{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction" ] }, { "cell_type": "code", "execution_count": 409, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pandas as pd\n", "pd.options.display.max_columns = 999\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from sklearn.model_selection import KFold\n", "\n", "from sklearn.metrics import mean_squared_error\n", "from sklearn import linear_model\n", "from sklearn.model_selection import KFold" ] }, { "cell_type": "code", "execution_count": 333, "metadata": { "collapsed": true, "scrolled": true }, "outputs": [], "source": [ "df = pd.read_csv(\"AmesHousing.tsv\", delimiter=\"\\t\")" ] }, { "cell_type": "code", "execution_count": 334, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "57088.251612639091" ] }, "execution_count": 334, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def transform_features(df):\n", " return df\n", "\n", "def select_features(df):\n", " return df[[\"Gr Liv Area\", \"SalePrice\"]]\n", "\n", "def train_and_test(df): \n", " train = df[:1460]\n", " test = df[1460:]\n", " \n", " ## You can use `pd.DataFrame.select_dtypes()` to specify column types\n", " ## and return only those columns as a data frame.\n", " numeric_train = train.select_dtypes(include=['integer', 'float'])\n", " numeric_test = test.select_dtypes(include=['integer', 'float'])\n", " \n", " ## You can use `pd.Series.drop()` to drop a value.\n", " features = numeric_train.columns.drop(\"SalePrice\")\n", " lr = linear_model.LinearRegression()\n", " lr.fit(train[features], train[\"SalePrice\"])\n", " predictions = lr.predict(test[features])\n", " mse = mean_squared_error(test[\"SalePrice\"], predictions)\n", " rmse = np.sqrt(mse)\n", " \n", " return rmse\n", "\n", "transform_df = transform_features(df)\n", "filtered_df = select_features(transform_df)\n", "rmse = train_and_test(filtered_df)\n", "\n", "rmse" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Feature Engineering\n", "\n", "- Handle missing values:\n", " - All columns:\n", " - Drop any with 5% or more missing values **for now**.\n", " - Text columns:\n", " - Drop any with 1 or more missing values **for now**.\n", " - Numerical columns:\n", " - For columns with missing values, fill in with the most common value in that column" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "1: All columns: Drop any with 5% or more missing values **for now**." ] }, { "cell_type": "code", "execution_count": 296, "metadata": { "scrolled": true }, "outputs": [], "source": [ "## Series object: column name -> number of missing values\n", "num_missing = df.isnull().sum()" ] }, { "cell_type": "code", "execution_count": 297, "metadata": {}, "outputs": [], "source": [ "# Filter Series to columns containing >5% missing values\n", "drop_missing_cols = num_missing[(num_missing > len(df)/20)].sort_values()\n", "\n", "# Drop those columns from the data frame. Note the use of the .index accessor\n", "df = df.drop(drop_missing_cols.index, axis=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "2: Text columns: Drop any with 1 or more missing values **for now**." ] }, { "cell_type": "code", "execution_count": 298, "metadata": { "scrolled": true }, "outputs": [], "source": [ "## Series object: column name -> number of missing values\n", "text_mv_counts = df.select_dtypes(include=['object']).isnull().sum().sort_values(ascending=False)\n", "\n", "## Filter Series to columns containing *any* missing values\n", "drop_missing_cols_2 = text_mv_counts[text_mv_counts > 0]\n", "\n", "df = df.drop(drop_missing_cols_2.index, axis=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "3: Numerical columns: For columns with missing values, fill in with the most common value in that column" ] }, { "cell_type": "code", "execution_count": 299, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "BsmtFin SF 1 1\n", "BsmtFin SF 2 1\n", "Bsmt Unf SF 1\n", "Total Bsmt SF 1\n", "Garage Cars 1\n", "Garage Area 1\n", "Bsmt Full Bath 2\n", "Bsmt Half Bath 2\n", "Mas Vnr Area 23\n", "dtype: int64" ] }, "execution_count": 299, "metadata": {}, "output_type": "execute_result" } ], "source": [ "## Compute column-wise missing value counts\n", "num_missing = df.select_dtypes(include=['int', 'float']).isnull().sum()\n", "fixable_numeric_cols = num_missing[(num_missing < len(df)/20) & (num_missing > 0)].sort_values()\n", "fixable_numeric_cols" ] }, { "cell_type": "code", "execution_count": 307, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'Bsmt Full Bath': 0.0,\n", " 'Bsmt Half Bath': 0.0,\n", " 'Bsmt Unf SF': 0.0,\n", " 'BsmtFin SF 1': 0.0,\n", " 'BsmtFin SF 2': 0.0,\n", " 'Garage Area': 0.0,\n", " 'Garage Cars': 2.0,\n", " 'Mas Vnr Area': 0.0,\n", " 'Total Bsmt SF': 0.0}" ] }, "execution_count": 307, "metadata": {}, "output_type": "execute_result" } ], "source": [ "## Compute the most common value for each column in `fixable_nmeric_missing_cols`.\n", "replacement_values_dict = df[fixable_numeric_cols.index].mode().to_dict(orient='records')[0]\n", "replacement_values_dict" ] }, { "cell_type": "code", "execution_count": 308, "metadata": {}, "outputs": [], "source": [ "## Use `pd.DataFrame.fillna()` to replace missing values.\n", "df = df.fillna(replacement_values_dict)" ] }, { "cell_type": "code", "execution_count": 311, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 64\n", "dtype: int64" ] }, "execution_count": 311, "metadata": {}, "output_type": "execute_result" } ], "source": [ "## Verify that every column has 0 missing values\n", "df.isnull().sum().value_counts()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What new features can we create, that better capture the information in some of the features?" ] }, { "cell_type": "code", "execution_count": 320, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/plain": [ "2180 -1\n", "dtype: int64" ] }, "execution_count": 320, "metadata": {}, "output_type": "execute_result" } ], "source": [ "years_sold = df['Yr Sold'] - df['Year Built']\n", "years_sold[years_sold < 0]" ] }, { "cell_type": "code", "execution_count": 322, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1702 -1\n", "2180 -2\n", "2181 -1\n", "dtype: int64" ] }, "execution_count": 322, "metadata": {}, "output_type": "execute_result" } ], "source": [ "years_since_remod = df['Yr Sold'] - df['Year Remod/Add']\n", "years_since_remod[years_since_remod < 0]" ] }, { "cell_type": "code", "execution_count": 329, "metadata": { "scrolled": true }, "outputs": [], "source": [ "## Create new columns\n", "df['Years Before Sale'] = years_sold\n", "df['Years Since Remod'] = years_since_remod\n", "\n", "## Drop rows with negative values for both of these new features\n", "df = df.drop([1702, 2180, 2181], axis=0)\n", "\n", "## No longer need original year columns\n", "df = df.drop([\"Year Built\", \"Year Remod/Add\"], axis = 1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Drop columns that:\n", "- that aren't useful for ML\n", "- leak data about the final sale, read more about columns [here](https://ww2.amstat.org/publications/jse/v19n3/decock/DataDocumentation.txt)" ] }, { "cell_type": "code", "execution_count": 327, "metadata": {}, "outputs": [], "source": [ "## Drop columns that aren't useful for ML\n", "df = df.drop([\"PID\", \"Order\"], axis=1)\n", "\n", "## Drop columns that leak info about the final sale\n", "df = df.drop([\"Mo Sold\", \"Sale Condition\", \"Sale Type\", \"Yr Sold\"], axis=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's update transform_features()" ] }, { "cell_type": "code", "execution_count": 340, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "55275.367312413066" ] }, "execution_count": 340, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def transform_features(df):\n", " num_missing = df.isnull().sum()\n", " drop_missing_cols = num_missing[(num_missing > len(df)/20)].sort_values()\n", " df = df.drop(drop_missing_cols.index, axis=1)\n", " \n", " text_mv_counts = df.select_dtypes(include=['object']).isnull().sum().sort_values(ascending=False)\n", " drop_missing_cols_2 = text_mv_counts[text_mv_counts > 0]\n", " df = df.drop(drop_missing_cols_2.index, axis=1)\n", " \n", " num_missing = df.select_dtypes(include=['int', 'float']).isnull().sum()\n", " fixable_numeric_cols = num_missing[(num_missing < len(df)/20) & (num_missing > 0)].sort_values()\n", " replacement_values_dict = df[fixable_numeric_cols.index].mode().to_dict(orient='records')[0]\n", " df = df.fillna(replacement_values_dict)\n", " \n", " years_sold = df['Yr Sold'] - df['Year Built']\n", " years_since_remod = df['Yr Sold'] - df['Year Remod/Add']\n", " df['Years Before Sale'] = years_sold\n", " df['Years Since Remod'] = years_since_remod\n", " df = df.drop([1702, 2180, 2181], axis=0)\n", "\n", " df = df.drop([\"PID\", \"Order\", \"Mo Sold\", \"Sale Condition\", \"Sale Type\", \"Year Built\", \"Year Remod/Add\"], axis=1)\n", " return df\n", "\n", "def select_features(df):\n", " return df[[\"Gr Liv Area\", \"SalePrice\"]]\n", "\n", "def train_and_test(df): \n", " train = df[:1460]\n", " test = df[1460:]\n", " \n", " ## You can use `pd.DataFrame.select_dtypes()` to specify column types\n", " ## and return only those columns as a data frame.\n", " numeric_train = train.select_dtypes(include=['integer', 'float'])\n", " numeric_test = test.select_dtypes(include=['integer', 'float'])\n", " \n", " ## You can use `pd.Series.drop()` to drop a value.\n", " features = numeric_train.columns.drop(\"SalePrice\")\n", " lr = linear_model.LinearRegression()\n", " lr.fit(train[features], train[\"SalePrice\"])\n", " predictions = lr.predict(test[features])\n", " mse = mean_squared_error(test[\"SalePrice\"], predictions)\n", " rmse = np.sqrt(mse)\n", " \n", " return rmse\n", "\n", "df = pd.read_csv(\"AmesHousing.tsv\", delimiter=\"\\t\")\n", "transform_df = transform_features(df)\n", "filtered_df = select_features(transform_df)\n", "rmse = train_and_test(filtered_df)\n", "\n", "rmse" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Feature Selection" ] }, { "cell_type": "code", "execution_count": 389, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", " | MS SubClass | \n", "Lot Area | \n", "Overall Qual | \n", "Overall Cond | \n", "Mas Vnr Area | \n", "BsmtFin SF 1 | \n", "BsmtFin SF 2 | \n", "Bsmt Unf SF | \n", "Total Bsmt SF | \n", "1st Flr SF | \n", "2nd Flr SF | \n", "Low Qual Fin SF | \n", "Gr Liv Area | \n", "Bsmt Full Bath | \n", "Bsmt Half Bath | \n", "Full Bath | \n", "Half Bath | \n", "Bedroom AbvGr | \n", "Kitchen AbvGr | \n", "TotRms AbvGrd | \n", "Fireplaces | \n", "Garage Cars | \n", "Garage Area | \n", "Wood Deck SF | \n", "Open Porch SF | \n", "Enclosed Porch | \n", "3Ssn Porch | \n", "Screen Porch | \n", "Pool Area | \n", "Misc Val | \n", "Yr Sold | \n", "SalePrice | \n", "Years Before Sale | \n", "Years Since Remod | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "20 | \n", "31770 | \n", "6 | \n", "5 | \n", "112.0 | \n", "639.0 | \n", "0.0 | \n", "441.0 | \n", "1080.0 | \n", "1656 | \n", "0 | \n", "0 | \n", "1656 | \n", "1.0 | \n", "0.0 | \n", "1 | \n", "0 | \n", "3 | \n", "1 | \n", "7 | \n", "2 | \n", "2.0 | \n", "528.0 | \n", "210 | \n", "62 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "215000 | \n", "50 | \n", "50 | \n", "
1 | \n", "20 | \n", "11622 | \n", "5 | \n", "6 | \n", "0.0 | \n", "468.0 | \n", "144.0 | \n", "270.0 | \n", "882.0 | \n", "896 | \n", "0 | \n", "0 | \n", "896 | \n", "0.0 | \n", "0.0 | \n", "1 | \n", "0 | \n", "2 | \n", "1 | \n", "5 | \n", "0 | \n", "1.0 | \n", "730.0 | \n", "140 | \n", "0 | \n", "0 | \n", "0 | \n", "120 | \n", "0 | \n", "0 | \n", "2010 | \n", "105000 | \n", "49 | \n", "49 | \n", "
2 | \n", "20 | \n", "14267 | \n", "6 | \n", "6 | \n", "108.0 | \n", "923.0 | \n", "0.0 | \n", "406.0 | \n", "1329.0 | \n", "1329 | \n", "0 | \n", "0 | \n", "1329 | \n", "0.0 | \n", "0.0 | \n", "1 | \n", "1 | \n", "3 | \n", "1 | \n", "6 | \n", "0 | \n", "1.0 | \n", "312.0 | \n", "393 | \n", "36 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "12500 | \n", "2010 | \n", "172000 | \n", "52 | \n", "52 | \n", "
3 | \n", "20 | \n", "11160 | \n", "7 | \n", "5 | \n", "0.0 | \n", "1065.0 | \n", "0.0 | \n", "1045.0 | \n", "2110.0 | \n", "2110 | \n", "0 | \n", "0 | \n", "2110 | \n", "1.0 | \n", "0.0 | \n", "2 | \n", "1 | \n", "3 | \n", "1 | \n", "8 | \n", "2 | \n", "2.0 | \n", "522.0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "244000 | \n", "42 | \n", "42 | \n", "
4 | \n", "60 | \n", "13830 | \n", "5 | \n", "5 | \n", "0.0 | \n", "791.0 | \n", "0.0 | \n", "137.0 | \n", "928.0 | \n", "928 | \n", "701 | \n", "0 | \n", "1629 | \n", "0.0 | \n", "0.0 | \n", "2 | \n", "1 | \n", "3 | \n", "1 | \n", "6 | \n", "1 | \n", "2.0 | \n", "482.0 | \n", "212 | \n", "34 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "189900 | \n", "13 | \n", "12 | \n", "
5 | \n", "60 | \n", "9978 | \n", "6 | \n", "6 | \n", "20.0 | \n", "602.0 | \n", "0.0 | \n", "324.0 | \n", "926.0 | \n", "926 | \n", "678 | \n", "0 | \n", "1604 | \n", "0.0 | \n", "0.0 | \n", "2 | \n", "1 | \n", "3 | \n", "1 | \n", "7 | \n", "1 | \n", "2.0 | \n", "470.0 | \n", "360 | \n", "36 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "195500 | \n", "12 | \n", "12 | \n", "
6 | \n", "120 | \n", "4920 | \n", "8 | \n", "5 | \n", "0.0 | \n", "616.0 | \n", "0.0 | \n", "722.0 | \n", "1338.0 | \n", "1338 | \n", "0 | \n", "0 | \n", "1338 | \n", "1.0 | \n", "0.0 | \n", "2 | \n", "0 | \n", "2 | \n", "1 | \n", "6 | \n", "0 | \n", "2.0 | \n", "582.0 | \n", "0 | \n", "0 | \n", "170 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "213500 | \n", "9 | \n", "9 | \n", "
7 | \n", "120 | \n", "5005 | \n", "8 | \n", "5 | \n", "0.0 | \n", "263.0 | \n", "0.0 | \n", "1017.0 | \n", "1280.0 | \n", "1280 | \n", "0 | \n", "0 | \n", "1280 | \n", "0.0 | \n", "0.0 | \n", "2 | \n", "0 | \n", "2 | \n", "1 | \n", "5 | \n", "0 | \n", "2.0 | \n", "506.0 | \n", "0 | \n", "82 | \n", "0 | \n", "0 | \n", "144 | \n", "0 | \n", "0 | \n", "2010 | \n", "191500 | \n", "18 | \n", "18 | \n", "
8 | \n", "120 | \n", "5389 | \n", "8 | \n", "5 | \n", "0.0 | \n", "1180.0 | \n", "0.0 | \n", "415.0 | \n", "1595.0 | \n", "1616 | \n", "0 | \n", "0 | \n", "1616 | \n", "1.0 | \n", "0.0 | \n", "2 | \n", "0 | \n", "2 | \n", "1 | \n", "5 | \n", "1 | \n", "2.0 | \n", "608.0 | \n", "237 | \n", "152 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "236500 | \n", "15 | \n", "14 | \n", "
9 | \n", "60 | \n", "7500 | \n", "7 | \n", "5 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "994.0 | \n", "994.0 | \n", "1028 | \n", "776 | \n", "0 | \n", "1804 | \n", "0.0 | \n", "0.0 | \n", "2 | \n", "1 | \n", "3 | \n", "1 | \n", "7 | \n", "1 | \n", "2.0 | \n", "442.0 | \n", "140 | \n", "60 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "189000 | \n", "11 | \n", "11 | \n", "
10 | \n", "60 | \n", "10000 | \n", "6 | \n", "5 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "763.0 | \n", "763.0 | \n", "763 | \n", "892 | \n", "0 | \n", "1655 | \n", "0.0 | \n", "0.0 | \n", "2 | \n", "1 | \n", "3 | \n", "1 | \n", "7 | \n", "1 | \n", "2.0 | \n", "440.0 | \n", "157 | \n", "84 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "175900 | \n", "17 | \n", "16 | \n", "
11 | \n", "20 | \n", "7980 | \n", "6 | \n", "7 | \n", "0.0 | \n", "935.0 | \n", "0.0 | \n", "233.0 | \n", "1168.0 | \n", "1187 | \n", "0 | \n", "0 | \n", "1187 | \n", "1.0 | \n", "0.0 | \n", "2 | \n", "0 | \n", "3 | \n", "1 | \n", "6 | \n", "0 | \n", "2.0 | \n", "420.0 | \n", "483 | \n", "21 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "500 | \n", "2010 | \n", "185000 | \n", "18 | \n", "3 | \n", "
12 | \n", "60 | \n", "8402 | \n", "6 | \n", "5 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "789.0 | \n", "789.0 | \n", "789 | \n", "676 | \n", "0 | \n", "1465 | \n", "0.0 | \n", "0.0 | \n", "2 | \n", "1 | \n", "3 | \n", "1 | \n", "7 | \n", "1 | \n", "2.0 | \n", "393.0 | \n", "0 | \n", "75 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "180400 | \n", "12 | \n", "12 | \n", "
13 | \n", "20 | \n", "10176 | \n", "7 | \n", "5 | \n", "0.0 | \n", "637.0 | \n", "0.0 | \n", "663.0 | \n", "1300.0 | \n", "1341 | \n", "0 | \n", "0 | \n", "1341 | \n", "1.0 | \n", "0.0 | \n", "1 | \n", "1 | \n", "2 | \n", "1 | \n", "5 | \n", "1 | \n", "2.0 | \n", "506.0 | \n", "192 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "171500 | \n", "20 | \n", "20 | \n", "
14 | \n", "120 | \n", "6820 | \n", "8 | \n", "5 | \n", "0.0 | \n", "368.0 | \n", "1120.0 | \n", "0.0 | \n", "1488.0 | \n", "1502 | \n", "0 | \n", "0 | \n", "1502 | \n", "1.0 | \n", "0.0 | \n", "1 | \n", "1 | \n", "1 | \n", "1 | \n", "4 | \n", "0 | \n", "2.0 | \n", "528.0 | \n", "0 | \n", "54 | \n", "0 | \n", "0 | \n", "140 | \n", "0 | \n", "0 | \n", "2010 | \n", "212000 | \n", "25 | \n", "25 | \n", "
15 | \n", "60 | \n", "53504 | \n", "8 | \n", "5 | \n", "603.0 | \n", "1416.0 | \n", "0.0 | \n", "234.0 | \n", "1650.0 | \n", "1690 | \n", "1589 | \n", "0 | \n", "3279 | \n", "1.0 | \n", "0.0 | \n", "3 | \n", "1 | \n", "4 | \n", "1 | \n", "12 | \n", "1 | \n", "3.0 | \n", "841.0 | \n", "503 | \n", "36 | \n", "0 | \n", "0 | \n", "210 | \n", "0 | \n", "0 | \n", "2010 | \n", "538000 | \n", "7 | \n", "7 | \n", "
16 | \n", "50 | \n", "12134 | \n", "8 | \n", "7 | \n", "0.0 | \n", "427.0 | \n", "0.0 | \n", "132.0 | \n", "559.0 | \n", "1080 | \n", "672 | \n", "0 | \n", "1752 | \n", "0.0 | \n", "0.0 | \n", "2 | \n", "0 | \n", "4 | \n", "1 | \n", "8 | \n", "0 | \n", "2.0 | \n", "492.0 | \n", "325 | \n", "12 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "164000 | \n", "22 | \n", "5 | \n", "
17 | \n", "20 | \n", "11394 | \n", "9 | \n", "2 | \n", "350.0 | \n", "1445.0 | \n", "0.0 | \n", "411.0 | \n", "1856.0 | \n", "1856 | \n", "0 | \n", "0 | \n", "1856 | \n", "1.0 | \n", "0.0 | \n", "1 | \n", "1 | \n", "1 | \n", "1 | \n", "8 | \n", "1 | \n", "3.0 | \n", "834.0 | \n", "113 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "394432 | \n", "0 | \n", "0 | \n", "
18 | \n", "20 | \n", "19138 | \n", "4 | \n", "5 | \n", "0.0 | \n", "120.0 | \n", "0.0 | \n", "744.0 | \n", "864.0 | \n", "864 | \n", "0 | \n", "0 | \n", "864 | \n", "0.0 | \n", "0.0 | \n", "1 | \n", "0 | \n", "2 | \n", "1 | \n", "4 | \n", "0 | \n", "2.0 | \n", "400.0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "141000 | \n", "59 | \n", "59 | \n", "
19 | \n", "20 | \n", "13175 | \n", "6 | \n", "6 | \n", "119.0 | \n", "790.0 | \n", "163.0 | \n", "589.0 | \n", "1542.0 | \n", "2073 | \n", "0 | \n", "0 | \n", "2073 | \n", "1.0 | \n", "0.0 | \n", "2 | \n", "0 | \n", "3 | \n", "1 | \n", "7 | \n", "2 | \n", "2.0 | \n", "500.0 | \n", "349 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "210000 | \n", "32 | \n", "22 | \n", "
20 | \n", "20 | \n", "11751 | \n", "6 | \n", "6 | \n", "480.0 | \n", "705.0 | \n", "0.0 | \n", "1139.0 | \n", "1844.0 | \n", "1844 | \n", "0 | \n", "0 | \n", "1844 | \n", "0.0 | \n", "0.0 | \n", "2 | \n", "0 | \n", "3 | \n", "1 | \n", "7 | \n", "1 | \n", "2.0 | \n", "546.0 | \n", "0 | \n", "122 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "190000 | \n", "33 | \n", "33 | \n", "
21 | \n", "85 | \n", "10625 | \n", "7 | \n", "6 | \n", "81.0 | \n", "885.0 | \n", "168.0 | \n", "0.0 | \n", "1053.0 | \n", "1173 | \n", "0 | \n", "0 | \n", "1173 | \n", "1.0 | \n", "0.0 | \n", "2 | \n", "0 | \n", "3 | \n", "1 | \n", "6 | \n", "2 | \n", "2.0 | \n", "528.0 | \n", "0 | \n", "120 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "170000 | \n", "36 | \n", "36 | \n", "
22 | \n", "60 | \n", "7500 | \n", "7 | \n", "5 | \n", "0.0 | \n", "533.0 | \n", "0.0 | \n", "281.0 | \n", "814.0 | \n", "814 | \n", "860 | \n", "0 | \n", "1674 | \n", "1.0 | \n", "0.0 | \n", "2 | \n", "1 | \n", "3 | \n", "1 | \n", "7 | \n", "0 | \n", "2.0 | \n", "663.0 | \n", "0 | \n", "96 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "216000 | \n", "10 | \n", "10 | \n", "
23 | \n", "20 | \n", "11241 | \n", "6 | \n", "7 | \n", "180.0 | \n", "578.0 | \n", "0.0 | \n", "426.0 | \n", "1004.0 | \n", "1004 | \n", "0 | \n", "0 | \n", "1004 | \n", "1.0 | \n", "0.0 | \n", "1 | \n", "0 | \n", "2 | \n", "1 | \n", "5 | \n", "1 | \n", "2.0 | \n", "480.0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "700 | \n", "2010 | \n", "149000 | \n", "40 | \n", "40 | \n", "
24 | \n", "20 | \n", "12537 | \n", "5 | \n", "6 | \n", "0.0 | \n", "734.0 | \n", "0.0 | \n", "344.0 | \n", "1078.0 | \n", "1078 | \n", "0 | \n", "0 | \n", "1078 | \n", "1.0 | \n", "0.0 | \n", "1 | \n", "1 | \n", "3 | \n", "1 | \n", "6 | \n", "1 | \n", "2.0 | \n", "500.0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "149900 | \n", "39 | \n", "2 | \n", "
25 | \n", "20 | \n", "8450 | \n", "5 | \n", "6 | \n", "0.0 | \n", "775.0 | \n", "0.0 | \n", "281.0 | \n", "1056.0 | \n", "1056 | \n", "0 | \n", "0 | \n", "1056 | \n", "1.0 | \n", "0.0 | \n", "1 | \n", "0 | \n", "3 | \n", "1 | \n", "6 | \n", "1 | \n", "1.0 | \n", "304.0 | \n", "0 | \n", "85 | \n", "184 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "142000 | \n", "42 | \n", "42 | \n", "
26 | \n", "20 | \n", "8400 | \n", "4 | \n", "5 | \n", "0.0 | \n", "804.0 | \n", "78.0 | \n", "0.0 | \n", "882.0 | \n", "882 | \n", "0 | \n", "0 | \n", "882 | \n", "1.0 | \n", "0.0 | \n", "1 | \n", "0 | \n", "2 | \n", "1 | \n", "4 | \n", "0 | \n", "2.0 | \n", "525.0 | \n", "240 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "126000 | \n", "40 | \n", "40 | \n", "
27 | \n", "20 | \n", "10500 | \n", "4 | \n", "5 | \n", "0.0 | \n", "432.0 | \n", "0.0 | \n", "432.0 | \n", "864.0 | \n", "864 | \n", "0 | \n", "0 | \n", "864 | \n", "0.0 | \n", "0.0 | \n", "1 | \n", "0 | \n", "3 | \n", "1 | \n", "5 | \n", "1 | \n", "0.0 | \n", "0.0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "115000 | \n", "39 | \n", "39 | \n", "
28 | \n", "120 | \n", "5858 | \n", "7 | \n", "5 | \n", "0.0 | \n", "1051.0 | \n", "0.0 | \n", "354.0 | \n", "1405.0 | \n", "1337 | \n", "0 | \n", "0 | \n", "1337 | \n", "1.0 | \n", "0.0 | \n", "2 | \n", "0 | \n", "2 | \n", "1 | \n", "5 | \n", "1 | \n", "2.0 | \n", "511.0 | \n", "203 | \n", "68 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "184000 | \n", "11 | \n", "11 | \n", "
29 | \n", "160 | \n", "1680 | \n", "6 | \n", "5 | \n", "504.0 | \n", "156.0 | \n", "0.0 | \n", "327.0 | \n", "483.0 | \n", "483 | \n", "504 | \n", "0 | \n", "987 | \n", "0.0 | \n", "0.0 | \n", "1 | \n", "1 | \n", "2 | \n", "1 | \n", "5 | \n", "0 | \n", "1.0 | \n", "264.0 | \n", "275 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2010 | \n", "96000 | \n", "39 | \n", "39 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
2900 | \n", "20 | \n", "13618 | \n", "8 | \n", "5 | \n", "198.0 | \n", "1350.0 | \n", "0.0 | \n", "378.0 | \n", "1728.0 | \n", "1960 | \n", "0 | \n", "0 | \n", "1960 | \n", "1.0 | \n", "0.0 | \n", "2 | \n", "0 | \n", "3 | \n", "1 | \n", "8 | \n", "2 | \n", "3.0 | \n", "714.0 | \n", "172 | \n", "38 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "320000 | \n", "1 | \n", "0 | \n", "
2901 | \n", "20 | \n", "11443 | \n", "8 | \n", "5 | \n", "208.0 | \n", "1460.0 | \n", "0.0 | \n", "408.0 | \n", "1868.0 | \n", "2028 | \n", "0 | \n", "0 | \n", "2028 | \n", "1.0 | \n", "0.0 | \n", "2 | \n", "0 | \n", "2 | \n", "1 | \n", "7 | \n", "2 | \n", "3.0 | \n", "880.0 | \n", "326 | \n", "66 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "369900 | \n", "1 | \n", "0 | \n", "
2902 | \n", "20 | \n", "11577 | \n", "9 | \n", "5 | \n", "382.0 | \n", "1455.0 | \n", "0.0 | \n", "383.0 | \n", "1838.0 | \n", "1838 | \n", "0 | \n", "0 | \n", "1838 | \n", "1.0 | \n", "0.0 | \n", "2 | \n", "0 | \n", "3 | \n", "1 | \n", "9 | \n", "1 | \n", "3.0 | \n", "682.0 | \n", "161 | \n", "225 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "359900 | \n", "1 | \n", "0 | \n", "
2903 | \n", "20 | \n", "31250 | \n", "1 | \n", "3 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "1600 | \n", "0 | \n", "0 | \n", "1600 | \n", "0.0 | \n", "0.0 | \n", "1 | \n", "1 | \n", "3 | \n", "1 | \n", "6 | \n", "0 | \n", "1.0 | \n", "270.0 | \n", "0 | \n", "0 | \n", "135 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "81500 | \n", "55 | \n", "55 | \n", "
2904 | \n", "90 | \n", "7020 | \n", "7 | \n", "5 | \n", "200.0 | \n", "1243.0 | \n", "0.0 | \n", "45.0 | \n", "1288.0 | \n", "1368 | \n", "0 | \n", "0 | \n", "1368 | \n", "2.0 | \n", "0.0 | \n", "2 | \n", "0 | \n", "2 | \n", "2 | \n", "8 | \n", "0 | \n", "4.0 | \n", "784.0 | \n", "0 | \n", "48 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "215000 | \n", "9 | \n", "9 | \n", "
2905 | \n", "120 | \n", "4500 | \n", "6 | \n", "5 | \n", "116.0 | \n", "897.0 | \n", "0.0 | \n", "319.0 | \n", "1216.0 | \n", "1216 | \n", "0 | \n", "0 | \n", "1216 | \n", "1.0 | \n", "0.0 | \n", "2 | \n", "0 | \n", "2 | \n", "1 | \n", "5 | \n", "0 | \n", "2.0 | \n", "402.0 | \n", "0 | \n", "125 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "164000 | \n", "8 | \n", "8 | \n", "
2906 | \n", "120 | \n", "4500 | \n", "6 | \n", "5 | \n", "443.0 | \n", "1201.0 | \n", "0.0 | \n", "36.0 | \n", "1237.0 | \n", "1337 | \n", "0 | \n", "0 | \n", "1337 | \n", "1.0 | \n", "0.0 | \n", "2 | \n", "0 | \n", "2 | \n", "1 | \n", "5 | \n", "0 | \n", "2.0 | \n", "405.0 | \n", "0 | \n", "199 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "153500 | \n", "8 | \n", "8 | \n", "
2907 | \n", "20 | \n", "17217 | \n", "5 | \n", "5 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "1140.0 | \n", "1140.0 | \n", "1140 | \n", "0 | \n", "0 | \n", "1140 | \n", "0.0 | \n", "0.0 | \n", "1 | \n", "0 | \n", "3 | \n", "1 | \n", "6 | \n", "0 | \n", "0.0 | \n", "0.0 | \n", "36 | \n", "56 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "84500 | \n", "0 | \n", "0 | \n", "
2908 | \n", "160 | \n", "2665 | \n", "5 | \n", "6 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "264.0 | \n", "264.0 | \n", "616 | \n", "688 | \n", "0 | \n", "1304 | \n", "0.0 | \n", "0.0 | \n", "1 | \n", "1 | \n", "3 | \n", "1 | \n", "5 | \n", "1 | \n", "1.0 | \n", "336.0 | \n", "141 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "104500 | \n", "29 | \n", "29 | \n", "
2909 | \n", "160 | \n", "2665 | \n", "5 | \n", "6 | \n", "0.0 | \n", "548.0 | \n", "173.0 | \n", "36.0 | \n", "757.0 | \n", "925 | \n", "550 | \n", "0 | \n", "1475 | \n", "0.0 | \n", "0.0 | \n", "2 | \n", "0 | \n", "4 | \n", "1 | \n", "6 | \n", "1 | \n", "1.0 | \n", "336.0 | \n", "104 | \n", "26 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "127000 | \n", "29 | \n", "29 | \n", "
2910 | \n", "160 | \n", "3964 | \n", "6 | \n", "4 | \n", "0.0 | \n", "837.0 | \n", "0.0 | \n", "105.0 | \n", "942.0 | \n", "1291 | \n", "1230 | \n", "0 | \n", "2521 | \n", "1.0 | \n", "0.0 | \n", "2 | \n", "1 | \n", "5 | \n", "1 | \n", "10 | \n", "1 | \n", "2.0 | \n", "576.0 | \n", "728 | \n", "20 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "151400 | \n", "33 | \n", "33 | \n", "
2911 | \n", "20 | \n", "10172 | \n", "5 | \n", "7 | \n", "0.0 | \n", "441.0 | \n", "0.0 | \n", "423.0 | \n", "864.0 | \n", "874 | \n", "0 | \n", "0 | \n", "874 | \n", "1.0 | \n", "0.0 | \n", "1 | \n", "0 | \n", "3 | \n", "1 | \n", "5 | \n", "0 | \n", "1.0 | \n", "288.0 | \n", "0 | \n", "120 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "126500 | \n", "38 | \n", "3 | \n", "
2912 | \n", "90 | \n", "11836 | \n", "5 | \n", "5 | \n", "0.0 | \n", "149.0 | \n", "0.0 | \n", "1503.0 | \n", "1652.0 | \n", "1652 | \n", "0 | \n", "0 | \n", "1652 | \n", "0.0 | \n", "0.0 | \n", "2 | \n", "0 | \n", "4 | \n", "2 | \n", "8 | \n", "0 | \n", "3.0 | \n", "928.0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "146500 | \n", "36 | \n", "36 | \n", "
2913 | \n", "180 | \n", "1470 | \n", "4 | \n", "6 | \n", "0.0 | \n", "522.0 | \n", "0.0 | \n", "108.0 | \n", "630.0 | \n", "630 | \n", "0 | \n", "0 | \n", "630 | \n", "1.0 | \n", "0.0 | \n", "1 | \n", "0 | \n", "1 | \n", "1 | \n", "3 | \n", "0 | \n", "0.0 | \n", "0.0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "73000 | \n", "36 | \n", "36 | \n", "
2914 | \n", "160 | \n", "1484 | \n", "4 | \n", "4 | \n", "0.0 | \n", "252.0 | \n", "0.0 | \n", "294.0 | \n", "546.0 | \n", "546 | \n", "546 | \n", "0 | \n", "1092 | \n", "0.0 | \n", "0.0 | \n", "1 | \n", "1 | \n", "3 | \n", "1 | \n", "5 | \n", "0 | \n", "1.0 | \n", "253.0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "79400 | \n", "34 | \n", "34 | \n", "
2915 | \n", "20 | \n", "13384 | \n", "5 | \n", "5 | \n", "194.0 | \n", "119.0 | \n", "344.0 | \n", "641.0 | \n", "1104.0 | \n", "1360 | \n", "0 | \n", "0 | \n", "1360 | \n", "1.0 | \n", "0.0 | \n", "1 | \n", "0 | \n", "3 | \n", "1 | \n", "8 | \n", "1 | \n", "1.0 | \n", "336.0 | \n", "160 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "140000 | \n", "37 | \n", "27 | \n", "
2916 | \n", "180 | \n", "1533 | \n", "5 | \n", "7 | \n", "0.0 | \n", "553.0 | \n", "0.0 | \n", "77.0 | \n", "630.0 | \n", "630 | \n", "0 | \n", "0 | \n", "630 | \n", "1.0 | \n", "0.0 | \n", "1 | \n", "0 | \n", "1 | \n", "1 | \n", "3 | \n", "0 | \n", "0.0 | \n", "0.0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "92000 | \n", "36 | \n", "36 | \n", "
2917 | \n", "160 | \n", "1533 | \n", "4 | \n", "5 | \n", "0.0 | \n", "408.0 | \n", "0.0 | \n", "138.0 | \n", "546.0 | \n", "546 | \n", "546 | \n", "0 | \n", "1092 | \n", "0.0 | \n", "0.0 | \n", "1 | \n", "1 | \n", "3 | \n", "1 | \n", "5 | \n", "0 | \n", "1.0 | \n", "286.0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "87550 | \n", "36 | \n", "36 | \n", "
2918 | \n", "160 | \n", "1526 | \n", "4 | \n", "5 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "546.0 | \n", "546.0 | \n", "546 | \n", "546 | \n", "0 | \n", "1092 | \n", "0.0 | \n", "0.0 | \n", "1 | \n", "1 | \n", "3 | \n", "1 | \n", "5 | \n", "0 | \n", "0.0 | \n", "0.0 | \n", "0 | \n", "34 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "79500 | \n", "36 | \n", "36 | \n", "
2919 | \n", "160 | \n", "1936 | \n", "4 | \n", "7 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "546.0 | \n", "546.0 | \n", "546 | \n", "546 | \n", "0 | \n", "1092 | \n", "0.0 | \n", "0.0 | \n", "1 | \n", "1 | \n", "3 | \n", "1 | \n", "5 | \n", "0 | \n", "0.0 | \n", "0.0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "90500 | \n", "36 | \n", "36 | \n", "
2920 | \n", "160 | \n", "1894 | \n", "4 | \n", "5 | \n", "0.0 | \n", "252.0 | \n", "0.0 | \n", "294.0 | \n", "546.0 | \n", "546 | \n", "546 | \n", "0 | \n", "1092 | \n", "0.0 | \n", "0.0 | \n", "1 | \n", "1 | \n", "3 | \n", "1 | \n", "6 | \n", "0 | \n", "1.0 | \n", "286.0 | \n", "0 | \n", "24 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "71000 | \n", "36 | \n", "36 | \n", "
2921 | \n", "90 | \n", "12640 | \n", "6 | \n", "5 | \n", "0.0 | \n", "936.0 | \n", "396.0 | \n", "396.0 | \n", "1728.0 | \n", "1728 | \n", "0 | \n", "0 | \n", "1728 | \n", "0.0 | \n", "0.0 | \n", "2 | \n", "0 | \n", "4 | \n", "2 | \n", "8 | \n", "0 | \n", "2.0 | \n", "574.0 | \n", "40 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "150900 | \n", "30 | \n", "30 | \n", "
2922 | \n", "90 | \n", "9297 | \n", "5 | \n", "5 | \n", "0.0 | \n", "1606.0 | \n", "0.0 | \n", "122.0 | \n", "1728.0 | \n", "1728 | \n", "0 | \n", "0 | \n", "1728 | \n", "2.0 | \n", "0.0 | \n", "2 | \n", "0 | \n", "4 | \n", "2 | \n", "8 | \n", "0 | \n", "2.0 | \n", "560.0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "188000 | \n", "30 | \n", "30 | \n", "
2923 | \n", "20 | \n", "17400 | \n", "5 | \n", "5 | \n", "0.0 | \n", "936.0 | \n", "0.0 | \n", "190.0 | \n", "1126.0 | \n", "1126 | \n", "0 | \n", "0 | \n", "1126 | \n", "1.0 | \n", "0.0 | \n", "2 | \n", "0 | \n", "3 | \n", "1 | \n", "5 | \n", "1 | \n", "2.0 | \n", "484.0 | \n", "295 | \n", "41 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "160000 | \n", "29 | \n", "29 | \n", "
2924 | \n", "20 | \n", "20000 | \n", "5 | \n", "7 | \n", "0.0 | \n", "1224.0 | \n", "0.0 | \n", "0.0 | \n", "1224.0 | \n", "1224 | \n", "0 | \n", "0 | \n", "1224 | \n", "1.0 | \n", "0.0 | \n", "1 | \n", "0 | \n", "4 | \n", "1 | \n", "7 | \n", "1 | \n", "2.0 | \n", "576.0 | \n", "474 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "131000 | \n", "46 | \n", "10 | \n", "
2925 | \n", "80 | \n", "7937 | \n", "6 | \n", "6 | \n", "0.0 | \n", "819.0 | \n", "0.0 | \n", "184.0 | \n", "1003.0 | \n", "1003 | \n", "0 | \n", "0 | \n", "1003 | \n", "1.0 | \n", "0.0 | \n", "1 | \n", "0 | \n", "3 | \n", "1 | \n", "6 | \n", "0 | \n", "2.0 | \n", "588.0 | \n", "120 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "142500 | \n", "22 | \n", "22 | \n", "
2926 | \n", "20 | \n", "8885 | \n", "5 | \n", "5 | \n", "0.0 | \n", "301.0 | \n", "324.0 | \n", "239.0 | \n", "864.0 | \n", "902 | \n", "0 | \n", "0 | \n", "902 | \n", "1.0 | \n", "0.0 | \n", "1 | \n", "0 | \n", "2 | \n", "1 | \n", "5 | \n", "0 | \n", "2.0 | \n", "484.0 | \n", "164 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "131000 | \n", "23 | \n", "23 | \n", "
2927 | \n", "85 | \n", "10441 | \n", "5 | \n", "5 | \n", "0.0 | \n", "337.0 | \n", "0.0 | \n", "575.0 | \n", "912.0 | \n", "970 | \n", "0 | \n", "0 | \n", "970 | \n", "0.0 | \n", "1.0 | \n", "1 | \n", "0 | \n", "3 | \n", "1 | \n", "6 | \n", "0 | \n", "0.0 | \n", "0.0 | \n", "80 | \n", "32 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "700 | \n", "2006 | \n", "132000 | \n", "14 | \n", "14 | \n", "
2928 | \n", "20 | \n", "10010 | \n", "5 | \n", "5 | \n", "0.0 | \n", "1071.0 | \n", "123.0 | \n", "195.0 | \n", "1389.0 | \n", "1389 | \n", "0 | \n", "0 | \n", "1389 | \n", "1.0 | \n", "0.0 | \n", "1 | \n", "0 | \n", "2 | \n", "1 | \n", "6 | \n", "1 | \n", "2.0 | \n", "418.0 | \n", "240 | \n", "38 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "170000 | \n", "32 | \n", "31 | \n", "
2929 | \n", "60 | \n", "9627 | \n", "7 | \n", "5 | \n", "94.0 | \n", "758.0 | \n", "0.0 | \n", "238.0 | \n", "996.0 | \n", "996 | \n", "1004 | \n", "0 | \n", "2000 | \n", "0.0 | \n", "0.0 | \n", "2 | \n", "1 | \n", "3 | \n", "1 | \n", "9 | \n", "1 | \n", "3.0 | \n", "650.0 | \n", "190 | \n", "48 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "2006 | \n", "188000 | \n", "13 | \n", "12 | \n", "
2927 rows × 34 columns
\n", "