "26 4.1 4.60 4.30 ... \n", "27 4.1 4.40 4.25 ... \n", "28 4.1 4.80 4.60 ... \n", "29 4.1 4.60 4.45 ... \n", ".. ... ... ... ... \n", "116 3.4 4.45 3.35 ... \n", "117 3.9 4.05 3.95 ... \n", "118 3.9 4.00 3.80 ... \n", "119 3.4 4.95 4.05 ... \n", "120 3.4 4.20 3.65 ... \n", "121 3.9 4.20 4.35 ... \n", "122 3.9 4.75 4.30 ... \n", "123 4.4 3.10 3.20 ... \n", "124 4.4 2.25 3.25 ... \n", "125 4.4 1.35 3.30 ... \n", "126 4.4 2.60 4.05 ... \n", "127 4.4 3.00 3.00 ... \n", "128 4.4 4.60 4.50 ... \n", "129 4.4 4.85 4.55 ... \n", "130 4.5 3.55 4.05 ... \n", "131 4.0 2.70 2.60 ... \n", "132 4.5 1.75 3.65 ... \n", "133 3.5 0.25 1.80 ... \n", "134 4.5 1.55 3.65 ... \n", "135 3.0 0.70 1.15 ... \n", "136 3.0 1.10 1.25 ... \n", "137 4.0 3.85 3.75 ... \n", "138 4.5 2.60 4.15 ... \n", "139 3.0 0.90 1.25 ... \n", "140 4.5 4.90 4.50 ... \n", "141 4.0 4.35 3.90 ... \n", "142 3.5 4.85 4.10 ... \n", "143 3.5 4.85 3.90 ... \n", "144 3.5 5.00 4.05 ... \n", "145 3.5 4.35 3.15 ... \n", "\n", " IMDB_norm RT_norm_round RT_user_norm_round Metacritic_norm_round \\\n", "0 3.90 3.5 4.5 3.5 \n", "1 3.55 4.5 4.0 3.5 \n", "2 3.90 4.0 4.5 3.0 \n", "3 2.70 1.0 4.0 1.0 \n", "4 2.55 0.5 1.5 1.5 \n", "5 3.60 3.0 3.0 2.5 \n", "6 3.45 2.0 2.5 2.5 \n", "7 3.25 4.5 3.0 4.0 \n", "8 3.70 5.0 4.0 4.0 \n", "9 3.90 4.5 4.5 4.0 \n", "10 3.60 4.0 4.0 3.5 \n", "11 3.20 4.0 3.0 3.0 \n", "12 3.85 5.0 4.0 4.5 \n", "13 3.60 2.5 3.5 3.0 \n", "14 4.05 4.5 4.5 3.5 \n", "15 3.05 0.5 2.5 1.5 \n", "16 3.30 2.5 3.0 2.5 \n", "17 3.90 3.0 4.0 3.0 \n", "18 3.15 2.5 3.0 2.5 \n", "19 2.80 1.0 2.5 1.5 \n", "20 3.75 4.0 4.5 3.0 \n", "21 3.15 3.0 3.0 2.5 \n", "22 3.80 3.5 4.0 3.0 \n", "23 3.30 3.0 3.0 3.0 \n", "24 3.35 4.5 3.5 4.0 \n", "25 3.75 5.0 4.5 4.5 \n", "26 3.85 4.5 4.5 4.0 \n", "27 3.75 4.5 4.5 3.5 \n", "28 4.10 5.0 4.5 4.0 \n", "29 3.95 4.5 4.5 4.0 \n", ".. ... ... ... ... \n", "116 3.40 4.5 3.5 4.0 \n", "117 3.65 4.0 4.0 4.0 \n", "118 3.60 4.0 4.0 3.0 \n", "119 3.60 5.0 4.0 4.5 \n", "120 3.55 4.0 3.5 4.0 \n", "121 3.55 4.0 4.5 3.5 \n", "122 3.70 5.0 4.5 4.5 \n", "123 3.15 3.0 3.0 3.0 \n", "124 3.35 2.5 3.5 3.0 \n", "125 3.35 1.5 3.5 2.0 \n", "126 3.70 2.5 4.0 2.5 \n", "127 3.00 3.0 3.0 3.0 \n", "128 3.90 4.5 4.5 4.0 \n", "129 4.00 5.0 4.5 4.5 \n", "130 3.65 3.5 4.0 3.0 \n", "131 3.35 2.5 2.5 3.0 \n", "132 3.50 2.0 3.5 2.5 \n", "133 2.15 0.5 2.0 0.5 \n", "134 3.60 1.5 3.5 1.5 \n", "135 2.60 0.5 1.0 1.5 \n", "136 2.45 1.0 1.5 2.0 \n", "137 3.55 4.0 4.0 3.0 \n", "138 3.60 2.5 4.0 2.5 \n", "139 2.70 1.0 1.5 2.0 \n", "140 4.30 5.0 4.5 4.5 \n", "141 3.70 4.5 4.0 3.5 \n", "142 3.60 5.0 4.0 4.0 \n", "143 3.70 5.0 4.0 4.5 \n", "144 3.90 5.0 4.0 4.5 \n", "145 3.35 4.5 3.0 3.5 \n", "\n", " Metacritic_user_norm_round IMDB_norm_round Metacritic_user_vote_count \\\n", "0 3.5 4.0 1330 \n", "1 4.0 3.5 249 \n", "2 4.0 4.0 627 \n", "3 2.5 2.5 31 \n", "4 1.5 2.5 88 \n", "5 3.5 3.5 34 \n", "6 4.0 3.5 17 \n", "7 3.5 3.5 124 \n", "8 4.5 3.5 62 \n", "9 4.5 4.0 54 \n", "10 4.0 3.5 35 \n", "11 3.5 3.0 37 \n", "12 3.5 4.0 145 \n", "13 3.5 3.5 218 \n", "14 4.0 4.0 566 \n", "15 2.5 3.0 240 \n", "16 3.5 3.5 197 \n", "17 4.0 4.0 128 \n", "18 3.0 3.0 103 \n", "19 2.5 3.0 246 \n", "20 3.5 4.0 59 \n", "21 3.5 3.0 115 \n", "22 4.0 4.0 144 \n", "23 3.5 3.5 141 \n", "24 3.0 3.5 169 \n", "25 3.5 4.0 316 \n", "26 4.0 4.0 672 \n", "27 4.0 4.0 153 \n", "28 4.5 4.0 107 \n", "29 4.0 4.0 19 \n", ".. ... ... ... \n", "116 3.5 3.5 36 \n", "117 4.0 3.5 15 \n", "118 4.0 3.5 8 \n", "119 4.0 3.5 21 \n", "120 3.5 3.5 8 \n", "121 4.5 3.5 6 \n", "122 3.5 3.5 14 \n", "123 2.5 3.0 52 \n", "124 3.5 3.5 177 \n", "125 1.5 3.5 126 \n", "126 3.5 3.5 72 \n", "127 3.5 3.0 20 \n", "128 4.0 4.0 362 \n", "129 4.5 4.0 60 \n", "130 3.5 3.5 1281 \n", "131 3.0 3.5 204 \n", "132 3.0 3.5 15 \n", "133 1.0 2.0 211 \n", "134 2.5 3.5 49 \n", "135 2.5 2.5 62 \n", "136 2.0 2.5 55 \n", "137 3.5 3.5 33 \n", "138 3.5 3.5 7 \n", "139 2.5 2.5 19 \n", "140 4.5 4.5 807 \n", "141 4.0 3.5 33 \n", "142 4.0 3.5 60 \n", "143 4.5 3.5 123 \n", "144 3.5 4.0 19 \n", "145 3.0 3.5 19 \n", "\n", " IMDB_user_vote_count Fandango_votes Fandango_Difference \n", "0 271107 14846 0.5 \n", "1 65709 12640 0.5 \n", "2 103660 12055 0.5 \n", "3 3136 1793 0.5 \n", "4 19560 1021 0.5 \n", "5 39373 397 0.5 \n", "6 2680 252 0.5 \n", "7 16876 3223 0.5 \n", "8 12227 896 0.5 \n", "9 5367 864 0.5 \n", "10 12129 804 0.5 \n", "11 16547 218 0.5 \n", "12 22521 64 0.5 \n", "13 77518 9443 0.4 \n", "14 334164 8055 0.4 \n", "15 104235 6757 0.4 \n", "16 49102 6437 0.4 \n", "17 23561 5597 0.4 \n", "18 50291 5445 0.4 \n", "19 19521 3886 0.4 \n", "20 13769 3364 0.4 \n", "21 25134 3276 0.4 \n", "22 22104 2686 0.4 \n", "23 50438 2066 0.4 \n", "24 27380 8381 0.4 \n", "25 45344 7025 0.4 \n", "26 154499 3458 0.4 \n", "27 57123 1258 0.4 \n", "28 50285 235 0.4 \n", "29 1320 121 0.4 \n", ".. ... ... ... \n", "116 11392 162 0.1 \n", "117 5495 127 0.1 \n", "118 1062 124 0.1 \n", "119 3687 70 0.1 \n", "120 1488 66 0.1 \n", "121 950 51 0.1 \n", "122 696 36 0.1 \n", "123 11937 9363 0.1 \n", "124 41158 7705 0.1 \n", "125 37292 6506 0.1 \n", "126 17957 2435 0.1 \n", "127 4110 99 0.1 \n", "128 82579 8357 0.1 \n", "129 5630 729 0.1 \n", "130 241807 34390 0.0 \n", "131 55895 14998 0.0 \n", "132 5444 3412 0.0 \n", "133 15004 3054 0.0 \n", "134 25214 2603 0.0 \n", "135 17691 1651 0.0 \n", "136 14873 1333 0.0 \n", "137 11206 531 0.0 \n", "138 47377 450 0.0 \n", "139 12165 50 0.0 \n", "140 96252 15749 0.0 \n", "141 7367 1348 0.0 \n", "142 24116 192 0.0 \n", "143 24345 118 0.0 \n", "144 1955 59 0.0 \n", "145 5289 41 0.0 \n", "\n", "[146 rows x 22 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "movies" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(array([ 12., 0., 27., 0., 0., 41., 0., 55., 0., 11.]),\n", " array([ 3. , 3.2, 3.4, 3.6, 3.8, 4. , 4.2, 4.4, 4.6, 4.8, 5. ]),\n", " )" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": [ "iVBORw0KGgoAAAANSUhEUgAAAXMAAAEACAYAAABBDJb9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", "AAALEgAACxIB0t1+/AAADrBJREFUeJzt3X+MpVddx/H3p7sgULGbDWa6oRUwuhaMSIkUAqjTSg02\n", "uPYPU+EP2BAkxqAS/yAuRJPlHwH/wV/RGEEyEoI0SJsiEHZZOioxKTZsAVnqinETquyUIMVCJRb7\n", "9Y95lh2ns3PvzL1z7+x33q/kZp/nuefec+6ZM5979tznuZOqQpJ0ebti3g2QJE3OMJekBgxzSWrA\n", "MJekBgxzSWrAMJekBsYK8yQHknwwyReTnEnywiQHk5xMcjbJiSQHdrqxkqSNjTsz/wPgo1X1bOC5\n", "wP3AMeBkVR0GTg37kqQ5yKiLhpJcBZyuqh9cd/x+4KeraiXJ1cByVV23c02VJF3KODPzZwFfTfKe\n", "JJ9J8udJrgQWqmplKLMCLOxYKyVJmxonzPcDzwf+pKqeD3yLdUsqtTq993sBJGlO9o9R5gHggar6\n", "x2H/g8CbgfNJrq6q80kOAQ+uf2ASA16StqGqspXyI8N8COsvJzlcVWeBlwFfGG5HgXcM/945jQZ1\n", "leR4VR2fdzt2A/viIvviIvviou1MhMeZmQP8OvC+JE8E/hV4LbAPuD3J64BzwG1brVySNB1jhXlV\n", "fRZ4wQZ3vWy6zZEkbYdXgM7O8rwbsIssz7sBu8jyvBuwiyzPuwGXs5HnmU/05Em5Zi5JW7Od7HRm\n", "LkkNGOaS1IBhLkkNGOaS1IBhLkkNGOaS1IBhLkkNGOaS1IBhLkkNGOaS1IBhLkkNGOaS1MC432cu\n", "aROz/qtafoGd1jPMpamZVZ6b43o8l1kkqQHDXJIaMMwlqQHDXJIaMMwlqQHDXJIaMMwlqQHDXJIa\n", "MMwlqQHDXJIaMMwlqQHDXJIaGOuLtpKcA/4L+F/g0aq6IclB4APAM4BzwG1V9dAOtVOStIlxZ+YF\n", "LFbV9VV1w3DsGHCyqg4Dp4Z9SdIcbGWZZf33bh4BlobtJeDWqbRIkrRlW5mZfyLJvUlePxxbqKqV\n", "YXsFWJh66yRJYxn3j1O8pKq+kuT7gZNJ7l97Z1XVrP/SiiTporHCvKq+Mvz71SR3ADcAK0murqrz\n", "SQ4BD2702CTH1+wuV9XyZE2WpF6SLAKLEz1H1eYT6iRPAfZV1cNJrgROAG8FXgZ8rarekeQYcKCq\n", "jq17bPm3CrUXrP7PdHZ/Ns7fq962k53jzMwXgDuSXCj/vqo6keRe4PYkr2M4NXGL7ZUkTcnImflE\n", "T+7MXHuEM3NN03ay0ytAJakBw1ySGjDMJakBw1ySGjDMJakBw1ySGjDMJakBw1ySGjDMJakBw1yS\n", "GjDMJakBw1ySGjDMJakBw1ySGjDMJakBw1ySGjDMJakBw1ySGjDMJakBw1ySGjDMJakBw1ySGjDM\n", "JakBw1ySGjDMJakBw1ySGjDMJakBw1ySGjDMJamB/eMUSrIPuBd4oKp+PslB4APAM4BzwG1V9dCO\n", "tVKtJKlZ1VVVmVVd0jyNOzN/I3AGuPBLeAw4WVWHgVPDvrQFNYObtHeMDPMk1wC3AO8CLsxyjgBL\n", "w/YScOuOtE6SNJZxZubvBN4EPLbm2EJVrQzbK8DCtBsmSRrfpmvmSV4BPFhVp5MsblSmqmqzNdAk\n", "x9fsLlfV8jbaKUltDfm6ONFzVF16bTHJ7wKvBr4DPAn4PuBDwAuAxao6n+QQcHdVXbfB48sPoLTe\n", "6pv/LNa0M7MPQGf3mmCWr0vzsZ3s3HSZpareUlXXVtWzgFcCn6yqVwN3AUeHYkeBO7fTYEnSdGz1\n", "PPMLU4+3AzcnOQvcNOxLkuZk02WWiZ/cZRZtwGWWiWtzmaW5qS+zSJIuD4a5JDVgmEtSA4a5JDVg\n", "mEtSA4a5JDVgmEtSA4a5JDVgmEtSA4a5JDVgmEtSA4a5JDVgmEtSA4a5JDVgmEtSA4a5JDVgmEtS\n", "A4a5JDVgmEtSA4a5JDVgmEtSA4a5JDVgmEtSA4a5JDVgmEtSA4a5JDVgmEtSA4a5JDWwaZgneVKS\n", "e5Lcl+RMkrcNxw8mOZnkbJITSQ7MprmSpI1sGuZV9W3gxqp6HvBc4MYkLwWOASer6jBwatiXJM3J\n", "yGWWqnpk2HwisA/4OnAEWBqOLwG37kjrJEljGRnmSa5Ich+wAtxdVV8AFqpqZSiyAizsYBslSSPs\n", "H1Wgqh4DnpfkKuDjSW5cd38lqUs9PsnxNbvLVbW8zbZKUktJFoHFiZ6j6pI5vFGFvwP8N/DLwGJV\n", "nU9yiNUZ+3UblK+qyiQNVD+rb/7jj7sJamJW4292rwlm+bo0H9vJzlFnszztwpkqSZ4M3AycBu4C\n", "jg7FjgJ3br25kqRpGbXMcghYSnIFq8H/3qo6leQ0cHuS1wHngNt2tpmSpM1saZlly0/uMos24DLL\n", "xLW5zNLc1JdZJEmXB8NckhowzCWpAcNckhowzCWpAcNckhoYeTm//r/NvrpgJ3gKmqRxGObbMrvz\n", "iSVpHC6zSFIDhrkkNWCYS1IDhrkkNWCYS1IDhrkkNWCYS1IDhrkkNWCYS1IDhrkkNWCYS1IDhrkk\n", "NWCYS1IDhrkkNWCYS1IDhrkkNWCYS1IDhrkkNWCYS1IDhrkkNTAyzJNcm+TuJF9I8k9JfmM4fjDJ\n", "ySRnk5xIcmDnmytJ2sg4M/NHgd+sqh8FXgS8IcmzgWPAyao6DJwa9iVJczAyzKvqfFXdN2x/E/gi\n", "8HTgCLA0FFsCbt2pRkqSNrelNfMkzwSuB+4BFqpqZbhrBViYasskSWPbP27BJN8L/DXwxqp6OMl3\n", "76uqSlKXeNzxNbvLVbW8vaZKUk9JFoHFiZ6jasMMXl/RE4C/AT5WVb8/HLsfWKyq80kOAXdX1XXr\n", "HldVlcc/4+Vr9U1rdJ9NqTa69R/Msg9n13+OC03TdrJznLNZArwbOHMhyAd3AUeH7aPAnVupWJI0\n", "PSNn5kleCvwd8DkuTj3eDHwauB34AeAccFtVPbTusc7MJ6ut5QzMmfnEtbUcF7poO9k51jLLdhnm\n", "E9fW8pfWMJ+4tpbjQhftyDKLJGn3M8wlqQHDXJIaMMwlqQHDXJIaMMwlqQHDXJIaMMwlqQHDXJIa\n", "MMwlqQHDXJIaMMwlqQHDXJIaMMwlqQHDXJIaMMwlqQHDXJIaMMwlqQHDXJIaMMwlqQHDXJIaMMwl\n", "qQHDXJIaMMwlqYH9O11Bkl/a6ToGH6qqR2dUlyTtKqmqnXvypOAVD+9YBd/1kSuhrqqqb+50Tauv\n", "aef6bF1tVFVmVNnMzK4PZ9d/jgtNU5La6s94BmE+iwH+PY/C/xw0zC8PhvnEtbUcF7poO2Humrkk\n", "NTAyzJP8RZKVJJ9fc+xgkpNJziY5keTAzjZTkrSZcWbm7wFevu7YMeBkVR0GTg37kppJUrO8zfv1\n", "Xs5GhnlV/T3w9XWHjwBLw/YScOuU2yVp16gZ3TSJ7a6ZL1TVyrC9AixMqT2SpG2Y+APQWj0dxrdV\n", "SZqj7V40tJLk6qo6n+QQ8OClix5fs7043CRJFyRZZMJwHOs88yTPBD5cVT827P8e8LWqekeSY8CB\n", "qnrch6CeZz5xbS3PJ/Y884lr83U1tyPnmSd5P/APwI8k+XKS1wJvB25Ocha4adiXJM2JV4BukTOV\n", "yTkzn7g2X1dzXgEqSXuUYS5JDRjmktSAYS5JDRjmktSAYS5JDRjmktSAYS5JDRjmktSAYS5JDRjm\n", "ktSAYS5JDRjmktSAYS5JDRjmktSAYS5JDRjmktSAYS5JDRjmktSAYS5JDRjmktSAYS5JDRjmktSA\n", "YS5JDRjmktSAYS5JDRjmktSAYS5JDUwU5klenuT+JP+S5Lem1ShJ0tZsO8yT7AP+GHg58BzgVUme\n", "Pa2G9bM87wZoV1qedwPUxCQz8xuAL1XVuap6FPgr4Bem06yOlufdAO1Ky/NugJqYJMyfDnx5zf4D\n", "wzFJ0oztn+CxNV6xm74xQR1jevT7dr4OSdq9JgnzfweuXbN/Lauz83XuvmqCOrbi4SQzqmq79bx1\n", "6zUlY75pXm5m87Oabf91HRez+r3qPN53Xqq213dJ9gP/DPwM8B/Ap4FXVdUXp9c8SdI4tj0zr6rv\n", "JPk14OPAPuDdBrkkzce2Z+aSpN1j4itAkzwpyT1J7ktyJsnbLlHuD4eLiz6b5PpJ692NxumLJItJ\n", "vpHk9HD77Xm0dRaS7Bte44cvcX/7MXHBZn2xx8bEuSSfG17npy9RZk+Mi1F9sdVxMckHoABU1beT\n", "3FhVjwzr6J9K8tKq+tSaRt0C/FBV/XCSFwJ/Crxo0rp3m3H6YvC3VXVkHm2csTcCZ4Cnrr9jr4yJ\n", "NS7ZF4O9MiYKWKyq/9zozj02Ljbti8HY42Iq381SVY8Mm09kdf18feOOAEtD2XuAA0kWplH3bjNG\n", "X8AsTw+YkyTXALcA72Lj17tnxsQYfcEmxzva7LXumXExGPVzH3tcTCXMk1yR5D5gBbi7qs6sK7LR\n", "BUbXTKPu3WaMvijgxcN/IT+a5Dmzb+VMvBN4E/DYJe7fM2OC0X2xV8YErL7WTyS5N8nrN7h/L42L\n", "UX2xpXExrZn5Y1X1PFY7/aeSLG5QbP07TMtPXsfoi88A11bVjwN/BNw54ybuuCSvAB6sqtNsPrNo\n", "PybG7Iv2Y2KNl1TV9cDPAW9I8pMblGk/Lgaj+mJL42KqX4FbVd8APgL8xLq71l9gdM1wrK1L9UVV\n", "PXxhKaaqPgY8IcnBOTRxJ70YOJLk34D3Azcl+ct1ZfbKmBjZF3tkTABQVV8Z/v0qcAer3/G01l4Z\n", "FyP7YqvjYhpnszwtyYFh+8nAzcDpdcXuAl4zlHkR8FBVrUxa924zTl8kWchwqWqSG1g9PXSzD0Au\n", "O1X1lqq6tqqeBbwS+GRVvWZdsT0xJsbpi70wJgCSPCXJU4ftK4GfBT6/rtieGBfj9MVWx8XEZ7MA\n", "h4ClJFew+ubw3qo6leRXAKrqz6rqo0luSfIl4FvAa6dQ7240si+AXwR+Ncl3gEdY/QXvrgD26JhY\n", "73F9wd4ZEwvAHUM+7QfeV1Un9ui4GNkXbHFceNGQJDXgn42TpAYMc0lqwDCXpAYMc0lqwDCXpAYM\n", "c0lqwDCXpAYMc0lq4P8APY+Dg8NpCwIAAAAASUVORK5CYII=\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "\n", "plt.hist(movies[\"Fandango_Stars\"])" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(array([ 1., 2., 20., 14., 0., 22., 27., 20., 25., 15.]),\n", " array([ 0.5, 0.9, 1.3, 1.7, 2.1, 2.5, 2.9, 3.3, 3.7, 4.1, 4.5]),\n", " )" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": [ "iVBORw0KGgoAAAANSUhEUgAAAXMAAAEACAYAAABBDJb9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", "AAALEgAACxIB0t1+/AAADzlJREFUeJzt3W+sZPVdx/H3B3ZJi0RXgl1W2Lp9YFM0jeAfbFqU1WpC\n", "GoOYGBRjSkxjGqOlqdFAibHb+KDaxNqoiTEpbda2wTQlULDUgrgT8AHUKttu+WMlKQkoe6nljyAm\n", "pfD1wT1brrdz78ydP+fs/ub9SiZ75syZ+X33e8/9zLm/e8+ZVBWSpFPbaUMXIEman2EuSQ0wzCWp\n", "AYa5JDXAMJekBhjmktSAbcM8yauS3JfkaJIHk3ygW392kjuTfDXJHUn29FOuJGmcTPo78yRnVtUL\n", "SXYB/wT8HnA58F9V9cEk1wLfW1XXLb9cSdI4E6dZquqFbvEM4HTgadbD/HC3/jBwxVKqkyRNZWKY\n", "JzktyVFgDThSVQ8Ae6tqrdtkDdi7xBolSRPsmrRBVb0MXJjke4DPJ/mZTY9XEq8JIEkDmhjmJ1TV\n", "s0k+C/wYsJbk3Ko6nmQf8OTm7Q14SZpNVWWWJ215A84B9nTLrwbuBt4KfBC4tlt/HfDHY55b2732\n", "UDfg0NA1WJM1rWJd1jR1TTXL8yYdme8DDic5jfX59Y9X1V1J7gc+leQdwKPAlTt+F5EkLcy2YV5V\n", "x4AfHbP+KeDnllWUJGlnVvEM0NHQBYwxGrqAMUZDFzDGaOgCxhgNXcAWRkMXMMZo6ALGGA1dwKJM\n", "PGlo5hdOqmaZxJekFTZrdq7ikbkkNccwl6QGGOaS1ADDXJIaYJhLUgMMc0lqgGEuSQ0wzCWpAYa5\n", "JDXAMJekBhjmktQAw1ySGmCYS1IDDHNJaoBhLkkNMMwlqQGTPgNU0kkoyXI+VWYKfujMyckwl05Z\n", "Q+S5OX6ycppFkhpgmEtSAwxzSWqAYS5JDTDMJakBhrkkNcAwl6QGGOaS1IBtwzzJ/iRHkjyQ5CtJ\n", "runWH0ryeJL7u9tl/ZQrSRonVVufRZbkXODcqjqa5CzgX4ArgCuB56rqQ9s8tzztV1qO9dP5hzkD\n", "1O/r5Zo1O7c9nb+qjgPHu+XnkzwEnHdizB1XKUlaiqnnzJMcAC4C7u1WvSvJl5LckGTPEmqTJE1p\n", "qjDvplg+Dby7qp4H/gp4HXAh8ATwp0urUJI00cSrJibZDdwEfKKqbgGoqic3PP4R4LYtnntow91R\n", "VY3mKVbSamr5kr9JDgIH536dCb8ADXAY+EZVvWfD+n1V9US3/B7gJ6rq1zY911+ASkuyar8AXaX/\n", "76zZOSnMLwHuBr7MK528HriK9SmWAr4GvLOq1hZRkKTJVincYLX+v0sJ83kY5tLyrFK4wWr9f2fN\n", "Ts8AlaQGGOaS1ADDXJIaYJhLUgMMc0lqgGEuSQ0wzCWpAYa5JDXAMJekBhjmktQAw1ySGmCYS1ID\n", "DHNJaoBhLkkNMMwlqQGGuSQ1wDCXpAYY5pLUgF1DFyCdyob81HhpI8Ncmtswn00pbeQ0iyQ1wDCX\n", "pAYY5pLUAMNckhpgmEtSAwxzSWqAYS5JDTDMJakBhrkkNWDbME+yP8mRJA8k+UqSa7r1Zye5M8lX\n", "k9yRZE8/5UqSxpl0ZP4i8J6q+mHgTcBvJ7kAuA64s6peD9zV3ZckDWTbMK+q41V1tFt+HngIOA+4\n", "HDjcbXYYuGKZRUqStjf1nHmSA8BFwH3A3qpa6x5aA/YuvDJJ0tSmumpikrOAm4B3V9VzyStXbKuq\n", "2uoyoEkObbg7qqrR7KVqp4a8PGtVeVm/RnnZ38VKchA4OPfrVG3/dUmyG/g74HNV9eFu3cPAwao6\n", "nmQfcKSq3rDpeeU39LDWv+mGuTzrqnzth+yx4/Yzbt/78qzZOemvWQLcADx4Isg7twJXd8tXA7fs\n", "dGBJ0uJse2Se5BLgbuDLvPK2+F7gC8CngNcCjwJXVtUzm57rkfnAPDJfPo/M2x/3VDkynzjNMivD\n", "fHiG+fIZ5u2Pe6qEuWeASlIDDHNJaoBhLkkNMMwlqQGGuSQ1wDCXpAYY5pLUAMNckhpgmEtSAwxz\n", "SWqAYS5JDTDMJakBhrkkNcAwl6QGGOaS1ADDXJIaYJhLUgMMc0lqgGEuSQ0wzCWpAYa5JDXAMJek\n", "BhjmktQAw1ySGmCYS1IDDHNJaoBhLkkNMMwlqQETwzzJR5OsJTm2Yd2hJI8nub+7XbbcMiVJ25nm\n", "yPxjwOawLuBDVXVRd/v7xZcmSZrWxDCvqnuAp8c8lMWXI0maxTxz5u9K8qUkNyTZs7CKJEk7lqqa\n", "vFFyALitqt7Y3X8N8PXu4T8C9lXVOzY9p4D3b1g1qqrR/CVrWutfg8lf3yWMTFWtxE9uQ/bYcfsa\n", "t3+zfP/smnGgJ08sJ/kIcNsW2x2a5fUl6eTR95vIbG8gM02zJNm34e4vAce22laStHwTj8yT3Ahc\n", "CpyT5DHgfcDBJBey/pb1NeCdS61SkrStqebMZ3rhpFZl3vRk5Zz58jln7rjLGHOW7x/PAJWkBhjm\n", "ktQAw1ySGjDTnyZKk3TnGfRuVebqpc0Mcy3J6pzgIZ0MnGaRpAYY5pLUAMNckhpgmEtSAwxzSWqA\n", "YS5JDTDMJakBhrkkNcAwl6QGGOaS1ADDXJIaYJhLUgMMc0lqgGEuSQ0wzCWpAYa5JDXAMJekBhjm\n", "ktQAw1ySGmCYS1IDDHNJaoBhLkkNMMwlqQETwzzJR5OsJTm2Yd3ZSe5M8tUkdyTZs9wyJUnbmebI\n", "/GPAZZvWXQfcWVWvB+7q7kuSBjIxzKvqHuDpTasvBw53y4eBKxZclyRpB2adM99bVWvd8hqwd0H1\n", "SJJmsGveF6iqSlLjHktyaMPdUVWN5h1Pktoy6m7zSdXYHP7/GyUHgNuq6o3d/YeBg1V1PMk+4EhV\n", "vWHTc6qqMneFmtn6m+zkr+8SRmaocfve51axx467/DFn2Y9nnWa5Fbi6W74auGXG15EkLcDEI/Mk\n", "NwKXAuewPj/+h8BngE8BrwUeBa6sqmc2Pc8j84Gt4lGjR+aOe+qPO9t+PNU0yywM8+GtYtAY5o57\n", "6o/b7zSLJOkkYphLUgMMc0lqgGEuSQ0wzCWpAYa5JDXAMJekBhjmktQAw1ySGmCYS1IDDHNJaoBh\n", "LkkNMMwlqQGGuSQ1wDCXpAYY5pLUAMNckhpgmEtSAwxzSWqAYS5JDTDMJakBhrkkNcAwl6QGGOaS\n", "1ADDXJIaYJhLUgMMc0lqgGEuSQ3YNc+TkzwK/DfwEvBiVV28iKIkSTszV5gDBRysqqcWUYwkaTaL\n", "mGbJAl5DkjSHecO8gH9I8sUkv7mIgiRJOzfvNMtbquqJJN8H3Jnk4aq6ZxGFSZKmN1eYV9UT3b9f\n", "T3IzcDHw7TBPcmjD5qOqGs0zniS1Z9Td5pOqmu2JyZnA6VX1XJLvAu4A3l9Vd3SPV1U5nz6gJLU+\n", "E9b7yAw1bt/73Cr22HGXP+Ys+/E8R+Z7gZuTnHidT54IcklSv2Y+Mp/4wh6ZD24Vjxo9MnfcU3/c\n", "2fZjzwCVpAYY5pLUAMNckhpgmEtSAwxzSWqAYS5JDTDMJakBhrkkNcAwl6QGGOaS1ADDXJIaYJhL\n", "UgMMc0lqgGEuSQ0wzCWpAYa5JDXAMJekBhjmktSAeT4DVFNa/2gxSVoew7w3Q31+oaRV4DSLJDXA\n", "MJekBhjmktQAw1ySGrBSvwBN8gPA7qHrkKRFW6kwhzNH8OrXwO6X+xvz5cCT/Q0naSWtWJjv3g13\n", "nwk/1OOY3wDO6XE8SavIOXNJasDMYZ7ksiQPJ/n3JNcusihJ0s7MFOZJTgf+EriM9TmLq5JcsMjC\n", "lucLQxcwxmjoAsYYDV3AGKOhCziFjIYuYIzR0AWMMRq6gIWZ9cj8YuCRqnq0ql4E/hb4xcWVtUz/\n", "PHQBY4yGLmCM0dAFjDEauoBTyGjoAsYYDV3AGKOhC1iYWcP8POCxDfcf79ZJkgYw61+znKJXAXzp\n", "Jbj5m/DQ//Y35jcDfHd/40laRanaeS4neRNwqKou6+6/F3i5qv5kwzanaOBL0rCqaseXPJ01zHcB\n", "/wa8FfhP1n+reFVVPbTjF5MkzW2maZaq+laS3wE+D5wO3GCQS9JwZjoylySdXOY+A3Sak4eS/Hn3\n", "+JeSXDTvmPPWlORgkmeT3N/d/qCHmj6aZC3JsW226btP29Y0UJ/2JzmS5IEkX0lyzRbb9daraWrq\n", "u1dJXpXkviRHkzyY5ANbbNf3PjWxriH2q27c07vxbtvi8V57NammHfepqma+sT7F8ghwgPWrER4F\n", "Lti0zduA27vlnwTunWfMBdV0ELh1mXWMqeungIuAY1s83mufpqxpiD6dC1zYLZ/F+u9mht6npqlp\n", "iF6d2f27C7gXuGTofWrKunrvVTfu7wKfHDf2gL3arqYd9WneI/NpTh66HDgMUFX3AXuS7J1z3Hlr\n", "gp4/ILOq7gGe3maTvvs0TU3Qf5+OV9XRbvl54CHg+zdt1muvpqwJ+u/VC93iGawfxDy1aZPe96kp\n", "64Kee5XkfNYD+yNbjN17r6aoiW3Wf4d5w3yak4fGbXP+nOPOW1MBb+5+nLo9SZ+XUdxK332axqB9\n", "SnKA9Z8c7tv00GC92qam3nuV5LQkR4E14EhVPbhpk0H6NEVdQ+xXfwb8PrDV5a+H6NWkmnbUp3nD\n", "fNrfnm5+d1nmb12nee1/BfZX1Y8AfwHcssR6dqLPPk1jsD4lOQv4NPDu7mj4OzbZdH/pvZpQU++9\n", "qqqXq+pC1kPnp5McHLNZ732aoq5ee5XkF4Anq+p+tj/S7a1XU9a0oz7NG+b/AezfcH8/6+9o221z\n", "frduWSbWVFXPnfhRsKo+B+xOcvYSa5pG332aaKg+JdkN3AR8oqrG7cC992pSTUPuU1X1LPBZ4Mc3\n", "PTToPrVVXQP06s3A5Um+BtwI/GySv9m0Td+9mljTTvs0b5h/EfjBJAeSnAH8CnDrpm1uBd4O3z5z\n", "9JmqWptz3LlqSrI3Sbrli1n/E81x83p96rtPEw3Rp268G4AHq+rDW2zWa6+mqanvXiU5J8mebvnV\n", "wM8D92/arPd9apq6+u5VVV1fVfur6nXArwL/WFVv37RZr72apqad9mmuTxqqLU4eSvLO7vG/rqrb\n", "k7wtySPA/wC/Mc+Yi6gJ+GXgt5J8C3iB9WYuVZIbgUuBc5I8BryP7vNIh+jTNDUxQJ+AtwC/Dnw5\n", "yYkQuB547Ym6BujVxJrov1f7gMNJTmP9oOzjVXXXkN9709bFMPvVRgVwEvRq25rYYZ88aUiSGuDH\n", "xklSAwxzSWqAYS5JDTDMJakBhrkkNcAwl6QGGOaS1ADDXJIa8H89RktAzw7+GQAAAABJRU5ErkJg\n", "gg==\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.hist(movies[\"Metacritic_norm_round\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Fandango vs Metacritic Scores\n", "\n", "There are no scores below a `3.0` in the Fandango reviews. The Fandango reviews also tend to center around `4.5` and `4.0`, whereas the Metacritic reviews seem to center around `3.0` and `3.5`." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "4.08904109589\n", "2.97260273973\n", "0.540385977979\n", "0.990960561374\n", "4.0\n", "3.0\n" ] } ], "source": [ "import numpy\n", "\n", "f_mean = movies[\"Fandango_Stars\"].mean()\n", "m_mean = movies[\"Metacritic_norm_round\"].mean()\n", "f_std = movies[\"Fandango_Stars\"].std()\n", "m_std = movies[\"Metacritic_norm_round\"].std()\n", "f_median = movies[\"Fandango_Stars\"].median()\n", "m_median = movies[\"Metacritic_norm_round\"].median()\n", "\n", "print(f_mean)\n", "print(m_mean)\n", "print(f_std)\n", "print(m_std)\n", "print(f_median)\n", "print(m_median)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Fandango vs Metacritic Methodology\n", "\n", "Fandango appears to inflate ratings and isn't transparent about how it calculates and aggregates ratings. Metacritic publishes each individual critic rating, and is transparent about how they aggregate them to get a final rating." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Fandango vs Metacritic number differences\n", "\n", "The median metacritic score appears higher than the mean metacritic score because a few very low reviews \"drag down\" the median. The median fandango score is lower than the mean fandango score because a few very high ratings \"drag up\" the mean.\n", "\n", "Fandango ratings appear clustered between `3` and `5`, and have a much narrower random than Metacritic reviews, which go from `0` to `5`.\n", "\n", "Fandango ratings in general appear to be higher than metacritic ratings.\n", "\n", "These may be due to movie studio influence on Fandango ratings, and the fact that Fandango calculates its ratings in a hidden way." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": [ "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEACAYAAACuzv3DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", "AAALEgAACxIB0t1+/AAAEuBJREFUeJzt3X+MZWV9x/HPh13NgnXgXjBry26jCUtSGhq2a1YCWIZa\n", "GdhY2iYk0tCq/GEJscEINk0ITbcJgUSjNESjm9rOqiW2tQba1W1m2OogtGEV9wdtVzo0hYQlVNRF\n", "BGfNss63f5yz2bN378/ZmfOcZ+77lTzhnnueufeTc8987pln5i6OCAEA8nVW6gAAgDNDkQNA5ihy\n", "AMgcRQ4AmaPIASBzFDkAZG7tMJNsPyfpJ5J+Lun1iNjasX9S0j9J+t/yrq9GxD3LFxMA0MtQRS4p\n", "JE1GxJE+cx6NiBuWIRMAYASjLK34DPcDAFbAsEUekvbYftL2h3rsv8L2Qdu7bV+yfBEBAP0Mu7Ry\n", "ZUS8aPstkh6x/XREPFbZv0/SxohYsH29pIclXbzcYQEAp/Oo/9aK7T+X9FpEfLLPnGclbamuqdvm\n", "H3UBgCWIiL5L1wOvyG2fI2lNRLxq+02SrpX0Fx1z1kt6KSLC9lYVbxCn/WJ0UJhxYXt7RGxPnaMJ\n", "OBYncSxO4licNMxF8DBLK+slPWT7xPwHI2LW9q2SFBE7JN0o6TbbxyUtSLppyakBACMZWOQR8ayk\n", "y7rcv6Ny+zOSPrO80QAAw+CTnWnMpQ7QIHOpAzTIXOoADTKXOkBORv5l55KfyA7WyAFgNMN0J1fk\n", "AJA5ihwAMkeRA0DmKHIAyBxFDgCZo8gBIHMUOQBkjiIHgMxR5ACQOYocADJHkQNA5ihyAMgcRQ4A\n", "maPIASBzFDkAZI4iB4DMUeQAkDmKHAAyR5EDQOYocgDIHEUOAJmjyAEgcxQ5AGSOIgeAzFHkAJA5\n", "ihwAMjdUkdt+zvZTtvfb/naPOQ/Yfsb2QdublzcmAKCXtUPOC0mTEXGk207b2yRdFBGbbL9T0mcl\n", "Xb5MGQEAfYyytOI++26Q9AVJioi9ks6zvf5Mgq1Gtqfs82eL4anUedAMtqft9rFieDpRhnm7HcXw\n", "fIoMTZHj9+koV+R7bP9c0o6I+KuO/RdKer6yfVjSBknfP/OIq0NxQkw8JH3q7OKe26+y/XsRMZM2\n", "GVIqinvig9L95T23f9C2IuKWGjPMSxObKhk22Z6PiIvrytAUuX6fDlvkV0bEi7bfIukR209HxGMd\n", "czqv2OPM460m7TuLk+MDJ+44W7rjTkmNPkGw0lo3FwX6gcp9H71ZUm1FLrU2dcmwqb7nb5I8v0+H\n", "KvKIeLH87w9sPyRpq6Rqkb8gaWNle0N53ylsb69szkXE3Ih5AWBVsz0paXKkL4qIvkPSOZLeXN5+\n", "k6R/k3Rtx5xtknaXty+X9ESXx4lBz7Wah6QpaWJB2hnFmFiQNJU6FyP5eTEtTUTlvAhJ0zVnmO+S\n", "YT71sUn0ejTu+3SY7nQ5sd+7w9slPVRurpX0YETcZ/vW8hl2lPM+Lek6ST+VdEtE7Ot4nIiIfr8w\n", "XfWK9bf2ncXWkU9Gw9fdUI9inbx1c7H18oNR4/p4JcN8scQiSS8/E2O4Pn5C075Ph+nOgUVeZxgA\n", "wKmG6U4+2QkAmaPIASBzFDkAZI4iB4DMUeQAkDmKHAAyR5EDQOYocgDIHEUOAJmjyAEgcxQ5AGSO\n", "IgeAzFHkAJA5ihwAMkeRA0DmKHIAyBxFDgCZo8gBIHMUOQBkjiIHgMxR5ACQOYocADJHkQNA5ihy\n", "AMgcRQ4AmaPIASBzFDkAZI4iB4DMUeQAkLmhitz2Gtv7be/qsm/S9ivl/v22717+mACAXoa9Iv+I\n", "pEOSosf+RyNicznuWZ5oWAm2n7TbUQw/Oc45bP+4kuHHKTKUOY5WchxNlOFwJcPhFBnKHK9Xcrye\n", "KMOM3V4shmdSZBjVwCK3vUHSNkmfl+Re05YzFFZGUZgTW6T7VYyJLSlKtAk5iuKeOLeS4dwUZV4U\n", "98S6So51dZd5UdwTF1YyXJiizIvinlhbybG27jIvinviWul+F2Pi2izKPCL6DklfkbRZ0tWSdnXZ\n", "f7WkH0k6KGm3pEt6PE4Mei7Gyg6pFdLOkKIcO0Nq1f66NCFHEzI0JUcTMjQlh9Ra7JJhse5jcWom\n", "DTwGa/uVvO33SnopIvbbnuwxbZ+kjRGxYPt6SQ9LurjH422vbM5FxFy/5weAcVN27eRIX1M2fq8H\n", "vFfSH0o6LmmdpAlJX42I9/f5mmclbYmIIx33R0SwBJPQySWNB8p7bpf0k+9GxDvGLcfJpZVTMrwS\n", "EefVlaHMUS6tnJLjZxFxdo0ZyqWVUzK8EBEb6spQ5iiXVk7JcTwi3lBjhnJp5ZQMsxExVVeGLpkG\n", "dmffIu94sKslfSwifrvj/vUqrtrD9lZJ/xARb1tKGKy8okRbW4qtl2sv8SblKMq8dW6ZofYSr+Q4\n", "KrXWlTlqLfFKhsNS68IyQ+0lXsnxutQqVwperrXEKxlmpNZ7ygyPpCzxMs/A7uy7tNJFlA98qyRF\n", "xA5JN0q6zfZxSQuSblpCVtQkVXF3akKOVMXdKUVxd8mQpLg7pSjuLhmSFvdSDH1FfsZPxBU5AIxs\n", "mO7kk50AkDmKHAAyR5EDQOYocgDIHEUOAJmjyAEgcxQ5AGSOIgeAzFHkAJA5ihwAMkeRA0DmKHIA\n", "yBxFDgCZo8gBIHMUOQBkjiIHgMxR5ACQOYocADJHkQNA5ihyAMgcRQ4AmaPIASBzFDkAZI4iB4DM\n", "UeQAkDmKHAAyR5EDQOYocgDI3FBFbnuN7f22d/XY/4DtZ2wftL15eSMCAPoZ9or8I5IOSYrOHba3\n", "SbooIjZJ+iNJn12+eKuL7Sn7/NlieCpRhnm7HcXwfIoMZY5pu32sGJ5OlOFw5VgcTpGhzHG0kuNo\n", "ogzJX48yx4zdXiyGZxJlaMT3yEgiou+QtEHSHknXSNrVZf/nJL2vsv20pPVd5sWg51rNQ9KUNLEg\n", "7YxiTCxImqo5w7w0EZUMIWk+wbGY7pJjuuYMh7tkOJzgWBztkuPouL0eZY6ZLjlmas7QiO+Rjkwx\n", "cM4QD/IVSZslXd2jyHdJuqKyvUfSlqWEWc1Das8WJ0aUY2dI7dl6M7Ti9Ayt2l8XqXWsS45jY3os\n", "kudowutR5ljskmNx3F6P0zNp4POv7Xe1bvu9kl6KiP22J/tN7bzQ7/F42yubcxEx1+/5AWDclF07\n", "OdIXDXgnuFfS85KelfSipJ9K+mLHnM9JuqmyzdJK92PJ0srJHMl/lBdLK416PcocLK10zxQD54zw\n", "YL2WVrZJ2l3evlzSE0sNs9pHUebt2WLUW+KVDPPFj4+tpCdoUR6tY8WovzTKDIcrx6L2Eq/kOFrJ\n", "UWuJN+n1KHPMFEssrcW6S7ySoRHfI5U8MWiOy4kD2b5a0p0RcYPtW8tH31Hu+7Sk68or9lsiYl+X\n", "r4+I6FyCAQD0MUx3Dl3kdYQBAJxqmO7kk50AkDmKHAAyR5EDQOYocgDIHEUOAJmjyAEgcxQ5AGSO\n", "IgeAzFHkAJA5ihwAMkeRA0DmKHIAyBxFDgCZo8gBIHMUOQBkjiIHgMxR5ACQOYocADJHkQNA5ihy\n", "AMgcRQ4AmaPIASBzFDkAZI4iB4DMUeQAkDmKHAAyR5EDQOYocgDI3MAit73O9l7bB2wfsn1flzmT\n", "tl+xvb8cd69MXABAp4FFHhE/k3RNRFwm6dckXWP7qi5TH42IzeW4Z7mDngnbU/b5s8XwVOo8Kdme\n", "t9tRDM8nzDFtt48Vw9OJMszY7cVieCZFhjJH8vOzQccieY4mZBhZRAw9JJ0j6TuSLum4f1LSrgFf\n", "G6M813INSVPSxIK0M4oxsSBpKkWW1EPSvDQRlWMRkuYT5JjukmO65gwzXTLMJDgWyc/PBh2L5Dma\n", "kKFLphg4Z8gHOkvSAUmvSvp4l/1XS/qRpIOSdncW/bBhVuYgtGeLFyTKsTOk9mzKFybdCdGK049F\n", "q/bXRWod65LjWM0ZFrtkWKz/WKQ/P5tzLNLnaEKG0zMpBs1ZO+RV+6Kky2yfK2nG9mREzFWm7JO0\n", "MSIWbF8v6WFJF3c+ju3tlc25jscAgLFne1LFKsfwlvDu8GeSPjZgzrOS2qO+q6zQu1nyH12bMsTS\n", "SjVDI36EbsL52aBjkTxHEzJ0yRQD5wzxIBdIOq+8fbakb0l6d8ec9ZJc3t4q6bmlhFnBAzFV/Ajb\n", "nh3XEq8ci/liiaWVpMQrOaaLJZbWsbpLvJJhpvhRurWY8pu1Cedng45F8hxNyNCRJwbNOVG+Pdm+\n", "VNIXVKyTnyXpSxHxCdu3ls+ww/aHJd0m6bikBUl3RMQTHY8TEeG+TwYAOMUw3TmwyOsMAwA41TDd\n", "ySc7ASBzFDkAZI4iB4DMUeQAkDmKHAAyR5EDQOYocgDIHEUOAJmjyAEgcxQ5AGSOIgeAzFHkAJA5\n", "ihwAMkeRA0DmKHIAyBxFDgCZo8gBIHMUOQBkjiIHgMxR5ACQOYocADJHkQNA5ihyAMgcRQ4AmaPI\n", "ASBzFDkAZI4iB4DMUeQAkLm+RW57ne29tg/YPmT7vh7zHrD9jO2DtjevTFQAQDdr++2MiJ/ZviYi\n", "FmyvlfS47asi4vETc2xvk3RRRGyy/U5Jn5V0+crGBgCcMHBpJSIWyptvlLRG0pGOKTdI+kI5d6+k\n", "82yvX86QWD62p+32sWJ4epxz2L7LPv+HxfBdKTKUOabs82eL4alUOZqgCedFliKi71BR9gckvSrp\n", "413275J0RWV7j6QtXebFoOdirOyQNC1NhLSzHBMhaXocc0i6q0uGuxIciylpYqGSY0HSVOpzJcVo\n", "wnnRxDFMd47yYOdKekLSZMf9uyRdWdneI+nXlxKGsdInROtY8Q0S5dgZUuvYOOaQ2j88PUP7h/Uf\n", "i/Zslxyzqc+VFKMJ50UTxzDd2XeNvOPK/RXbX5f0DklzlV0vSNpY2d5Q3nca29srm3MRMddtHgCM\n", "K9uTkiZH+qIB7wQXSDqvvH22pG9JenfHnG2Sdpe3L5f0xFLfVRgr/s7eiB9dm5BDLK00bjThvGji\n", "GKY7XU7s9c5wqYpfZJ5Vji9FxCds31o++o5y3qclXSfpp5JuiYh9XR4rIsIjvctg2RW/QGrdXGy9\n", "/GBE3DKuOYpfcLbvKLaOfCoi7q07Q5ljSmrfWeb4ZETMpMjRBE04L5pmmO7sW+R1hwEAnGqY7uST\n", "nQCQOYocADJHkQNA5ihyAMgcRQ4AmaPIASBzFDkAZI4iB4DMUeQAkDmKHAAyR5EDQOYocgDIHEUO\n", "AJmjyAEgcxQ5AGSOIgeAzFHkAJA5ihwAMkeRA0DmKHIAyBxFDgCZo8gBIHMUOQBkjiIHgMxR5ACQ\n", "OYocADJHkQNA5ihyAMjcwCK3vdH2N23/l+3/tH17lzmTtl+xvb8cd69MXABAp2GuyF+X9NGI+FVJ\n", "l0v6sO1f6TLv0YjYXI57ljXlKmN7MnWGpuBYnMSxOIljMZqBRR4R/xcRB8rbr0n6nqRf6jLVy5xt\n", "NZtMHaBBJlMHaJDJ1AEaZDJ1gJyMtEZu+22SNkva27ErJF1h+6Dt3bYvWZ54AIBB1g470fYvSPpH\n", "SR8pr8yr9knaGBELtq+X9LCki5cvJgCgF0fE4En2GyR9TdK/RMRfDjH/WUlbIuJI5b7BTwQAOE1E\n", "9F26HnhFbtuS/lrSoV4lbnu9pJciImxvVfEGcaQ6Z1AQAMDSDLO0cqWkP5D0lO395X13SfplSYqI\n", "HZJulHSb7eOSFiTdtAJZAQBdDLW0AgBorlo+2Wn7OttP237G9p/W8ZxNZPtvbH/f9n+kzpLaMB80\n", "Gxe219nea/uA7UO270udKSXba8oPFu5KnSUl28/Zfqo8Ft/uO3elr8htr5H035J+S9ILkr4j6fcj\n", "4nsr+sQNZPtdkl6T9MWIuDR1npRsv1XSWyPiQPkXUd+V9LvjeF5Iku1zyr/6WivpcUkfi4jHU+dK\n", "wfYdkrZIenNE3JA6Tyrd/miklzquyLdK+p+IeC4iXpf0d5J+p4bnbZyIeEzSy6lzNMEIHzQbCxGx\n", "UN58o6Q1kgZ+865GtjdI2ibp8+JDhtKQx6COIr9Q0vOV7cPlfYCkvh80Gxu2z7J9QNL3JX0zIg6l\n", "zpTI/ZL+RNJi6iANEJL22H7S9of6TayjyPltKnoa8EGzsRERixFxmaQNkn5jHP+tEdvvVfFnzPvF\n", "1bgkXRkRmyVdr+LfuHpXr4l1FPkLkjZWtjequCrHmCs/aPZVSX8bEQ+nztMEEfGKpK9LekfqLAlc\n", "IemGcm34y5J+0/YXE2dKJiJeLP/7A0kPqVim7qqOIn9S0ibbb7P9Rknvk/TPNTwvGmyYD5qNC9sX\n", "2D6vvH22pPdI2t//q1afiLgrIjZGxNtVfBblGxHx/tS5UrB9ju03l7ffJOlaST3/2m3Fizwijkv6\n", "Y0kzkg5J+vsx/suEL0v6d0kX237e9i2pMyV04oNm11T+HfvrUodK5BclfaNcI98raVdE/GviTE0w\n", "zsuy6yU9VjknvhYRs70m84EgAMgc/6s3AMgcRQ4AmaPIASBzFDkAZI4iB4DMUeQAkDmKHAAyR5ED\n", "QOb+H+ILH0XCPZKpAAAAAElFTkSuQmCC\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.scatter(movies[\"Metacritic_norm_round\"], movies[\"Fandango_Stars\"])" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "movies[\"fm_diff\"] = numpy.abs(movies[\"Metacritic_norm_round\"] - movies[\"Fandango_Stars\"])" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
FILMRottenTomatoesRottenTomatoes_UserMetacriticMetacritic_UserIMDBFandango_StarsFandango_RatingvalueRT_normRT_user_norm...RT_norm_roundRT_user_norm_roundMetacritic_norm_roundMetacritic_user_norm_roundIMDB_norm_roundMetacritic_user_vote_countIMDB_user_vote_countFandango_votesFandango_Differencefm_diff
3Do You Believe? (2015)1884224.75.45.04.50.904.20...1.04.01.02.52.531313617930.54
85Little Boy (2015)2081305.97.44.54.31.004.05...1.04.01.53.03.53859278110.23
47Annie (2014)2761334.85.24.54.21.353.05...1.53.01.52.52.51081922268350.33
19Pixels (2015)1754275.35.64.54.10.852.70...1.02.51.52.53.02461952138860.43
134The Longest Ride (2015)3173334.87.24.54.51.553.65...1.53.51.52.53.5492521426030.03
\n", "

5 rows × 23 columns

\n", "
" ], "text/plain": [ " FILM RottenTomatoes RottenTomatoes_User Metacritic \\\n", "3 Do You Believe? (2015) 18 84 22 \n", "85 Little Boy (2015) 20 81 30 \n", "47 Annie (2014) 27 61 33 \n", "19 Pixels (2015) 17 54 27 \n", "134 The Longest Ride (2015) 31 73 33 \n", "\n", " Metacritic_User IMDB Fandango_Stars Fandango_Ratingvalue RT_norm \\\n", "3 4.7 5.4 5.0 4.5 0.90 \n", "85 5.9 7.4 4.5 4.3 1.00 \n", "47 4.8 5.2 4.5 4.2 1.35 \n", "19 5.3 5.6 4.5 4.1 0.85 \n", "134 4.8 7.2 4.5 4.5 1.55 \n", "\n", " RT_user_norm ... RT_norm_round RT_user_norm_round \\\n", "3 4.20 ... 1.0 4.0 \n", "85 4.05 ... 1.0 4.0 \n", "47 3.05 ... 1.5 3.0 \n", "19 2.70 ... 1.0 2.5 \n", "134 3.65 ... 1.5 3.5 \n", "\n", " Metacritic_norm_round Metacritic_user_norm_round IMDB_norm_round \\\n", "3 1.0 2.5 2.5 \n", "85 1.5 3.0 3.5 \n", "47 1.5 2.5 2.5 \n", "19 1.5 2.5 3.0 \n", "134 1.5 2.5 3.5 \n", "\n", " Metacritic_user_vote_count IMDB_user_vote_count Fandango_votes \\\n", "3 31 3136 1793 \n", "85 38 5927 811 \n", "47 108 19222 6835 \n", "19 246 19521 3886 \n", "134 49 25214 2603 \n", "\n", " Fandango_Difference fm_diff \n", "3 0.5 4 \n", "85 0.2 3 \n", "47 0.3 3 \n", "19 0.4 3 \n", "134 0.0 3 \n", "\n", "[5 rows x 23 columns]" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "movies.sort(\"fm_diff\", ascending=False).head(5)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.17844919073895918" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from scipy.stats import pearsonr\n", "\n", "r_value, p_value = pearsonr(movies[\"Fandango_Stars\"], movies[\"Metacritic_norm_round\"])\n", "\n", "r_value" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Fandango and Metacritic correlation\n", "\n", "The low correlation between Fandango and Metacritic scores indicates that Fandango scores aren't just inflated, they are fundamentally different. For whatever reason, it appears like Fandango both inflates scores overall, and inflates scores differently depending on the movie." ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.17844919073895915" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from scipy.stats import linregress\n", "\n", "slope, intercept, r_value, p_value, stderr_slope = linregress(movies[\"Metacritic_norm_round\"], movies[\"Fandango_Stars\"])" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "4.0917071528212032" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pred = 3 * slope + intercept\n", "\n", "pred" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.2" } }, "nbformat": 4, "nbformat_minor": 0 }