{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Inventory Class" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "import csv # step 1\n", "\n", "class Inventory(): # step 2\n", " \n", " def __init__(self, csv_filename): # step 3\n", " with open(csv_filename) as f: # step 4\n", " reader = csv.reader(f)\n", " rows = list(reader)\n", " self.header = rows[0] # step 5\n", " self.rows = rows[1:]\n", " for row in self.rows: # step 6\n", " row[-1] = int(row[-1])" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['Id', 'Company', 'Product', 'TypeName', 'Inches', 'ScreenResolution', 'Cpu', 'Ram', 'Memory', 'Gpu', 'OpSys', 'Weight', 'Price_euros']\n", "1303\n" ] } ], "source": [ "inventory = Inventory('laptops.csv') # step 7\n", "print(inventory.header) # step 8\n", "print(len(inventory.rows)) # step 9" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Finding a Laptop From the Id" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "import csv \n", "\n", "class Inventory(): \n", " \n", " def __init__(self, csv_filename):\n", " with open(csv_filename) as f: \n", " reader = csv.reader(f)\n", " rows = list(reader)\n", " self.header = rows[0] \n", " self.rows = rows[1:]\n", " for row in self.rows: \n", " row[-1] = int(row[-1])\n", " \n", " def get_laptop_from_id(self, laptop_id): # step 1\n", " for row in self.rows: # step 2\n", " if row[0] == laptop_id:\n", " return row\n", " return None # step 3" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['3362737', 'HP', '250 G6', 'Notebook', '15.6', 'Full HD 1920x1080', 'Intel Core i5 7200U 2.5GHz', '8GB', '256GB SSD', 'Intel HD Graphics 620', 'No OS', '1.86kg', 575]\n", "None\n" ] } ], "source": [ "inventory = Inventory('laptops.csv') # step 4\n", "print(inventory.get_laptop_from_id('3362737')) # step 5\n", "print(inventory.get_laptop_from_id('3362736')) # step 6" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Improving Id Lookups" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "import csv \n", "\n", "class Inventory(): \n", " \n", " def __init__(self, csv_filename):\n", " with open(csv_filename) as f: \n", " reader = csv.reader(f)\n", " rows = list(reader)\n", " self.header = rows[0] \n", " self.rows = rows[1:]\n", " for row in self.rows: \n", " row[-1] = int(row[-1])\n", " self.id_to_row = {} # step 1\n", " for row in self.rows: # step 2\n", " self.id_to_row[row[0]] = row \n", " \n", " def get_laptop_from_id(self, laptop_id):\n", " for row in self.rows: \n", " if row[0] == laptop_id:\n", " return row\n", " return None \n", " \n", " def get_laptop_from_id_fast(self, laptop_id): # step 3\n", " if laptop_id in self.id_to_row: # step 4\n", " return self.id_to_row[laptop_id]\n", " return None" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['3362737', 'HP', '250 G6', 'Notebook', '15.6', 'Full HD 1920x1080', 'Intel Core i5 7200U 2.5GHz', '8GB', '256GB SSD', 'Intel HD Graphics 620', 'No OS', '1.86kg', 575]\n", "None\n" ] } ], "source": [ "inventory = Inventory('laptops.csv') # step 5\n", "print(inventory.get_laptop_from_id_fast('3362737')) # step 6\n", "print(inventory.get_laptop_from_id_fast('3362736')) # step 7" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Comparing Performance" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.5769174098968506\n", "0.0021619796752929688\n" ] } ], "source": [ "import time # step 1\n", "import random # step 2\n", "\n", "ids = [random.randint(1000000, 9999999) for _ in range(10000)] # step 3\n", "\n", "inventory = Inventory('laptops.csv') # step 4\n", "\n", "total_time_no_dict = 0 # step 5\n", "for id in ids: # step 6\n", " start = time.time() # step 6.1\n", " inventory.get_laptop_from_id(id) # step 6.2\n", " end = time.time() # step 6.3\n", " total_time_no_dict += end - start # step 6.4\n", " \n", "total_time_dict = 0 # step 7\n", "for id in ids: # step 8\n", " start = time.time() # step 8.1\n", " inventory.get_laptop_from_id_fast(id) # step 8.2\n", " end = time.time() # step 8.3\n", " total_time_dict += end - start # step 8.4\n", " \n", "print(total_time_no_dict) # step 9\n", "print(total_time_dict)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Two Laptop Promotion" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import csv \n", "\n", "class Inventory(): \n", " \n", " def __init__(self, csv_filename):\n", " with open(csv_filename) as f: \n", " reader = csv.reader(f)\n", " rows = list(reader)\n", " self.header = rows[0] \n", " self.rows = rows[1:]\n", " for row in self.rows: \n", " row[-1] = int(row[-1])\n", " self.id_to_row = {} \n", " for row in self.rows: \n", " self.id_to_row[row[0]] = row \n", " \n", " def get_laptop_from_id(self, laptop_id):\n", " for row in self.rows: \n", " if row[0] == laptop_id:\n", " return row\n", " return None \n", " \n", " def get_laptop_from_id_fast(self, laptop_id): \n", " if laptop_id in self.id_to_row: \n", " return self.id_to_row[laptop_id]\n", " return None\n", "\n", " def check_promotion_dollars(self, dollars): # step 1\n", " for row in self.rows: # step 2\n", " if row[-1] == dollars:\n", " return True\n", " for row1 in self.rows: # step 3\n", " for row2 in self.rows:\n", " if row1[-1] + row2[-1] == dollars:\n", " return True\n", " return False # step 4" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "True\n", "False\n" ] } ], "source": [ "inventory = Inventory('laptops.csv') # step 5\n", "print(inventory.check_promotion_dollars(1000)) # step 6\n", "print(inventory.check_promotion_dollars(442)) # step 7" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Optimizing Laptop Promotion" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "import csv \n", "\n", "class Inventory(): \n", " \n", " def __init__(self, csv_filename):\n", " with open(csv_filename) as f: \n", " reader = csv.reader(f)\n", " rows = list(reader)\n", " self.header = rows[0] \n", " self.rows = rows[1:]\n", " for row in self.rows: \n", " row[-1] = int(row[-1])\n", " self.id_to_row = {} \n", " for row in self.rows: \n", " self.id_to_row[row[0]] = row\n", " self.prices = set() # step 1\n", " for row in self.rows: # step 2\n", " self.prices.add(row[-1])\n", " \n", " def get_laptop_from_id(self, laptop_id):\n", " for row in self.rows: \n", " if row[0] == laptop_id:\n", " return row\n", " return None \n", " \n", " def get_laptop_from_id_fast(self, laptop_id): \n", " if laptop_id in self.id_to_row: \n", " return self.id_to_row[laptop_id]\n", " return None\n", "\n", " def check_promotion_dollars(self, dollars): \n", " for row in self.rows: \n", " if row[-1] == dollars:\n", " return True\n", " for row1 in self.rows: \n", " for row2 in self.rows:\n", " if row1[-1] + row2[-1] == dollars:\n", " return True\n", " return False \n", " \n", " def check_promotion_dollars_fast(self, dollars): # step 3\n", " if dollars in self.prices: # step 4\n", " return True\n", " for price in self.prices: # step 5\n", " if dollars - price in self.prices:\n", " return True\n", " return False # step 6" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "True\n", "False\n" ] } ], "source": [ "inventory = Inventory('laptops.csv') # step 7\n", "print(inventory.check_promotion_dollars_fast(1000)) # step 8\n", "print(inventory.check_promotion_dollars_fast(442)) # step 9" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Comparing Performance" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.7781209945678711\n", "0.0003719329833984375\n" ] } ], "source": [ "prices = [random.randint(100, 5000) for _ in range(100)] # step 1\n", "\n", "inventory = Inventory('laptops.csv') # step 2\n", "\n", "total_time_no_dict = 0 # step 3\n", "for price in prices: # step 4\n", " start = time.time() # step 4.1\n", " inventory.check_promotion_dollars(price) # step 4.2\n", " end = time.time() # step 4.3\n", " total_time_no_dict += end - start # step 4.4\n", " \n", "total_time_dict = 0 # step 5\n", "for price in prices: # step 6\n", " start = time.time() # step 6.1\n", " inventory.check_promotion_dollars_fast(price) # step 6.2\n", " end = time.time() # step 6.3\n", " total_time_dict += end - start # step 6.4\n", " \n", "print(total_time_no_dict) # step 7\n", "print(total_time_dict)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 2 }