{
"cells": [
{
"cell_type": "markdown",
"id": "ba71a55c",
"metadata": {
"id": "hi2CmTEDvGij"
},
"source": [
"# Purpose of Notebook\n",
"\n",
"The purpose of this notebook is to offer an example solution to the guided project for the Sequential Models for Deep Learning course. Since the choice of model predictors is up to the learner, results can differ. Use this solution as a guide for how to structure your own answer."
]
},
{
"cell_type": "markdown",
"id": "da963ff3",
"metadata": {
"id": "e65739c8"
},
"source": [
"# Time-Series Forecasting on the S&P 500"
]
},
{
"cell_type": "markdown",
"id": "33c20aa2",
"metadata": {
"id": "18150cb2"
},
"source": [
"**Context**: We are working as traders on the S&P 500 futures desk. We have been tasked with building a model to better forecast how this index will move based on its behavior over the past several years. The better our forecast performs, the more effectively and lucratively our desk will be able to trade these futures."
]
},
{
"cell_type": "markdown",
"id": "da06b221",
"metadata": {
"id": "2e64de5f"
},
"source": [
"## 1. Introduction"
]
},
{
"cell_type": "markdown",
"id": "599774a6",
"metadata": {
"id": "9091a3ff"
},
"source": [
"The dataset we will be working with is from [Yahoo Finance via Kaggle](https://www.kaggle.com/datasets/arashnic/time-series-forecasting-with-yahoo-stock-price), and it contains S&P 500 Index prices from 2015 through 2020.\n",
"\n",
"Before we get into the data, let's set some random seed values to improve the reproducibility of the models we will build later on."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "830f8d64",
"metadata": {
"id": "e101a4be"
},
"outputs": [],
"source": [
"# Imports\n",
"import tensorflow as tf\n",
"import numpy as np\n",
"import random\n",
"\n",
"# Seed code\n",
"np.random.seed(1)\n",
"random.seed(1)\n",
"tf.random.set_seed(1)"
]
},
{
"cell_type": "markdown",
"id": "961d325b",
"metadata": {
"id": "240f8d2d"
},
"source": [
"## 2. Data Wrangling and Exploration"
]
},
{
"cell_type": "markdown",
"id": "9f69912d",
"metadata": {
"id": "395dc3c2"
},
"source": [
"First, we will load in the data and inspect it to determine what steps will be required for cleaning and preprocessing."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "1fae836e",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "f55e074c",
"outputId": "f2091de4-28f5-4d49-c8c8-8420aee93d51"
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Date
\n",
"
High
\n",
"
Low
\n",
"
Open
\n",
"
Close
\n",
"
Volume
\n",
"
Adj Close
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
2015-11-23
\n",
"
2095.610107
\n",
"
2081.389893
\n",
"
2089.409912
\n",
"
2086.590088
\n",
"
3.587980e+09
\n",
"
2086.590088
\n",
"
\n",
"
\n",
"
1
\n",
"
2015-11-24
\n",
"
2094.120117
\n",
"
2070.290039
\n",
"
2084.419922
\n",
"
2089.139893
\n",
"
3.884930e+09
\n",
"
2089.139893
\n",
"
\n",
"
\n",
"
2
\n",
"
2015-11-25
\n",
"
2093.000000
\n",
"
2086.300049
\n",
"
2089.300049
\n",
"
2088.870117
\n",
"
2.852940e+09
\n",
"
2088.870117
\n",
"
\n",
"
\n",
"
3
\n",
"
2015-11-26
\n",
"
2093.000000
\n",
"
2086.300049
\n",
"
2089.300049
\n",
"
2088.870117
\n",
"
2.852940e+09
\n",
"
2088.870117
\n",
"
\n",
"
\n",
"
4
\n",
"
2015-11-27
\n",
"
2093.290039
\n",
"
2084.129883
\n",
"
2088.820068
\n",
"
2090.110107
\n",
"
1.466840e+09
\n",
"
2090.110107
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Date High Low Open Close \\\n",
"0 2015-11-23 2095.610107 2081.389893 2089.409912 2086.590088 \n",
"1 2015-11-24 2094.120117 2070.290039 2084.419922 2089.139893 \n",
"2 2015-11-25 2093.000000 2086.300049 2089.300049 2088.870117 \n",
"3 2015-11-26 2093.000000 2086.300049 2089.300049 2088.870117 \n",
"4 2015-11-27 2093.290039 2084.129883 2088.820068 2090.110107 \n",
"\n",
" Volume Adj Close \n",
"0 3.587980e+09 2086.590088 \n",
"1 3.884930e+09 2089.139893 \n",
"2 2.852940e+09 2088.870117 \n",
"3 2.852940e+09 2088.870117 \n",
"4 1.466840e+09 2090.110107 "
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Import\n",
"import pandas as pd\n",
"\n",
"# Load and inspect the data\n",
"stock_data = pd.read_csv(\"yahoo_stock.csv\")\n",
"stock_data.head()"
]
},
{
"cell_type": "markdown",
"id": "a606ccb5",
"metadata": {
"id": "192e4514"
},
"source": [
"We can see that the data contains seven columns: `Date`, `High`, `Low`, `Open`, `Close`, `Volume`, and `Adj Close`.\n",
"\n",
"We will want to set the index of the DataFrame to the `Date` column to prepare for time series forecasting, and decide what other column(s) to use for the forecast itself. For now, we are going to use only the `Adj Close` column, which is the closing price of the S&P 500 index, [adjusted for dividends](https://www.investopedia.com/articles/investing/091015/how-dividends-affect-stock-prices.asp). Based on this decision, we modify the DataFrame to drop the other columns.\n",
"\n",
"We should also ensure that the data is sorted by its `Date` column."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "2993d21e",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 238
},
"id": "d4e04bd1",
"outputId": "d9068a8e-5a59-4934-ba1b-f036db02772e"
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Adj Close
\n",
"
\n",
"
\n",
"
Date
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
2015-11-23
\n",
"
2086.590088
\n",
"
\n",
"
\n",
"
2015-11-24
\n",
"
2089.139893
\n",
"
\n",
"
\n",
"
2015-11-25
\n",
"
2088.870117
\n",
"
\n",
"
\n",
"
2015-11-26
\n",
"
2088.870117
\n",
"
\n",
"
\n",
"
2015-11-27
\n",
"
2090.110107
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Adj Close\n",
"Date \n",
"2015-11-23 2086.590088\n",
"2015-11-24 2089.139893\n",
"2015-11-25 2088.870117\n",
"2015-11-26 2088.870117\n",
"2015-11-27 2090.110107"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Select relevant columns, sort data, and set index\n",
"stock_data = stock_data[[\"Date\", \"Adj Close\"]]\n",
"stock_data = stock_data.sort_values(\"Date\")\n",
"stock_data = stock_data.set_index(\"Date\")\n",
"\n",
"# Inspect the data\n",
"stock_data.head()"
]
},
{
"cell_type": "markdown",
"id": "aff03554",
"metadata": {
"id": "c0d02adc"
},
"source": [
"We should also double-check that we don't have any missing or erroneous values in our dataset, and consider forward-filling or interpolating if necessary."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "7502bff3",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ff57c079",
"outputId": "199f8938-e72b-4d2a-f8fc-ddeab6256faa"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Info: \n",
"\n",
"Index: 1825 entries, 2015-11-23 to 2020-11-20\n",
"Data columns (total 1 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Adj Close 1825 non-null float64\n",
"dtypes: float64(1)\n",
"memory usage: 28.5+ KB\n",
"\n",
"Describe: \n",
" Adj Close\n",
"count 1825.000000\n",
"mean 2647.856284\n",
"std 407.301177\n",
"min 1829.079956\n",
"25% 2328.949951\n",
"50% 2683.340088\n",
"75% 2917.520020\n",
"max 3626.909912\n",
"\n",
"Skew: \n",
" Adj Close 0.081869\n",
"dtype: float64\n"
]
}
],
"source": [
"# Check for missing or erroneous values\n",
"print(\"Info: \")\n",
"stock_data.info()\n",
"print(\"\\nDescribe: \\n\", stock_data.describe())\n",
"print(\"\\nSkew: \\n\", stock_data.skew())"
]
},
{
"cell_type": "markdown",
"id": "a9418c22",
"metadata": {
"id": "0f794226"
},
"source": [
"Great! No missing values, and everything seems to be within a reasonable range. The low skew value for `Adj Close` indicates we don't have any outliers to be concerned about.\n",
"\n",
"Before we begin preparing the data for modeling by scaling the variable to be forecasted (`Adj Close`) and splitting the dataset for training, validation, and testing, let's quickly visualize the data."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "214130bc",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 274
},
"id": "062d8991",
"outputId": "e5244674-9c69-49b3-9064-e6687ec13ba7"
},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'Adjusted Close')"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHCCAYAAAAO4dYCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVrElEQVR4nOzde1xT9f8H8Nc2tnG/KiACiqAI4v2KpoI3VLylZaWV19Ii/YmlZVmZ5iVNzb6ZZV67mGmllpoKKpqJd/F+F0XlJiKM64Dt8/tj7LCzDdhgDCbv5+PB47Fzzmdnn32c7M3n9hYwxhgIIYQQQuoxYW1XgBBCCCGktlFARAghhJB6jwIiQgghhNR7FBARQgghpN6jgIgQQggh9R4FRIQQQgip9yggIoQQQki9RwERIYQQQuo9CogIIYQQUu9RQEQIIXXU+PHj0bRp09quBiH1AgVEhJByXbp0CS+88AKaNGkCa2trNG7cGP3798f//vc/nbJPnz7F1KlT0bhxY9jZ2aFt27ZYtmxZufcWCATcj1AohJeXFwYMGIC4uLhK6zVv3jze89U/1tbWesuvX78eQUFBsLa2RvPmzfXWHwAePXqE0aNHw9nZGY6Ojhg+fDju3r1baX0AoGnTphgyZIhBZQkhdY9VbVeAEFI3HT9+HOHh4fD19cUbb7wBT09PPHjwACdOnMCqVaswbdo0Xvnx48dj7969eOedd9CyZUtcuHABv/zyC2bNmlXua/Tv3x+vv/46GGNITEzEt99+iz59+mDPnj0YNGhQpXVcs2YN7O3tuWORSKRT5vvvv8fUqVMxatQozJw5E//++y+mT5+O/Px8vP/++1y53NxchIeHIzs7Gx9++CHEYjFWrlyJ3r17IyEhAW5uboY0GyHEUjFCCNFj8ODBrGHDhuzp06c619LS0njHubm5TCgUsrfffpt3vrCwsNz7A2BRUVG8cxcvXmQA2IABAyqs26effsoAsMePH1dYLj8/n7m5ubHIyEje+bFjxzI7OzuWmZnJnfviiy8YAHbq1Cnu3LVr15hIJGJz5syp8HUYY6xJkyY6r1Nd48aNY02aNDHpPQkh+tGQGSFErzt37qBVq1ZwdnbWuebu7s47Vg9ZMcZ456VSqVGv2bp1azRo0ACJiYkGlWeMQSaT6byu2uHDh/HkyRO8/fbbvPNRUVHIy8vDnj17uHO///47OnfujM6dO3PnWrZsib59+2Lbtm1GvQ8AuHfvHgQCAb788kusXbsW/v7+kEql6Ny5M06fPq1TfufOnQgJCYG1tTVCQkKwY8cOvfdVKpX46quv0KpVK1hbW8PDwwNTpkzB06dPuTKffvophEIhDh48yHvum2++CYlEggsXLhj9fgh51lFARAjRq0mTJjh79iwuX75caVlbW1uMHj0amzZtwvnz56v8mk+fPsXTp08NHp5q1qwZnJyc4ODggFdffRVpaWm86+q6dOrUiXe+Y8eOEAqF3HWlUomLFy/qlAOALl264M6dO8jJyanKW8KWLVuwbNkyTJkyBZ9//jnu3buHkSNHori4mCtz4MABjBo1CgKBAIsXL8aIESMwYcIEnDlzRud+U6ZMwaxZs9CjRw+sWrUKEyZMwC+//IKIiAjunnPnzkW7du0wadIkrt779+/HDz/8gE8++QRt27at0nsh5FlGc4gIIXq99957GDRoENq1a4cuXbqgZ8+e6Nu3L8LDwyEWi3llc3Nz8fjxYygUCgwaNAj//vsvmjdvXulrFBYWIiMjg5tD9OGHH0KhUODFF1+s8HkuLi545513EBoaCqlUin///RerV6/GqVOncObMGTg6OgIAUlJSIBKJdHq0JBIJ3NzckJycDADIzMyEXC5Ho0aNdF5LfS45ORmBgYGVvidtSUlJuHXrFlxcXAAAgYGBGD58OPbv389Nwn7//ffh4eGBY8eOwcnJCQDQu3dvDBgwAE2aNOHudezYMaxbtw6//PILxowZw50PDw/HwIEDsX37dowZMwZisRg//vgjOnbsiJkzZ2LZsmWYNGkSOnXqhA8++MDo90BIvVC7I3aEkLrs1KlT7Pnnn2e2trYMAAPAGjZsyHbt2sUr9/zzz7OAgAB29+5dFhISwnx9fdn9+/e568ePH2cAWGxsLHdOfT/NH2trazZz5kymUCiMrusvv/zCALDFixdz5yZOnMhsbGz0lvfx8WHDhw9njDGWlJTEALAvvvhCp9z69esZAHb+/PkKX197DlFiYiIDoDOvKjMzkwFgq1atYowxlpyczACwDz74QOeewcHBvDlE06dPZ05OTiw9PZ09fvyY92Nvb88mT57Me/7ixYsZANalSxcmlUrZlStXKnwPhNRnNGRGCClX586d8eeff+Lp06c4deoU5syZg5ycHLzwwgu4evUqAODEiRPYsWMHFi1aBD8/P+zbtw8A0K9fP24I6/Lly7CyskLHjh159x8+fDhiYmIQGxuLkydPIiMjA8uXL4dQaPyvpjFjxsDT0xOxsbHcORsbGxQVFektX1hYCBsbG64cAMjlcr3lNMsYy9fXl3es7ilSz/m5f/8+AOjtUdPukbp16xays7Ph7u6Ohg0b8n5yc3ORnp7OKz9r1iy0bdsWp06dwqefforg4OAqvQdC6gMaMiOEVEoikXATjlu0aIEJEyZg+/bt+PTTT3H8+HEAQLdu3QAAjRs3xv79+/Hcc8+hf//+iIuLw9q1azF48GCdCdre3t7o16+fyerp4+ODzMxM7rhRo0ZQKBRIT0/nDZsVFRXhyZMn8PLyAgC4urpCKpUiJSVF557qc+qyxtK3FQCAcieCV0SpVMLd3R2//PKL3usNGzbkHd+9exe3bt0CoNpTihBSPgqICCFGUU88VgcKAoEAAPDgwQP4+PgAUK3O2rNnD/r27YuOHTsiKSkJ33//fY3WizGGe/fuoX379ty5du3aAQDOnDmDwYMHc+fPnDkDpVLJXRcKhWjdurXeScwnT55Es2bN4ODgUCP1Vs8RUgcumm7cuME79vf3R2xsLHr06FFpj5VSqcT48ePh6OiIGTNmYNGiRXjhhRcwcuRI01WekGcIDZkRQvQ6fPiw3l6MvXv3Aigbzunbty8AYP78+SgpKeHKde3aFXPnzsW9e/fQvHlzhISEmKxujx8/1jm3Zs0aPH78GAMHDuTO9enTB66urlizZo1OWVtbW0RGRnLnXnjhBZw+fZoXFN24cQOHDh2qdJJ3dTRq1Ajt2rXD5s2bkZ2dzZ2PiYnhhiXVRo8eDYVCgQULFujcp6SkBFlZWdzxihUrcPz4caxduxYLFixA9+7d8dZbbyEjI6PG3gshFq2W5zARQuqoVq1aMT8/PzZz5ky2du1a9s0337AxY8YwkUjEmjZtytuwcfr06QwAa9euHfviiy/Y999/z1599VVmZWXFevbsyQQCAXv99dd594eejRkNZWNjw8aPH8+WL1/OVq9ezV555RUmEAhYu3btWF5eHq/s6tWrGQD2wgsvsB9++IG9/vrrDABbuHAhr5xMJmP+/v7M3d2dLV26lK1cuZL5+PgwLy8vlp6eXmmdyptUvWzZMp2yANinn37KHf/zzz9MKBSykJAQtmLFCjZ37lzm5OTEWrVqpbMx45QpUxgANmjQILZy5Ur2zTffsP/7v/9jXl5ebPv27Ywxxq5evcqsra3Z+PHjuefdvHmT2drashdffLHS90JIfUQBESFEr3/++YdNnDiRtWzZktnb2zOJRMICAgLYtGnTdHaqZky1Gqtjx47M2tqa2dvbs549e7KtW7cyxhj78MMPGQD22WefceWrExBNnjyZBQcHMwcHByYWi1lAQAB7//33mUwm01t+7dq1LDAwkEkkEubv789WrlzJlEqlTrkHDx6wF154gTk6OjJ7e3s2ZMgQduvWLYPqVJ2AiDHG/vjjDxYUFMSkUikLDg5mf/75Z7k7Va9du5Z17NiR2djYMAcHB9a6dWs2e/ZslpyczEpKSljnzp2Zt7c3y8rK4j1v1apVDAD77bffDHpPhNQnAsaqMLOPEEIIIeQZQnOICCGEEFLvUUBECCGEkHqPAiJCCCGE1HsUEBFCCCGk3qOAiBBCCCH1HgVEhBBCCKn3KHWHAZRKJZKTk+Hg4MClKSCEEEJI3cYYQ05ODry8vCpNGk0BkQGSk5O5HE2EEEIIsSwPHjyAt7d3hWUoIDKAOqnjgwcP4OjoWMu1IYQQQoghZDIZfHx8DErOTAGRAdTDZI6OjhQQEUIIIRbGkOkuNKmaEEIIIfUeBUSEEEIIqfcoICKEEEJIvUcBESGEEELqPQqICCGEEFLvUUBECCGEkHqPAiJCCCGE1HsUEBFCCCGk3qOAiBBCCCH1HgVEhBBCCKn3KCAihBBCSK0pKFJAoWS1XQ0KiAghhBBSO2SFxei8MBYvr42v7apQQEQIIYSQ2vHfrQzkyktw+t5TMFa7vUQUEBFCCCGkVthKrbjHeUWKWqwJBUSEEEIIqSVCQdnjJ7ny2qsIKCAihBBCSC0pLFZyj/Pk1ENECCGEkHqosLgsCCosoYCIEEIIIfVQZl4R91gzOKoNFBARQgghxCj3MvLwY/w9yKvZq/PpX1e4x2fuPa1utaqFAiJCCCGEGCXsyzh8susK1h65a7J7roi5abJ7VQUFRIQQQgipktP3q96rc+h6mglrUn0UEBFCCCGkSqw0180baeGeayasSfVRQEQIIYSQKhFVIyAq0NqI0cVWXN3qVAsFRIQQQgipkur0ECVnF/KORcLaDUmsKi9CCCGEEKKrOj1EmuYNDYaLncQk96oqCogIIYQQUiXV6SHSNL6Hn0nuUx00ZEYIIYSQKqlsmGvLySRM2nRaZ75QXUQBESGEEEKqpLIeog93XMLB6+nYHH+Pd75EUZbD7P/6Nq+JqhmNAiJCCCGEVIlIZNiQWarWBOrCkrKA6K0wf5PWqapqNSBas2YN2rRpA0dHRzg6OiI0NBT//PMPdz0sLAwCgYD3M3XqVN49kpKSEBkZCVtbW7i7u2PWrFkoKSnhlYmLi0OHDh0glUoREBCATZs2mePtEUIIIc8czXQdtmKRQc/RzlOmeSy1qht9M7U6qdrb2xtLlixB8+bNwRjD5s2bMXz4cJw/fx6tWrUCALzxxhuYP38+9xxbW1vusUKhQGRkJDw9PXH8+HGkpKTg9ddfh1gsxqJFiwAAiYmJiIyMxNSpU/HLL7/g4MGDmDx5Mho1aoSIiAjzvmFCCCHEwsXdeMw9tpEYFhAVaAVEC3ZfBaAKhgQC00zMrq5aDYiGDh3KO164cCHWrFmDEydOcAGRra0tPD099T7/wIEDuHr1KmJjY+Hh4YF27dphwYIFeP/99zFv3jxIJBJ899138PPzw/LlywEAQUFBOHbsGFauXEkBESGEEGKkKT+dNfo5+VqTqvdeSgEAKJTMJHUyhbrRTwVVb8/WrVuRl5eH0NBQ7vwvv/yCBg0aICQkBHPmzEF+fj53LT4+Hq1bt4aHhwd3LiIiAjKZDFeuXOHK9OvXj/daERERiI+PL7cucrkcMpmM90MIIYTUd8Uak6EBwwMa7SEzVvq0TRO6mKReplDr+xBdunQJoaGhKCwshL29PXbs2IHg4GAAwJgxY9CkSRN4eXnh4sWLeP/993Hjxg38+eefAIDU1FReMASAO05NTa2wjEwmQ0FBAWxsbHTqtHjxYnz22Wcmf6+EEEKIJcsp5M/RrSggYqzsmnZAZC0WIVdeAh9X3e/g2lLrAVFgYCASEhKQnZ2N33//HePGjcORI0cQHByMN998kyvXunVrNGrUCH379sWdO3fg719zs9LnzJmDmTNncscymQw+Pj419nqEEEKIJcguKOYdVxQQFSvKrp2+9xSJGXnwa2AHACgq7WkSi+rMQFXtD5lJJBIEBASgY8eOWLx4Mdq2bYtVq1bpLdu1a1cAwO3btwEAnp6eSEtL45VRH6vnHZVXxtHRUW/vEABIpVJu5Zv6hxBCCKnvkrMKeMcKVn5AlJVfxDtWZ7dnjHFDb1YGLts3h1oPiLQplUrI5XK91xISEgAAjRo1AgCEhobi0qVLSE9P58rExMTA0dGRG3YLDQ3FwYMHefeJiYnhzVMihBBCSOWuJvPn1Cor6CFa/18i7/hpaYCkUDJuDpGEeohU5syZg6NHj+LevXu4dOkS5syZg7i4OIwdOxZ37tzBggULcPbsWdy7dw9//fUXXn/9dfTq1Qtt2rQBAAwYMADBwcF47bXXcOHCBezfvx9z585FVFQUpFIpAGDq1Km4e/cuZs+ejevXr+Pbb7/Ftm3bEB0dXZtvnRBCCLE4uXKtOUQV9BBl5vJ7iM7ef4qfTtyHTGMeUl0aMqvVOUTp6el4/fXXkZKSAicnJ7Rp0wb79+9H//798eDBA8TGxuKrr75CXl4efHx8MGrUKMydO5d7vkgkwu7du/HWW28hNDQUdnZ2GDduHG/fIj8/P+zZswfR0dFYtWoVvL29sW7dOlpyTwghhBhJe3K01qIznrwiVeDTP9gDMVdVU1c+3nkZOYVl85AoICq1fv36cq/5+PjgyJEjld6jSZMm2Lt3b4VlwsLCcP78eaPrRwghhJAy6v2EREIBFEpW4ZCZekWaq62Edz5NI42HmOYQEUIIIcTSqAMiJxsxAN19iTTllQ6vudrzA6K80ntYCQV1ZpdqgAIiQgghhBiooFgV5DS0V83T1Z5TpClPrgp8tHuICkoDoro0XAZQQEQIIYQQAz3NU83/aeRsDaDigEh9zcVOu4dIdb4uDZcBFBARQgghxEAPs1TpswI9HQAAiRl55ZblAiJbMe98vpx6iAghhBBiwTJyVEvp/RvaAwBSsgvx04n7OuUYY9wcIhuxiHetrIeoboUgdas2hBBCCKmTlEqGgtJl96HN3Ljzlx5m6ZSVlyhRUroCrVVjJ3T3LyvPzSGyoiEzQgghhFiYwpKyPYjc7CX4cHBLAOACH03qoAcA7KVW2PJGN3w6VJVBgnqICCGEEGKx1KvGAMDaSgSRUBVC6EvwuvX0A+6xSKjqCVIHQNwcImHdCkHqVm0IIYQQUiep5wTZSkQQCgWwKg10diUkY/jq/3D8TgZX9ot913Wer85bxvUQ0ZAZIYQQQizNsv03AKgCIqCs5wcALjzIwpgfTlb4fDupKjmGukOJhswIIYSQeu70vcwKl6zXNZceZmPPpRQAQHN31ZJ7YzeZbuJmyzuuawFRreYyI4QQQuqTjFw5Fu65hh3nHwEA7i2JrOUaVe5mWg6GfnOMO547JAgAUF6i+6d5RXrPu2pt0FjXNmakgIgQQggxk06fx/KO5SUKSK1E5ZSuGwasPMo79nVV9fSwciKiab/qT6auOcQG1L0eorpVG0IIIaQeSdXI/G4pHKxVO0+Xl+f+2O0MveeFAgqICCGEkHpPrrGPj1pOYfm5wOqinyd15R4r9Sy3r4h2D5GkjgVENGRGCCGEmEF2QbHOufwi3SCpLvn31mPu8dm5/eBWmuUeKFstpqmiIEk7ILKqY3OI6lZ4RgghhDyjkp6oEqM2sJciuJEjAHCpMOoipZLhtfWnuGOpVk4yfaGPdtA3sJUn95jmEBFCCCH13NO8IrzwXTwAoK23E2xK9/IpKKq7Q2ax19J4x1Irfsigb1L1xv8SeccvdfbhHotoDhEhhBBSv32+5xr32NVOwm1ueDUlp7aqVKmkzHzesZVWD49ST0B0X+M5DlIrdPB14Y61M3VIaMiMEEIIebbJSxS8BKcJD55yjx1txFxwsSbuttnrZqisfP7wl0Crh0ffqnvNlWSH3guDk62YO9buIbKiHiJCCCHk2ZWYkYeOC2IR9Mk+LNuvyumlOdfY0VqMIW28AJQtYa+Lsgr0b7Co5uVswz1uUDrZWnPlmJvWRow0h4gQQgipR07cfYLc0kSoqw/fwe30XDR0KFud1bSBLdr6OAMAShTK2qiiQdQ9RKM7eSN+Th+d65GtG2F6nwBsmtAZDexVwc+NNNUQ4IBgDwi1AiCBQADNUzRkRgghhDzDkrMKeMe30nJgU7pC6/n2jTGkjRc3ZGbkVj5mpV4xFurvhkZONjrXhUIBZg4IRFigO9fbk/AgC4DuijQ1zV4i6iEihBBCnmEZufyhJgVjKCxdXt+npTtEQgEXGJQo634PkZNN5cN6A4I9eMflbbpYrCiLAGkOESGEEPIMUw+XqeXJS1BYogp8rEt7TtQBUR2Oh/A0XxXYOdlIKikJhLd05x1LrCoPLwwpY051qzaEEEKIhcst5K/OOn3vKeSlPUTWYtXXrlUd7yFSKhnSZKo8a55O1pWWt9YaItPes0j/c+pWCFK3akMIIYRYuPulO1I7WquyY/1+9iE3ZKYOHIQac4jKyxpfm9Jz5ChWMIiEAnhoTAgvj3qjSTV/d/vKn1POPKPaQgERIYQQYiK30nJwNyMPADC5ZzPu/L3SIMnaShUEaG5yqKiDM6vVw2UuthKD5vpoBzevaOxQXR7tXqXaRgERIYQQYiJ7L6Vyj0e0a6xzXT1MpLnaqqQOBURP84qQKy/hVpg52hiWA157+KsqQVRto2z3hBBCiAmkZBdgZexN7riRs+7cG3WviJVGHou60kOUKy9B+wUxsJOIEN2/BQDDVpgBVQtupDSHqMyaNWvQpk0bODo6wtHREaGhofjnn38AAJmZmZg2bRoCAwNhY2MDX19fTJ8+HdnZ2bx7CAQCnZ+tW7fyysTFxaFDhw6QSqUICAjApk2bzPUWCSGE1BM/xt/nHo/p6quT+wsoCwI083op6sgcomspMgBAXpECK2NUgZ2hgY5AIEAbbyejXo96iDR4e3tjyZIlaN68ORhj2Lx5M4YPH47z58+DMYbk5GR8+eWXCA4Oxv379zF16lQkJyfj999/591n48aNGDhwIHfs7OzMPU5MTERkZCSmTp2KX375BQcPHsTkyZPRqFEjREREmOutEkIIeYZlFxTzcpc1sJfq5P4CyukhUtSNgChfo/55pY+fb6877Fcefcletc0bGox5f19FrxYN0crLuACqptVqQDR06FDe8cKFC7FmzRqcOHECkyZNwh9//MFd8/f3x8KFC/Hqq6+ipKQEVlZlVXd2doanp6fe1/juu+/g5+eH5cuXAwCCgoJw7NgxrFy5kgIiQggh1VaiUKLtZwd458Z29dVbVj2pWrPzqK7MIcrT2j8JAHq1aGjw8w3JQjK+hx/G9/AzplpmU2cG8BQKBbZu3Yq8vDyEhobqLZOdnQ1HR0deMAQAUVFRaNCgAbp06YINGzbwljDGx8ejX79+vPIRERGIj48vty5yuRwymYz3QwghhOijnoCsNr1PADwc9e/dIy7N3yUQlO1WbUjPijlcfJitc87RiOSzyjoS2FVVrU+qvnTpEkJDQ1FYWAh7e3vs2LEDwcHBOuUyMjKwYMECvPnmm7zz8+fPR58+fWBra4sDBw7g7bffRm5uLqZPnw4ASE1NhYcHf0txDw8PyGQyFBQUwMZGNz/L4sWL8dlnn5nwXRJCCHkWFRYrcPBaOu+crbT8r1bNYTSRUACFktWZHqL00o0YNRmzeWJxHd1k0lC1HhAFBgYiISEB2dnZ+P333zFu3DgcOXKEFxTJZDJERkYiODgY8+bN4z3/448/5h63b98eeXl5WLZsGRcQVcWcOXMwc+ZM3uv7+FS+pwIhhJD6ZdbvF/H3hWTeOXUOMAAIauTITVbWZiUUoAjmmUPEGNM7p0lTjp4hs8qeo0k7qa2lqfUhM4lEgoCAAHTs2BGLFy9G27ZtsWrVKu56Tk4OBg4cCAcHB+zYsQNiccXdd127dsXDhw8hl8sBAJ6enkhLS+OVSUtLg6Ojo97eIQCQSqXcyjf1DyGEEKJNX7AT2boR93hXVI9ynysqDTZqepXZGz+ewZD/HUNxJZN8tIf+jPVW7wAAwMsGbMpYF9V6D5E2pVLJBTMymQwRERGQSqX466+/YG1deT6VhIQEuLi4QCpVbTUeGhqKvXv38srExMSUO0+JEEIIMcTVZBlup+fyzi0YEYLWGsvPNROYai8zF5XOJ1LU4FATYwwxV1WdAhceZKFTU1e95Wb+loBTiZnVeq2ocH8817wBWjeuW6vHDFWrAdGcOXMwaNAg+Pr6IicnB1u2bEFcXBz2798PmUyGAQMGID8/Hz///DNvcnPDhg0hEonw999/Iy0tDd26dYO1tTViYmKwaNEivPfee9xrTJ06Fd988w1mz56NiRMn4tChQ9i2bRv27NlTW2+bEEKIhXv4NB+Dv/6Xd25Im0Z4rVsTnbK9WzTEkZuPMbqTN+98WYLXmushkpeUBVuFxeUHXn+ef6Rzzths9FYiITo2cTHqOXVJrQZE6enpeP3115GSkgInJye0adMG+/fvR//+/REXF4eTJ08CAAICAnjPS0xMRNOmTSEWi7F69WpER0eDMYaAgACsWLECb7zxBlfWz88Pe/bsQXR0NFatWgVvb2+sW7eOltwTQgipssuPyobKmrvbw1ZqhXnDWuktu25cJ9x9nIfmWglPheohsxoMiDT3RlInmDXU1N7+pq5OnVarAdH69evLvRYWFlZpBuCBAwfyNmSs6F7nz583un6EEEKIPuk5qhVZEa088P1rnSosKxYJEejpoHNe3UNUkwFRYUlZEJSrZ9K0tvHdm+LY7Qw4WlthWp+ASss/S+rcHCJCCCGkrkuXqea6lrffkCHUc4hqcshMs4dIncFeH7FIgGIFw5Tezcrt6XrW1foqM0IIIcTS7LuiympfrYCodMisJjc0jL/7hHusuR2ApmKFEsWlS/9txfW3n4QCIkIIIcQID5/mc6vLGjpIq3wfkRkmVe++kMI9ziqnhyg9R849tpHUrYSr5kQBESGEEGKEW2llS+3DAg3P9aVNneC1JnuINPdV1LfK7M7jXPRYcog7VqcWqY8oICKEEEKMoN7AsEeAG9wdqj5kJjRDD1GJxi7Y2jnTCosV6Lv8CO+cMTtTP2soICKEEEKM8NOJ+wAAJxvDE5/qY45VZpr5xbRfpro7Uz9rKCAihBBCDHQ9VYaz958CQLV6h4CyOUQ1GRBp3lt7KxvtHqP6jgIiQgghpBLqeT6p2WUZ4af0blate5pjUnVxBUNmRSWWnZ3e1CggIoQQQirwzpZzaDf/AK4my7jNDbv4uaKRk/4E4YYyRw9RiaL8ITM5BUQ89XfDAUIIIaQSJQoldl9ULV2fs+MSLjzIAgA4Wlf/65ObQ1SDQ1eawZZ2D5Fca9XZmrEdaqweloB6iAghhJByaO7Row6GAMBeWv2AqKyHqOZ6ajQnVWvHXUWKsl2sl7/YFoNaN6qxelgCCogIIYSQctxKz9V7XiSs/tcnN4dIwZBnQJ6xqtC37P7iwyxk5RchV14WEI3s0LhGXt+S0JAZIYQQUo5baTl6z3f1c632vdVDZh/vuoxZv1/Etimh6GKC+2rSnLD9JK8If19IxrRfz6OhgxSPS3u/Qho71uv9h9QoICKEEEK0nErMxJq42zhy87HOtefbNzZJj4qNRPUVrN5B+sv9N7Btami176uWX1TCBT2A6j2dSswEAN75yNZeJntNS0YBESGEEKLl3e0JeJBZoPdaVHgArETVHzJr7Fy9VWqVOXgtvdIyjZys8VaYf43Ww1LQHCJCCCFES5pMXu61Rk7V25BRrYG9hHfMYNrVZrYGJGp1r0Zy2mcNBUSEEEKIhsJiRYWbFtqZYIUZUDaHqKYYsprf3dE0wd2zgAIiQgghRMPT/CLeca8WDU3WK6RJqBUQmXo7osISRaVlqIeoDAVEhBBCSKnfTichdPEhAEBDByl2RvXAd692gNgEc4a0CWt4ZVdhceX7GzlWM0Hts4QCIkIIIaTUH2cfcY9f6OiNdj7OsJVYYcXotnC0tsIXo1qb7LVE2j1EJruzSmFx5T1E1laVzzOqL2iVGSGEEALgUVYBTt3L5I7f6FmWvLVTU1dc+HSASffrEQm0h8xMGxKpAyKRUFBuvjSpmPpF1KglCCGEEADvbkvgHl9fMBCudvxVYKbevFB7DpGp5ZXuRG1XwWozaysKA9SoJQghhNR7ssJinLir6h1ys5PAWlzzQ0na05JMPWSWU1gMAHC2LQvstIMjqRnep6WggIgQQki9d0hjE8Pfpphut+iK1PSk6pxCVX40J42J07ZaWwZIqYeIQy1BCCGk3ssqXWrfwF6KAHd7s7ymdkBk6mX3OXJVD5FmQORiy19VZo6eMEtBAREhhJB6T53VPjywodleU3uVmall5KiCPDeNHbE1h88A6iHSRC1BCCGk3vvlZBIA4M7jXLO9pk4PkQnvffFhFrdirombHXe+odZGjFJads+hgIgQQki9dvFhFvf4XFJWueVMTbuHqERR+UaKhpq1/SL3uKWnA/fY0doKQ9uWZbe3pmX3HGoJQggh9drxO0+4x1+91M5sr6u9yqy8vYKq4kZaDgCgg68zJBov9Gq3JrDRCIKoh6hMlQOi27dvY//+/SgoKABg+g2lCCGEELW4G+notuggpv963uTfN6cTVUNLLTzsMaJ9Y5PeuyLa+xoVm6iHSLN9Ojd1hVwjUW1zdwdYaQRI1ENUxuiWePLkCfr164cWLVpg8ODBSElJAQBMmjQJ7777rlH3WrNmDdq0aQNHR0c4OjoiNDQU//zzD3e9sLAQUVFRcHNzg729PUaNGoW0tDTePZKSkhAZGQlbW1u4u7tj1qxZKCkp4ZWJi4tDhw4dIJVKERAQgE2bNhn7tgkhhNQCxhgYYxi/8TRSZYX460Iy7mbkmez+2fnFOHhdteQ+srVXJaVNS3un6iITBUTFirKAaFJPP8g1kryKRQKINYbqqIeojNEBUXR0NKysrJCUlARbW1vu/EsvvYR9+/YZdS9vb28sWbIEZ8+exZkzZ9CnTx8MHz4cV65c4V7r77//xvbt23HkyBEkJydj5MiR3PMVCgUiIyNRVFSE48ePY/Pmzdi0aRM++eQTrkxiYiIiIyMRHh6OhIQEzJgxA5MnT8b+/fuNfeuEEELMhDGGyZtPI3DuPkzfmsC7lmDAPB95iQIPMvMrLXc1RcY9frGTt7HVrBbtOURyA5KxGkIzy72TjRhFGj1EAoGA10NEqTvKGJ3L7MCBA9i/fz+8vfkfnObNm+P+/ftG3Wvo0KG844ULF2LNmjU4ceIEvL29sX79emzZsgV9+vQBAGzcuBFBQUE4ceIEunXrhgMHDuDq1auIjY2Fh4cH2rVrhwULFuD999/HvHnzIJFI8N1338HPzw/Lly8HAAQFBeHYsWNYuXIlIiIijH37hBBCzCA9R47Y0s0S/76QzLuWZECgM++vq/j1lGrl2IQeTfHJkGC9qTcmbjoNAOgX5A4vZ5vqVtso2qvMDEnGaojCIkXp/QGJSMgbMgP4gRgldy1jdGiYl5fH6xlSy8zMhFQq1fMMwygUCmzduhV5eXkIDQ3F2bNnUVxcjH79+nFlWrZsCV9fX8THxwMA4uPj0bp1a3h4eHBlIiIiIJPJuF6m+Ph43j3UZdT30Ecul0Mmk/F+CCGEmE9qdmG51/LkJeVeU1MHQwCw8b97eJRVoFPm+O0MFJQGIeYOhoCay3ZfWNrTZC0WQSAQ8IbMAGBAsAe8XWwwuLUnHG0ox7ua0QFRz5498eOPP3LHAoEASqUSS5cuRXh4uNEVuHTpEuzt7SGVSjF16lTs2LEDwcHBSE1NhUQigbOzM6+8h4cHUlNTAQCpqam8YEh9XX2tojIymYybEK5t8eLFcHJy4n58fHyMfl+EEEKMl5lXhLBlhzF89X/llskrqjggUioZtPc8PK2RxR4A9lxMwZh1J7ljB2vzBwbadQxu5GiS+6qDPPUu1C929IGrnQSjOqhGdjo1dcWx9/vg27EdTZ6w1pIZ/QlYunQp+vbtizNnzqCoqAizZ8/GlStXkJmZif/+K/8DXJ7AwEAkJCQgOzsbv//+O8aNG4cjR44YfR9TmjNnDmbOnMkdy2QyCooIIcQMzt5/intPKh4Sy5VXPLSUIy+B9gr26N8uYGCrRrApTW4ateUc7/pr3ZoaXdfq0s52b6pVZuqhN5vSgMjFToJTH/blzR0iuoxunZCQENy8eRPPPfcchg8fjry8PIwcORLnz5+Hv7+/0RWQSCQICAhAx44dsXjxYrRt2xarVq2Cp6cnioqKkJWVxSuflpYGT09PAICnp6fOqjP1cWVlHB0dYWOjv4tUKpVyK9/UP4QQQmpedkFxudecS/NwVTZkpp5MbS0W4seJXbjzX+y7zj1u3diJe9zEzRaeTtZVqm911NQqM3UPkeaEaQqGKlelPkInJyd89NFHpq4LAECpVEIul6Njx44Qi8U4ePAgRo0aBQC4ceMGkpKSEBqqykQcGhqKhQsXIj09He7u7gCAmJgYODo6Ijg4mCuzd+9e3mvExMRw9yCEEFJ3VBQQtfR0wIm7mRUGRHcf52LI/44BAFxsJejVoiw32abj9xDs5YjRnXzg4WiNS4+yAQCLn29totobR3sO0dO88t+7MbR7iIhhjA4Z9+3bh2PHjnHHq1evRrt27TBmzBg8ffrUqHvNmTMHR48exb1793Dp0iXMmTMHcXFxGDt2LJycnDBp0iTMnDkThw8fxtmzZzFhwgSEhoaiW7duAIABAwYgODgYr732Gi5cuID9+/dj7ty5iIqK4iZ4T506FXfv3sXs2bNx/fp1fPvtt9i2bRuio6ONfeuEEEJqmHZA9MPrnbjH4YGqP3wrmkN0sHRlGgC82auZzvXZv1/EzbQcxF5TjRyserkdugc0qFadq0o70/yjrAJcTa7eIp7tZx5g/MbTeu9PKmZ0QDRr1ixu1dWlS5cwc+ZMDB48GImJibx5N4ZIT0/H66+/jsDAQPTt2xenT5/G/v370b9/fwDAypUrMWTIEIwaNQq9evWCp6cn/vzzT+75IpEIu3fvhkgkQmhoKF599VW8/vrrmD9/PlfGz88Pe/bsQUxMDNq2bYvly5dj3bp1tOSeEELqoMTSTRdHdmiMA9G90D/YA//8X0/sn9EL7X1dAAB5FcwhyintPXq1my8m9PDTW2brqQfcY1OmyzCWvhVemvsiVcWs38tymFEPkXGMHjJLTEzkhqP++OMPDB06FIsWLcK5c+cwePBgo+61fv36Cq9bW1tj9erVWL16dbllmjRpojMkpi0sLAznz583qm6EEELMp0ShhJVIyO0xFNHKEy08VElJg0pXX11JVg1x5VYwZFZQ2ntkKyn7evtocBAW7r3GHWcVFHGP1b1OtcHRWqxzzpRpSSgth3GMbi2JRIL8fNUHNjY2FgMGDAAAuLq60n49hBBCjPbvrcdoPvcfTNh4Ck/zVMGKi61Ep5y9VBXkVDSHKL9Id/7MG72a4aVOZSuF/zz3CADw+YgQuNjpvo65SK10v4KrEw8VFPF7zjSDQlI5owOi5557DjNnzsSCBQtw6tQpREZGAgBu3ryps3s1IYSQ+oUxhsX/XEPTD/Zgwe6rBg1J/fBvIhgDDt94zPUQOdno9p6oe1TyixTlLlFXBwW2Ev5w0Tt9AnTK1sbeQ5oEAgFe7OgNB2lZPZTViIiO3HzMO34ttEmV71UfGR0QffPNN7CyssLvv/+ONWvWoHFjVWbgf/75BwMHDjR5BQkhhFiOSZvP4PsjdwEA648l4uz9yhfb+LrqboGiNyDSOPfrqSSkyXR3s84vJyDS1xujb8jK3Ja92BaXPotAvyDVBsLGhEMHrqRiyT/XoSwNOjXf4wsdvdG5qaspq/rMMzo89vX1xe7du3XOr1y50iQVIoSQ+iC7oBi58hI0roWUETXlx/h7OHQ9nXfu4dN8dPGr+Is5v0h3knRDB91UUCKhAI7WVpAVluCTXVfw9cFbODO3P/9e6iXnWsNFUj0TjGu7h0iTegW+MT1Eb/50FgAQ7OWI5wIagGmEU0PaNDJp/eqDKn0aFAoFdu7ciWvXVJPUWrVqhWHDhkEkohnthBBiiOdX/4e7GXl4oaM3pvRqhuTsQvRq3sCiUyl8suuKzrk0mbzS52nPCfpocJDOHj1qmhsMZuQW4ez9p/BrYAc7qQiXH8lwtHTYyM6AHiKHOtBDpKZO9FqVRW8L91zVaecSRe2tnrNURgdEt2/fxuDBg/Ho0SMEBgYCUOX+8vHxwZ49e6q0WzUhhNQn8hIF7pYuL//97EP8fvYhAGD71NBnbpijwIAM7tobEurrHVLr29Id20vbCwBGrTmut5yNQQFR3ekh4uLgKswh0hd0lihNs+t1fWL0HKLp06fD398fDx48wLlz53Du3DkkJSXBz88P06dPr4k6EkKIxZKXKLD9zAPefBdZgf5VUjfTcsxVLbPRzrSuz+3HubzjijLPh7c0bJm89gorfT1vdSkgqk4PkT6h/rWz2aQlM/rTcOTIEZw4cQKurmV/xbi5uWHJkiXo0aOHSStHCCGW7vsjd7Ei5iaaNbDDoffCAJSfnqK8QKkuKyxWYP+VVN7eQHMjg/D5HtWUiqKSinsqShRKZOYV8c41bWBbbvnyhtK0GTLyaFeHlqULqjCHqDzNGtjpnZROKmb0p0EqlSInR/evmNzcXEgktbefAyGE1EV7L6UAAO5m5OF2ei4uP8rGjN8S9JbNyi/Se74u2/BfIpbuu8EdCwXAuO5NkSsvwVextyCvJCDS3HV66QttoFQyuDuUn2jVysCAyBDa2eZrk8CEPUT2dajny5IYPWQ2ZMgQvPnmmzh58iQYY2CM4cSJE5g6dSqGDRtWE3UkhBCLlaoxVPba+pPYejqJO5aIhAj0cEDX0lVYTy0sICosVmBV7C3euVEdvCEWCbk8WvLiigOiHLmqt0xiJcToTj54uYtvheUNydreL8gdHUrTfFgKdWxmip2qDe1FI3xGB0Rff/01/P39ERoaCmtra1hbW6NHjx4ICAjAqlWraqKOhBBisYQaYzcp2YU4cTeTO+7QxBn7o3thWDsvAMDTfNNkOzeHJ7lytPx4H68H6MPBLbH0hTYAyiYxVzSHqEShxIytCQDA25ywIpX1EIUFNsS6cZ0tLihQf04MjYeUFXQliYWUsqMqjO5Xc3Z2xq5du3Dr1i1cv34dABAUFISAAN1dQAkhpD5jjHHzhXxcbfAgs4B33a+BHYCyNBUxV9PwKKvAIvYm0gzsAOC7VztiYIgndyy1UvUQPc6RgzGmd1Jz+wUxyClUzT1yNHDOS2WBjqEJTSc/pz/xa21RN0+hAavyAKC4glVklhYM1hVVDiObN2+OoUOHYujQoRQMEUKIHrnyEi51RWgzN961wa09MSuiJQAgwN2eO79s33XzVbAaUrL5wZ32+7OTqgKTk4mZiPjqKGSF/N6vohIlFwwBwJhKhsrUxKKKv+wrmkz8waCW8Gtgh/g5fTB3SLBBr2cuSU9UKUuWx9w0qHxuYfkT8K0qaSOin0E9RDNnzjT4hitWrKhyZQgh9VtiRh6+PngLHZu44NVulp+H6cf4+wBU82Pa+bhg2xnV/jmDQjzx7diOXLkWHg7cyqwbabl671XX3NKqp5MtPxDppLGf0s20XIQuOogr88vSO+04X7aX0NTe/nijVzODXldUyXDQ7fTy229qb39M7V0398o7Y0CKEwBYFXsL647drXBuFvUQVY1BAdH58+cNupkl77BKCKl9m/5LxI7zj7Dj/CO80NGbm5hrqc5pfMm18nLkHndsojvhN7j0ekk5SUvrEnmJAr+deQAA6BfkgfciWuiU8XLirxTLK1Lgdnou1xu2+2IKd+29AbrPL09lc4i0e6KeNStjK+9BMuVKvPrEoIDo8OHDNV0PQghBnkZOq6z8Yng6WVZA9DSvCI+yChDS2AmXHmbjYGler69fboc23k6YGxmEjNwijOmqOzwkLl09VWKqnflq0Jl7ZYHeipfa6k2SKhAI8NHgICzce40712/FERyZFYYmbnaQlQ75LB7Z2qCVY2qVDQfNG9bK4Hs9q6xoUnWVGNxqCoUCFy9eREFBgc61goICXLx4EUraKpwQUg0FGgGR9mZ9lmDyj2cw5H/HsPP8I/x14RF33l4qhkAgwOSezfDBoJY6uygDZX/VF9fhHqKfT9zHqthbyCnthXGzk1SYMf4VPYGfumcop3SyebPSieWm8qylPqmK7gFulRciOgwOiH766SdMnDhR7+aLYrEYEydOxJYtW0xaOUJI/ZJfVDZR1FL25EnPKcSTXDmKFUqcLR0ie/+Pi/jh30SuTIcmzpXeh+shqqNJORljmLvzMlbG3sTVZBmAsmG+8ugbulH/G6tX3xm6ukytuKTi9hEb0dtkaSpaaq/p1a6WP/+uNhj8yVm/fj3ee+89vRntraysMHv2bKxdu9aklSOE1C+ZGvvwaGdAr4vkJQp0XXQQHT+P5YIh1fmyXp5TH/bV2yOkTT0UVFeTcmomac0sDVYrS32hLzgRCYVgjHFzfYxNMVHRcvNnnebwY0Xq0g7clsTgfYhu3LiBbt26lXu9c+fOuHbNsH8sQgjRdjs9FxceZHHH+UWG7cdSm1R77Kgev7z2hM71iT384O5YfhoKTep5H8V1tIdIM8WGeoWZrbTiOV76VjvJSxQoLFZy79PYHqLWjZ3Q3N0ePq62OFQ6R2tiDz9kFxSjf7BhiV8t1fpjiZUXIlVmcECUl5cHmUxW7vWcnBzk5+ebpFKEkPpn/5VU3nFeUd3vIdIMEvRp4lZ+klJt6v116uoqs4V7rnKPTyaqNmW0lRg/6b2gSMENl4mEAtgZeQ+xSIj9M3pBIAD+PPcIlx5l46PIIFpqTqrN4CGz5s2b4/jx4+VeP3bsGJo3b26SShFC6p9HWfwFG6cSM8spWXfkVLLE25idSNQrrYrr4CqzYoUSOxOSdc6/1MmwzRQ1/Rh/Hz/G3wMAOFpbVWm7FqFQAIFAgFEdvTFvWCsKhgC42FJ2++oyOCAaM2YM5s6di4sXL+pcu3DhAj755BOMGTPGpJUjhNQf6l4DtV0JySZJdFlTCosVuJuRxztnL7XCiNK8ZMYS1+FVZn+cfahzzkooQGtvpyrdb8spVYJbY4fLCF8Deyl+mtQFf7wVCm8Xw3sjiX4GB0TR0dFo3bo1OnbsiEGDBiE6OhrR0dEYNGgQOnXqhJCQEERHR9dkXQkhz7CD19IAAK9opHCoq/NpAGD6r+cx+3f+H4i58hJ8FFmWEsKYjOvqHiLGgLP3M3lJURVKhlfWnsDMbQnVq3QV7Tj/SOecsfslRYX7Q1L6HrPyqzahmvBJrYTo2bwhOjZxxdzIIADA22F1cyduS2BwQCQWi3HgwAEsXLgQKSkpWLt2Lb7//nukpKRg4cKFOHDgAMRi+nATQox3LukpCktTEfRq3oA7Xxd7SwBVHq4DV9P0XmvoIMW/s8Px6xvdENLY8B4UzRxdo9bEY/qvZRkCHmTmI/7uE/x57hEycuVVr7gRsguKcfpeJooVSm7OUHWEB7pj04TOvHMV7WFEKiexKvsK79rMDVfnR2D2wJa1WCPLZlS2e7FYjNmzZ2P27Nk1VR9CSD00fsMp7nHvwIbc47oYECmVDKO/j9d7bVofVaJrH1db+LgaN4ShvUR9/5WygEupMXR493EeGthLjbp3Vby89gSupcjwareyHjuJlRBFpVsKWIsN+3t6/4xeSMzIQ6emrriSnM275mhj1FfQM00gAIwdIdaew2bI9g6kfM/uDlaEEIsh08jcbSuxgnqObFFJ3QuI1v57Fwka2wNIrYQYEOwBH1cbjO/etMr3rSj/VJFGYKhvIrfChBOxn+TK0WPJIVxLUa0q3nb6IVe/yNaNuHJ/vNXdoPsFejpgYIgnAMDZlr+xr42YvsDVhBqTyw3dgDEj1zI2L7UU9GkkhNSqG6k53ONVL7cDoOotkZcoeYGAtiM3HyNdVojn2zc2KheWIdJzCvHf7QwMb9tYZ5O7Jf9c5x5/O7YDejZvAAcTDP1UtFJKc3fmnEL+dgTr/r2Lr2Jv4dc3ulV5krOmRXuv81b8qf8NnG0l+HxECJxtxWjkZI1WXsa/lrPWnCHNIZ/6TigA1LPGlIxBCP7n4X8Hb+k8x8/EaU/qOwqICCG1plihxMhv/+OO1XNuJFaqgEh7UnV2fjGe5hdBbCXEuNJhtpzCEkx8zs9kdVIqGbosPAgA+PDPyzj/SX9Yi1V75Wivehus0WNSXQKBAGKRQO9E8iJF2QTr2GtpGNG+MXf8+R7Vhrif/HUZO97uUa06PM0rwh/ndFeUAYBfA1vYSa3w6dCqJ0/V3rdIUkmi1vpEAAEA1b+9gjGdL+ff9fy7DAj2qPmK1SMUnhNCas3T/CJehnsHa9XXgHo1kvaQWZdFsQj7Mg7nNNJkmHq/ogUaGxAWFCvw5f4b3HFuDacTKS9LeZFGD5E6Oaq26ubwypWXIHx5XLnXm7hVvzdCe88h6iEqo9k0+rKTKPVMMKrKHk6kfLX6aVy8eDE6d+4MBwcHuLu7Y8SIEbhxo+yXz7179yAQCPT+bN++nSun7/rWrVt5rxUXF4cOHTpAKpUiICAAmzZtMtfbJISUQzujvXoZtvqLUntStTpH2LFbGdw5U666yiksxsb/7vHO/XjiPvdYc65TY2cbk72umpVWj0lWac4wzaFD1eRb3S9HaTWDi32XU7nl8ACwM6oHercom+BelV2p9dHcp+lZTsRqLM3YRqHn31e9CrO855DqM2jIbObMmQbfcMWKFQaXPXLkCKKiotC5c2eUlJTgww8/xIABA3D16lXY2dnBx8cHKSn8v4bWrl2LZcuWYdCgQbzzGzduxMCBA7ljZ2dn7nFiYiIiIyMxdepU/PLLLzh48CAmT56MRo0aISIiwuD6EkJMSx0QSayEiInuBamV6ktX/UWZnFXADaNpBgGaAYIpA6Jb6bnc4zd6+uGHfxNRVKLE6XuZ6NzUFTKNzSM3T+xistdV054f9N72C1g3rjOKNXrKGFPtASTWCp7Uw3pVpQ6+AODjIcFo5+MMd4ey1WzVvb9aQ417Ug9RGYHGnCF9vUGFxbppYmiDbtMyKCA6f/487/jcuXMoKSlBYGAgAODmzZsQiUTo2LGjUS++b98+3vGmTZvg7u6Os2fPolevXhCJRPD09OSV2bFjB0aPHg17e3veeWdnZ52yat999x38/PywfPlyAEBQUBCOHTuGlStXUkBESC16mqcKMNp6O/GGZNSrplbH3cGAVqr/15oZ5DU3LTTlSht1wCO1EuKDQUH44V9VMs0VB27i1ze74avYmwCAZg3sEOBuX+59TOVmaRJV7cnlRSVKiEVCnL1fNlxY3R4i9XDgmK6+mFQ6J6thDQRENhr3oR6iMkLekJmhARFFRKZk0Kfx8OHD3M/QoUPRu3dvPHz4EOfOncO5c+fw4MEDhIeHIzIyslqVyc5W7VHh6uqq9/rZs2eRkJCASZMm6VyLiopCgwYN0KVLF2zYsIH312R8fDz69evHKx8REYH4eP17iRBCzOPwDVW2cnsp/2+zHgFuAACpxhdmgcZcI7nG8EGuvATz/rpikjQf6iGxDr4uvFVf8Xef4HzSUyRnFQIAHMy0w3JqdiGUSqYzl0p9fPpe2VwqXyP3PdL2VaxqFZPm8n9+D5Fpghcbjb1yJBQQcTSDG+1tFIoVZQsM+rR0587THCLTMvrTuHz5cixevBguLmVb0ru4uODzzz/nemCqQqlUYsaMGejRowdCQkL0llm/fj2CgoLQvTt//4v58+dj27ZtiImJwahRo/D222/jf//7H3c9NTUVHh782fgeHh6QyWQoKOAnlAQAuVwOmUzG+yGEmFZhsQK/l+bI0k7s2qel6v+r5lyK7WcfcI9lWnvxbDp+Dw+f6v5fNtad0iEz9YaBIzuUrea6lZbLve4nQ4Kq/VqGKFIokZlfpDPXSt1jdOlR2UaHFe1jVBnNL+BD19O5x+6O1txjGxP1EPm4ls29uq6x5QIpoz2HSLN3dPWYDtxjGjIzLaMDIplMhsePH+ucf/z4MXJyqv7hjoqKwuXLl3UmQ6sVFBRgy5YtenuHPv74Y/To0QPt27fH+++/j9mzZ2PZsmVVrsvixYvh5OTE/fj4+FT5XoQQ/WZsTeAez+zfgndN/eWumS/rwsOyL/+n+bqbE+YVVX8F2LkkVY+LOgfZnEFlgU9BsYJLQGuOlBMN7FWbGO69lIL5u6/yriVl5gMA9misODM2t5haSnYB/r5Qlsl+XGhT7rGHY1kPkakCokEhZVsVNHGjhKRqMweU/R/Q7uws0Rgy1Zw7JgBFRKZkdED0/PPPY8KECfjzzz/x8OFDPHz4EH/88QcmTZqEkSNHVqkS77zzDnbv3o3Dhw/D29tbb5nff/8d+fn5eP311yu9X9euXfHw4UPI5arJlp6enkhL4+cdSktLg6OjI2xsdFeKzJkzB9nZ2dzPgwcPdMoQQqrn3hNVpvhBIZ4YGMLfz0c9XKVUMhQWK/DrqSTel3+6TDV0NaytF9zsVIGDvlU4FVGUDkV9vvsqBn51FFeTZfi3dPWaeoPDhg5SjOqg+p2UX6Tg5hjVdFLSke0bc+k5Ptl1Ref6i9/FY2XMTd65qgZEo749jhm/JXDH43s05R638XbGoBBPhDZzQ7jGUE11iIQCHIjuheh+LUy6f5Sl09zlXHfIrOxYcyjXTmqaIJWoGL0x43fffYf33nsPY8aMQXGx6peDlZUVJk2aZHSvDGMM06ZNw44dOxAXFwc/v/L/c6xfvx7Dhg1Dw4YNyy2jlpCQABcXF0ilql8ooaGh2Lt3L69MTEwMQkND9T5fKpVyzyWE1IynpauaosIDdK6pf+krlAw/HL2L5Vpf/uq5Po2crOFiJ8GTvCLeHKPKXHqYjbHrTvCW0Q/++l/ucUtPR+6xjUT1d+PxOxlQf0851nBAZCUSVDrh+L/bGbzjEj0bOhoiObuQe+ztYsN7XbFIiDWvGrdYxhAtPBzQwsPB5Pe1ZAKBABKREEUKJbT/JdUBkkio2lZmzqCWiL2WhjFdfXVvRKrM6IDI1tYW3377LZYtW4Y7d+4AAPz9/WFnZ/ymXVFRUdiyZQt27doFBwcHpKamAgCcnJx4PTe3b9/G0aNHdYIaAPj777+RlpaGbt26wdraGjExMVi0aBHee+89rszUqVPxzTffYPbs2Zg4cSIOHTqEbdu2Yc+ePUbXmRBSfYwxboWZi51E57pmQHQjrfyheC9nG24oR98qnPJ8eeAGLxjS1KWpK1w16qSewP2vxt5Hplpxpa2NtxMuPszGi518sLB0B+ryWIkEEArABWkKfbv5VSJPa6NJU+01RKpGPUdae4FASem/rXooeUpvf0zp7W/WutUHVU7dkZKSgpSUFPTq1Qs2NjZgjBk9433NmjUAgLCwMN75jRs3Yvz48dzxhg0b4O3tjQEDBujcQywWY/Xq1YiOjgZjDAEBAVixYgXeeOMNroyfnx/27NmD6OhorFq1Ct7e3li3bh0tuSekljzOlaNIoYRAUDZXRpN6xY2CsQp7fl7q7MPlFtuZ8MjgYZ1bFQRZN9P513YmPDLonqawfWoo0rLl8HWz1dlnCFCt9FIPDRYUKaA5slKVITPtPZxsKFt6rSoLiPjn1T1E1Zk4Typn9ByiJ0+eoG/fvmjRogUGDx7MbZw4adIkvPvuu0bdizGm90czGAKARYsWISkpCUI929oPHDgQ58+fR05ODnJzc5GQkIApU6bolA0LC8P58+chl8tx584dndcghJjPg0zVijAvJxtuM0ZN6h2blUqG/HICIl9XW1iLRSgo7RnalZCsU6aoRImN/yXissZqLEB3A0Tea2t96bw/sGUF78S0pFYi+JZONNZO4/Hdqx3h37Bs76Mcrd6dqgyZJWbk8Y5ta6jnixhGHey+vPYEby+iEo0hM1JzjA6IoqOjIRaLkZSUBFvbshUCL730ks5Gi4QQoo+6Z8LdUf9cPXUPUYmSIb+c1WN2pXsXzYpQbRCrb0+bFTE38dnfVzHnz0vcOaWSIVfrnqM7lS3m0A7QntdIpOpkI8b/Xmmv/02ZmPZWBA0dpLDSeI/aQV2BEUOGgOoP0jd/PMs751UD6UiI8R5lFeCxRu+dOtiljSxrltGte+DAAXzxxRc6q8GaN2+O+/fvl/MsQggpo04T4WKrO1wGlP0lnJSZX24PkX3pChv1RnX6JjqfTHwCgL9fT25RCTckcW3+QNxbEomwwLKhtpUvtePdw0Fjif3Pk7piaFsvmIN6ab2arUSENqVpTAAgVysg+utCslGbU6bKCnk7YA8K8cT7gwKrWFtiaow3HKr6d6Ieoppl9IBxXl4er2dILTMzk1ZmEULKtf3MAzT3cEBbbydkqidUlxMQaQ5bqfOLhQc2hEgoQOw11caB6h4i9V/NRSW6gZO1Rm+PQskgEgq4nhWJSMjtvqz5NdPFj79TvsRKiIhWHnicI0dQo9pbGWUrEWHWwEDcSs/BibuZenuEkrMLDU46mydXPd/JRowLn+rOzyS1i2msNaM5ROZhdEDUs2dP/Pjjj1iwYAEA1VJBpVKJpUuXIjw83OQVJIRYvrP3MzHr94sAVF/A6g0OXWz1L1/Xl6NpzuAgZOTKuYBIvTmiOodXsZ45NGIrzSGmYjjbSpBTutu0g7UVtxCkUSVBxPevdarwujnYSERwtBZj0fOt0Wf5Ee68nUQEqViEzLwi5MsN35xSvcLMjlaW1UlMz4R5kZ6J9sR0jA6Ili5dir59++LMmTMoKirC7NmzceXKFWRmZuK///6riToSQizcrbSyLPLZGhnj9S25B8omVWuyEYuguUHLnMGqyc7qHqJihe6y8wKNuULZBeqASHXOwbrs1187H2fMGxrMTWiui2xLV4BJtSY+i62E3Io07SSwFVHv7G0rpZVldZFmeK/uIRLrWVhETMfo/wkhISG4efMmvvnmGzg4OCA3NxcjR45EVFQUGjVqVPkNCCH1zgcak5o1lTdkpq+HyFYi4s0TauSk6tVRBwMlSgalkkGoMaygOfH40qNsCAUC3CjNn2WrtcR8fI+6vWuyer8l7az2Hg7WXHCjnQRWnwsPspAnL+H2YaIeorpJcz6YOtinOUQ1y+iAKCkpCT4+Pvjoo4/0XvP1pZ0zCSFlNL+kB4V4olNTVywozc3V3MNe73P0/eK3k1ohpLET5kYGoalb2UawmsNixUolpEIRGGNQKBlup5f1TL2z5TzvfnI9c47qKomVkGsT7YDIr4Edbpbuq6Rv2FDThQdZGL6a35OvHRiSukFzyExBy+7Nwuj/CX5+fkhJSYG7O38DtCdPnsDPzw8KheX8kiGE1Lz3tl/gHq8Y3Q5SKyHaejvBWixCKy9Hvc/R/r0vEJQFApN7NuNd01xufystF9kFxZj263kUFCkq3Kwwso15VouZglTjPWpvC2Antapw2FCTOn+cJtqdum7SDIh2nFNtDno9teoJ1EnljA6IytuROjc3F9bW1iapFCHk2aBUMvylkUndWiyEQCBAp6auFTxLd9dlDwfrcnfC19ybZcj/jhlct4kaSUzrOs1NGMUiAQSCsi9Ma7EQYqvSOUSVDJnp2/W7ahnQSE3TXGX253nz7ZZenxkcEM2cOROAalXZxx9/zFt6r1AocPLkSbRr187kFSSEWJ70nEIcvZmBSw+zeOcNTe+jvetyC8/yl7uLhPycXobo09IdzuXMX6or3h/YEl/su65zXiAQ8HoPrMUiLiicsOk0xnT1xaLnW+u9p749nQyZd0TMT/Pf+PXQJvgx/j56BLjVXoXqAYMDovPnVePvjDFcunQJEknZLxOJRIK2bdvyEqoSQuqvd7dd4CVDBYDZAw3f9M/Tkd/brN6EsTwioQDKcubPxM7sjX4rjvDOWUIQ8FaYP/ZcSsblR7IKy1mLhbxhwy0nk8oNiPTtXWQJbVEfaX6a1YsMOvi61E5l6gmDA6LDhw8DACZMmIBVq1bB0VH/2D8hhGgHQ1vf7IZuzQz/69bJVoyBrTyx70oqgMqzywsgQHmDPx560oMUGpnmorb0belRaUBkIxZBYmXYcmx9aVAalpM+hdQuzVVm6knVxiZQJ8YxelODjRs38oIhmUyGnTt34vp13a5dQkj91KyhHe/Yy8n4HFmaE64rnfhbzveEjVjES72h9rQ0dUhd91aYP6LC/bHj7e68858Na8U9thaLdLKjl0e9O7Vat2aumNm/RbXrSUxPoWRYffg2Tt/LhLL0H5gWmdUsoydVjx49Gr169cI777yDgoICdOrUCffu3QNjDFu3bsWoUaNqop6EEAuRJy/B3cdlq5mshAJ4uxgfEGnuymtTxSzsfYJUq2E3jO+Ef29lIPZaGh5kFqBHQIMq3c/crMUizIpoqXP+xU7eWHv0Lp7kydGhiQvspFY4dlvVK1fR0uwsjUBwVkQgosIDTF9pYhK/n3uI74/c5Z0TUQ9RjTI6IDp69Ci3B9GOHTvAGENWVhY2b96Mzz//nAIiQuq5+0/KkpKO794UYYENeZslGkrzl79NJXvllHd3dS6zPi090KelB94K88dfCcl4saOP0fWpS2wlVjgyKwwlSgZrsQgdfF0Q0coTHRbEQKFng0q1p/mqXcKXvdAGL3ay7DZ41t1J190ioSr/j4jhjB4yy87Ohqurasnsvn37MGrUKNja2iIyMhK3bt0yeQUJIZZFVporzNPRGvOGteJlkjdGeo6cexzoUbWkqlIx/1ecu4M1JvdsBqdycqhZEiuRkDe3SnMeUXkpPB6Xtml5O4STukNfZxB1ENUsowMiHx8fxMfHIy8vD/v27cOAAaosyU+fPqV9iAghXK4yfZOZjaG5+imyTcVpgcr7onCysfzAx1CaO1jLi3UDosJiBW6U7mjdslHVAkxiPvo+0vpS2hDTMTogmjFjBsaOHQtvb294eXkhLCwMgGoorXVr/Us9CSH1w9n7TzHlp7MAYPDKp/JUtuuyJkE5g2ZV7VmyRFZCARcYXk/VXZmWkSuHQskgEACNnY2f00VqH42Y1Syj5xC9/fbb6NKlCx48eID+/ftDWJp9t1mzZvj8889NXkFCSN3FGMOnf11BS09HjOnqi3EbTnHX2vk4V+vexmRu1/eH80udfBDRyrNadbAkmhs2/nbmAbpqbHPwKKsAz32h2jqFMVq+bamoh6hmVSmrX6dOndCpUyfeucjISJNUiBBiGQqLFXjui0PIyFWtXGrj7YTc0hQTz7dvjDmDgqp1/8oSlWrS9zXxxQttqvX6lmhUB2/8ce6hzk7fZ+8/raUakarSF/tQQFSzjA6IJk6cWOH1DRs2VLkyhBDLcPBaGj77+yoXDAH8PGKLR7au9oqYIiOy0T/XvAH2X0mr1us9C9r5OuOPcw91dp9+rDFBnVgGfcPANGRWs4wOiJ4+5f+lUVxcjMuXLyMrKwt9+vQxWcUIIXXPleRsbDv9AJvj75dbxkooqHRnaUO0buxkcJDzxag2GNz6MRRKhpnbLlT7tS2VtDSFh/ZwY0ZuWUAU1IiyDFgqWnZfs4wOiHbs2KFzTqlU4q233oK/v79JKkUIqZuif0vAzbRc3rnf3uyGl9ae4I4/HhJsktea3LMZxCKhQcv2nW0lGN6uMQDVknL/hvYmqYOlUU9kL6+HKLJ1IywZRYtfLIH+ZfcUENWk6i0DUd9EKMTMmTOxcuVKU9yOEFJHaQdDHw5uia7N3NC5aVnSyXHdm5rktazFIkzp7Y/ACjLd6xPe0h2+brYmqYOlqSwg6h3YUG8qE1L36J9DZP561CcmCYgA4M6dOygp0U0cSAixfJl5Rfj5hO4w2Zu9VL3Ck3s2AwCEBzY0a70InzrrvbycIbOGDpTI1ZJR6o6aZfSQ2cyZM3nHjDGkpKRgz549GDdunMkqRgipfQ+f5mPR3mvYeylV51oXP1fu8YBgD+yf0QtN6mnPTF1RWQ9RQ3sKiCyF/knVFBDVJKMDovPnz/OOhUIhGjZsiOXLl1e6Ao0QYlm+jbvDC4YkIiGOzA7DwWvpeL59Y+68QCAwemiLmJ46ILqWUrYxo1LJ8CRPtRqQeogsCKXuMDujA6LDhw/XRD0IIXWQ9nLt0x/1g5OtGK92a1JLNSIV0dyBOjW7EJ5O1niaX8TtUO1qRznMLBn1ENUsk80hIoQ8e5KzCgAALT0dcHZuv2ciKeqzzMe1bMgyr0g1p/NKsqq3yMVWArGIfuVbCis9M6iF9M9XowzqIerQoQMOHjwIFxcXtG/fvsKlf/b29mjVqhU+/PBD+Pj4mKyihBDzyswr4r5Mf5zUBW40/8QiNHSQ4nGOHIXFqo0tlx+4AQCwlVR/byhiPrFXdffgoh6immVQQDR8+HBIpapfhiNGjKiwrFwux8GDB/Hqq6/iyJEj1a4gIaR27LusmjvU1M0W7g7WtVwbYihrsaoboVAr432/II/aqA6porwi3Z3aKSCqWQYFRJ9++qnex+W5c+cOWrVqVWm5xYsX488//8T169dhY2OD7t2744svvkBgYCBXJiwsTCewmjJlCr777jvuOCkpCW+99RYOHz4Me3t7jBs3DosXL4aVVdnbi4uLw8yZM3HlyhX4+Phg7ty5GD9+fKV1JKQ+UioZPtxxCQDQysuplmtDjGFtpeoJkpf2EJUoVXnNwltWvsElqdsoIKpZNTIi6e/vj7S0yrfcP3LkCKKionDixAnExMSguLgYAwYMQF5eHq/cG2+8gZSUFO5n6dKl3DWFQoHIyEgUFRXh+PHj2Lx5MzZt2oRPPvmEK5OYmIjIyEiEh4cjISEBM2bMwOTJk7F//37TvWlCngFKJcOuhEc4cLVsZdnknn61WCNiLHXalMISBTJy5dywp745KcSy0D9hzTKoh6iyeUOazp07BwBwcqr8r8p9+/bxjjdt2gR3d3ecPXsWvXr14s7b2trC09NT7z0OHDiAq1evIjY2Fh4eHmjXrh0WLFiA999/H/PmzYNEIsF3330HPz8/LF++HAAQFBSEY8eOYeXKlYiIiDDofRFSHyzaew3rjiVyx228ndDe16WCZ5C6Rj1kJi9WYphGwl0KiCwfpe6oWQb1EI0YMQLDhw/H8OHDERERgTt37kAqlSIsLAxhYWGwtrbGnTt3qh1cZGdnAwBcXV1553/55Rc0aNAAISEhmDNnDvLz87lr8fHxaN26NTw8ysbHIyIiIJPJcOXKFa5Mv379ePeMiIhAfHy83nrI5XLIZDLeDyHPMsYYui6K5QVDANC7Be08bWk0e4iSswu581Yi+jK1dBTT1iyj5xBNnjwZ06dPx4IFC3TKPHjwoMoVUSqVmDFjBnr06IGQkBDu/JgxY9CkSRN4eXnh4sWLeP/993Hjxg38+eefAIDU1FReMASAO05NTa2wjEwmQ0FBAWxsbHjXFi9ejM8++6zK74UQS3MlWYY0mVznfAsP2mzR0khL5xBl5hXzzlvRmm2LJ6KIqEYZvTHj9u3bcebMGZ3zr776Kjp16oQNGzZUqSJRUVG4fPkyjh07xjv/5ptvco9bt26NRo0aoW/fvrhz5w78/f2r9FqVmTNnDi9FiUwmoy0EyDPtqsbOxpfmDcCN1BzcTs/FwBD9Q9Wk7lIPmS3YfZV3nr5MLR/9G9YsowMiGxsb/Pfff2jevDnv/H///Qdr66otzX3nnXewe/duHD16FN7e3hWW7dq1KwDg9u3b8Pf3h6enJ06dOsUro57QrZ535OnpqTPJOy0tDY6Ojjq9QwAglUq5bQYIsVSHr6dDaiXE9dQczN99FQNbeWLNqx148xCy84tx6VE27jxWZbF/saM3HKzF6NTUFZ2aupZ3a1KHqYfMtNGmjJavM/2frFFGB0QzZszAW2+9hXPnzqFLly4AgJMnT2LDhg34+OOPjboXYwzTpk3Djh07EBcXBz+/ylezJCQkAAAaNWoEAAgNDcXChQuRnp4Od3fVstKYmBg4OjoiODiYK7N3717efWJiYhAaGmpUfQmxBH9dSMZ72y6gSCvj+b4rqYi/8wTdAxpw51754QSvd8je2uhfCaSOkVrpD3yod6Hue6WLD349pX/qyYsdvWEnpf+fNcno1v3ggw/QrFkzrFq1Cj///DMA1aqtjRs3YvTo0UbdKyoqClu2bMGuXbvg4ODAzflxcnKCjY0N7ty5gy1btmDw4MFwc3PDxYsXER0djV69eqFNmzYAgAEDBiA4OBivvfYali5ditTUVMydOxdRUVFcL8/UqVPxzTffYPbs2Zg4cSIOHTqEbdu2Yc+ePca+fULqvG8P39YJhtTGrDuJZg3s8M+MnmCMP1QGAA70C9fild9DRAFRXbfo+dblBkSUmLfmVem33+jRo/UGP5cvX+ZNiK7MmjVrAKg2X9S0ceNGjB8/HhKJBLGxsfjqq6+Ql5cHHx8fjBo1CnPnzuXKikQi7N69G2+99RZCQ0NhZ2eHcePGYf78+VwZPz8/7NmzB9HR0Vi1ahW8vb2xbt06WnJPnjmXH2XjemoOd+zpaI1UWSGauNni/hPV6sy7GXk4c+8pGuhJxeFgTbnKLJ16DpE26iGq+/Qtqw9wt4dfAzu8HR5QCzWqX6r952BOTg5+/fVXrFu3DmfPnoVCobvdeHkYYxVe9/HxMSj9R5MmTXSGxLSFhYXh/PnzBteNkLos9moafFxtEehZtgqsqESJV9aeAKDqDUj4ZADXxf5V7E18FXuLK5vwIAuejrpz/po2sKvhmpOapt6pWhvtYWOZxnTxxcTnaHNUc6hyQHT06FGsW7cOf/75J7y8vDBy5EisXr3alHUjhOhx8WEWJv+oWul5b0kkd/5RVgFy5KoM5/97pT1vvoF2Ys9l+2/wjhvYS/H1y+0Q6u9WU9UmZlLekJlSWfEfoKRuonl95mNUS6empmLTpk1Yv349ZDIZRo8eDblcjp07d3ITmAkhpldQpIBIKICSMew4/4g7f+dxLooVSrT0dMT10vlAgR4OGBjSiPd8G0n5/9Wj+7XA//VrXu51YlnKGzKzp/lhFsmugv+7xLQMbumhQ4fi6NGjiIyMxFdffYWBAwdCJBLxkqwSQkzvfNJTvLT2BMCAdj7OOHUvk7vWd7lqSPnM3H5IeJgFAOjsp5tqo6hE/yRrABjcmvYaepZItXqI1oztAIEAcLGT1FKNSHXQDuPmY3BA9M8//2D69Ol46623dPYgIoTUnMM3HnMBjWYwpKnT57Hc40ZOuntr9W7RAIuFAi7zudquqB5oTrtRP1O0h8z6BXvQHkQWjDLcm4/B/0uOHTuGnJwcdOzYEV27dsU333yDjIyMmqwbIQRAYkaeUeVdbHV7AgLcHXBpXgTGdPXlzs2KCERbH+fqVo/UMdZa+xCJ6AvVotHiQPMxOCDq1q0bfvjhB6SkpGDKlCnYunUrvLy8oFQqERMTg5ycnMpvQggxSmp2IQ5cUe3P1dTNFlN6NcPnI0Jwe+EgfDQ4SO9z2ng76T1vIxFhYCvV8JhYJEBYICVufRZpD5kJ6RvVolE8az5G96Pa2dlh4sSJOHbsGC5duoR3330XS5Ysgbu7O4YNG1YTdSSkXjp7/yme++IQ5KXDZfOHh2DO4CC82q0JrERC9Av20HnOvKHBCGmsPyACgF4tGiJ2Zm8cejcMrbzKL0csF02efrbQdgnmU62B5cDAQCxduhQPHz7Er7/+aqo6EVLvMcZwMvEJb85PYxf+3CC/Bnb4d3Y4jswK486F+jdAZQLc7eHjamuyupK6pR0Ngz5TaA6R+ZjkTwmRSIQRI0ZgxIgRprgdIfWOQsnw84n72Bx/D49z5HC0FsPDUbWTdM/mDfBiJx/4N7TXeZ46sJnSuxme5hWhhYduGVK/iIQCBHo44EYaTWN4FtCIp/lQ3yohJnA7PRcTN53GW2H+eKWLb+VP0LL7YjI+/esKd5xTWIJHWQUAgCm9/PFc84p7fuYM0j+fiNRPNG/o2UE9ROZDAREhJrDkn+tIyszHnD8v4ZUuvpCXKFBYpISTbcW5wXZfTMY7W8pPKSOxEurdV4iQilA89OygeMh8aHMKQkxAqZGXb9/lFIz94SS6LzmIpNKEquVZvPc677hvS3fesY+LDaTl5KYipDyUyPXZIQD9W5oLBUSEmIC7Q1nm+K9ib+HM/afIK1Kg17LDyCksLvd5ydkF3ONXuvhi3bhOmKGRRkNfRnpCKkMrkyzXT5O68I4ptjUfGjIjpJqKFUpsPf2AO76eyp/M+u+tDPi62sLdQQp3rQzzEpEQ8hIlYqJ7cTtGa+40/O6AwBqsOXlW0Zeo5erZvCFc7STIzCsCQPPBzIkCIkKqISW7AKGLD1VY5t9bGfj1VBIA4NRHfeHuoAqKCooU3B5DjZzLltQXa+QdK2+TRUIqQrtTWzbNIU+Kh8yHhswIqYZdCcmVllEHQwDQZeFBzPwtAanZhTh7/ykA1a7RdpKyXqFUWSH3WDsvFSGGoF4Fy6YZ0NLwp/lQDxEhVZSZV4Ql/6gmRQsEwFcvtUMrL0ccup6O4e0a49vDt7E5/r7O8/48/wgZeUU4evMxAMBKKOT90gv0pGSrpHooHrJsmj1E9E9pPhQQEVJFHRbEcI/nRgZjeLvGAFSJVAGgsFip93kAuGAIAKy0vr1e6uwDhZKhZ3PKNUaqpoOvC07czYSn1pw1YhmsRJpDZhQSmQsFRIRUAdNYZt/Y2QYvdfbRKeNow//vtXvac3CyEaPn0sO88zP6t+AdS61EmNDDz4S1JfXN1DB/uNhK0D3ArbarQqpAc8iMAiLzoTlEhFTB41w59/jwe2F6E2q+E94cAe6qVBpN3Gy5HGKudhJeuUnPUfBDTMvRWow3ejWjBL4WijdkRvGQ2VAPESFVoN5wsbGzDSRW+v+ucLIVI3ZmbyiUDAKUTXRtYF+2pHbVy+3MUV1CiAXhrzKjiMhcqIeIkCq4XxoQNXGrPGu8SCjgrfrp2ESViqORkzUGt25UMxUkhFgsXkBE39JmQz1EhBiJMYYP/rwIAPB1rTwg0rZwRGtM7OEHL2cbiEX0244QwmfFW2VGPUTmQgERIUZ6+LQAxQrVpOo23s5GP18oFHC7UhNCiDYhbcxYK+jPU0KMdO9JHvdY3+oyQgipDl4PEc0hMhvqISLEAHN3XkKaTI6wwIb4aMdlAEC/IA/KKk4IMTlK3VE7KCAipBJP84rw8wlV+o2Yq2nceUMmVBNCiLHeGxCIF76LB0CrzMyJhswIqYTmnkOaRpTuTE0IIaakuZUHxUPmQwERIVqyC4px4EoqMkoDoYwc3YDo39nhaE2Z6AkhNcBKY6099RCZDw2ZkXorPacQ/93OQFc/NyiUDD6lS+hfWHMct9Jzy31eKy9HeLvYmKuahJB6RmJFO1XXhlrtIVq8eDE6d+4MBwcHuLu7Y8SIEbhx4wZ3PTMzE9OmTUNgYCBsbGzg6+uL6dOnIzs7m3cfgUCg87N161Zembi4OHTo0AFSqRQBAQHYtGmTOd4iqcNeXnsC0b9dQPclh9Bz6WE0m7MHU346U24wJLUSYtXL7fDzpK608oMQUmM09yejHiLzqdWA6MiRI4iKisKJEycQExOD4uJiDBgwAHl5qmXNycnJSE5OxpdffonLly9j06ZN2LdvHyZNmqRzr40bNyIlJYX7GTFiBHctMTERkZGRCA8PR0JCAmbMmIHJkydj//795nqrpI7JyJXj7uM83jklA/ZfSSvnGUBbH2cMb9cYLlq5yAghxJSsKCCqFbU6ZLZv3z7e8aZNm+Du7o6zZ8+iV69eCAkJwR9//MFd9/f3x8KFC/Hqq6+ipKQEVlZl1Xd2doanp6fe1/nuu+/g5+eH5cuXAwCCgoJw7NgxrFy5EhERETXwzkhdt3Tf9Qqv923pjtVjO+C/2xmYtPkMmrrZ4otRbcxUO0JIfSYW0bL72lCnJlWrh8JcXV0rLOPo6MgLhgAgKioKDRo0QJcuXbBhwwYwxrhr8fHx6NevH698REQE4uPj9b6GXC6HTCbj/ZBny22tYbFhbb14xx5O1rAWi9A3yAP3lkQiblY4/BrYmbOKhJB6SqLRQ6RkFRQkJlVnJlUrlUrMmDEDPXr0QEhIiN4yGRkZWLBgAd58803e+fnz56NPnz6wtbXFgQMH8PbbbyM3NxfTp08HAKSmpsLDw4P3HA8PD8hkMhQUFMDGhj9BdvHixfjss89M+O5IXcIYw4OnBQCAdj7OWPh8CFp5OeHQ9XTkyksAAA3tpbVZRUJIPaY5ZFaiVNZiTeqXOhMQRUVF4fLlyzh27Jje6zKZDJGRkQgODsa8efN41z7++GPucfv27ZGXl4dly5ZxAZGx5syZg5kzZ/Je28eHUjQ8Kx4+LcDjHDkkIiG2vNEVthLVf4Ph7bzwy0nVBowNHSggIoTUDs3UHQrqIjKbOjFk9s4772D37t04fPgwvL29da7n5ORg4MCBcHBwwI4dOyAWiyu8X9euXfHw4UPI5ar9Yzw9PZGWxp8sm5aWBkdHR53eIQCQSqVwdHTk/ZBnR2ZeEQCggb2EC4YAILJ1I0ithHCQWqGrX/nDtoQQUpM0h8zojzPzqdUeIsYYpk2bhh07diAuLg5+fn46ZWQyGSIiIiCVSvHXX3/B2tq60vsmJCTAxcUFUqnqgxQaGoq9e/fyysTExCA0NNQ0b4RYlLzSYTE7Kf/j3z2gAS7OGwChQMBb9koIIeYkFApw6qO+UCgZ7482UrNqtaWjoqKwZcsW7Nq1Cw4ODkhNTQUAODk5wcbGBjKZDAMGDEB+fj5+/vln3gTnhg0bQiQS4e+//0ZaWhq6desGa2trxMTEYNGiRXjvvfe415k6dSq++eYbzJ49GxMnTsShQ4ewbds27Nmzp1beN6ldueUERAAgtRKZuzqEEKLD3aHyP/6JadVqQLRmzRoAQFhYGO/8xo0bMX78eJw7dw4nT54EAAQEBPDKJCYmomnTphCLxVi9ejWio6PBGENAQABWrFiBN954gyvr5+eHPXv2IDo6GqtWrYK3tzfWrVtHS+7rEaWS4b3tF5CUmY/u/m4AAHs9AREhhJD6ScA016cTvWQyGZycnLgl/8TynL6XiRe/42+zMLi1J74d27GWakQIIaSmGfP9TRMlSL3wya4rOud8XWlfIUIIISoUEJFn3tO8IlxL0d1csxlttEgIIaQUBUSk1h26noZWn+zDgJVHsPP8I6RmFwIAkp7k49D1tGrvw7H97AMAQAN7KVp6OnDn/RpSQEQIIUSFZpWSWrPj/ENE/3aBO76ZlosZvyXA19UWnwwJxuQfzwAAFj4fgrFdm1TpNe4/ycOivaq8ZfZSEaLCA/DFvuvo3NQV7X2cq/0eCCGEPBsoICJmU6JQ4sf4+7ASCdDS0xEf79Sd1wMASZn5XDAEAAevpWNs1yZYfuAGbqfn4psxHSAyMOPhu9vKAq5ATwcMbeuFoVp5ywghhBAKiIjZ9F4Wh0dZBeVet5OIkFek0DnPGANjDP87dBsA4P/hXgxv54XPR4TAwbr8Xctz5SU4c/8pd/zZMP058gghhBAKiEiNUyoZZm5LKDcYiu7XAm/2agZrsRAvfBePsxpBDAAUKZTcZopquxKSkS6To42PE8Z2aQJfN1ud+76xuayX6auX2sHTiTY6I4QQoh8FRKTGnbj7BDsTksu9/na4P5cqY+Xodvj55H0424rhYivBnD8v4b/bT7D9zEOd58XffYL4u09w5MZj7JvRi3ctK78I8XefcMetvGj/KEIIIeWjVWakxu1MeMQ9ntYnAImLByOilQcAoIWHPS9vmK+bLT4cHIS3wwLgrpHUcP7uq+Xe/3pqDgDgrwvJ2Hle9VpP84u569unhqK5h4Pe5xJCCCEA9RARM7j7OA8AMKqDN94dEAgA+HxEa7T3dcGLHb3LfZ6hecUaO9vg7wvJmP7reQBAz+YNICso5q51bkqZ6wkhhFSMAiJS49JyVPsKvaAR/DR0kGJqb/8KnyexKr8Dc2hbLzx8mo/zSVl4lFWAaaXBEABcfJgNK5FqFZqDNX3ECSGEVI6GzEiNUioZHmSqJlN7u9gY9Vx9AVF4YEPsmf4c/vdKe8zo10Lv82KupSFdJgcAuNhKjKwxIYSQ+oj+fCY1Sj33x1osRCMjV3lJRPyAaFhbLywYEQInG9VS+85NXfQ+b8vJJG7IrLmHvbFVJoQQUg9RDxGptuSsAmTmFem9djVZlUOskZMNrETGfdwaakyqBlQTstXBEADYSqywe9pz3PGsiEDu8e6LKQBU6ToIIYSQylAPEamWxzly9F9xBA0dpIiZ2RsigQAXHmYhqJEjrMUi5BWp9g/6dGiw0fdu6CDFzqgeWBlzE83d7RHgrtvbE9LYCftm9MR/t59gQvemSJcVYnP8fe66tIJ5SIQQQogaBUSkWo7cfIy8IgXynuTjRmoO4u88wcK919A/2AM/vN4J+aU7T9tJq/ZRa+fjjM0Tu1RYpqWnI1p6qvYZmta3OS8gshYbtlKNEEJI/UZ/PtcRO88/wtGbj2u7GihRKLHt9ANcS5FVWvavC8l4b3tZrrDMvCJ8f/QOACDmahoW7L6KxAzVkntbiXkCEzc7CazFZR9r6iEihBBiCOohqgPuZeRhxm8JqsdLImu1Lt/G3cGKmJsIaeyIhSNaI6iRo85qr2KFEmN+OIHT9/gpNv699RjyYiV3vP5YIvfYTmKej5pAIICXsw2395FUTAERIYSQytG3RS1LzynEkn+uc8fvbrsAhZLVWn3+vqBKsXH5kQzDV/+Hn07c1ylz5MZjnWAIANYdS0SOVs4xNe0J0jWpsXPZ8n5rAzd3JIQQUr9RQFSLCosVGP1dPPZdSeXO/XHuIRIe6AYb5pCVX4Rb6bm8c2vi7qBEocSm/xJxozRFxo7zZak4fp7UFT9P6goAYBXEcVWdQ1QVmgER9RARQggxBA2Z1aJLj7KRkl2ocz41W8473noqCQHu9uhUgykoGGMY9s1/OuczcuVo+9kB5JVOjr63JBKyQtUeP5Of88NzzRtAqWQQCoDyOrZ+mdy1xuqtz3PNG2Dr6QcAAHcHynBPCCGkchQQ1aLOTV1x8N3e+P3sQ3wVe4s7fyMtB6f/ysSoDt4oKFbggz8vAaiZ+UV7L6Xg31sZGNPFF0mZ+QAAZ1sxPhvWCv+3NQEAuGBITb0LdK8WDQEAQqGg3GDoj7e6o2MT/Rso1pTI1o1g9aoAUisRQho7mfW1CSGEWCYKiGqZt4stZvRrwQuIvj6oerzp+D3M7F+WnoIxBoFAYLLXVioZ3v7lHADg11NJ3PkTc/pyGeS1/e/gLTzNV23C6GpXlhajX5A7Yq+l65S3k5p/Do9AIMDAkEZmf11CCCGWiyZY1HErYm5yj2UF+icsV5XmXCA1dwcprMUi+LnZ6X3O8pibSM9R9RDZa8wLWj66HW8XaTVzrS4jhBBCqoMCIguSkSevvJCBCooUWH34ts55dTJUJ1sxPhlS8e7SmhOlnWzEuPDpAPw0ib+Jorn2HyKEEEKqgwIiC/IkV3++MGMkZxUg/Ms4tP3sAO6WbpqoSbOXZ+JzfhXey8Fat/fHSsj/SNlSDxEhhBALQAFRHTGyQ+NKy4zfeArKau5R9NeFZCRm5KFIodR7/dS9TN7xhB5NAehmngf07wItFpXNcRIIwNs1mhBCCKmr6Nuqjlg6qg32zeip91oXP9Vy+/wiBbcSrKoqe36flu6840+GBOPm54Pw59vdeec3Tuisd4K3ZkZ7xmDSSeCEEEJITaGAqI6wEgnR0tMRbbx1l4kvf7Et91idPb6qkp7wAyKplRBHZoXhnfAATOzhh8UjW/OuCwQCSKyECGnshLuLBmNEOy9M6NEU4YH8wEnNy4n2/SGEEGJ5aIJHHaMv1URDByn8GtghMSMPeXKFnmcZ5kFmPo7dzgCg2lTRSiREr+YN0MTNDu9FBFb6fKFQgK9ebl9hGXdHCogIIYRYnlrtIVq8eDE6d+4MBwcHuLu7Y8SIEbhx4wavTGFhIaKiouDm5gZ7e3uMGjUKaWlpvDJJSUmIjIyEra0t3N3dMWvWLJSU8HtS4uLi0KFDB0ilUgQEBGDTpk01/faqxFprVZZEJIS1WAQbser845yqrTTLyi9C+Jdx3PHkns3wwaCW6B7QoMp1LU8j6iUihBBiYWo1IDpy5AiioqJw4sQJxMTEoLi4GAMGDEBeXtnqp+joaPz999/Yvn07jhw5guTkZIwcOZK7rlAoEBkZiaKiIhw/fhybN2/Gpk2b8Mknn3BlEhMTERkZifDwcCQkJGDGjBmYPHky9u/fb9b3WxW2pRsbXk2RAQCW7r9eUfFyPcoqQInGhGz3Gky2WlFOM0IIIaQuqtUhs3379vGON23aBHd3d5w9exa9evVCdnY21q9fjy1btqBPnz4AgI0bNyIoKAgnTpxAt27dcODAAVy9ehWxsbHw8PBAu3btsGDBArz//vuYN28eJBIJvvvuO/j5+WH58uUAgKCgIBw7dgwrV65ERESE2d93RbxdbHjH2hsb3n9StUnV+RrpNz4Y1BJCYc1NdlZSREQIIcTC1KlJ1dnZ2QAAV1fVqqqzZ8+iuLgY/fr148q0bNkSvr6+iI+PBwDEx8ejdevW8PDw4MpERERAJpPhypUrXBnNe6jLqO+hTS6XQyaT8X7MZXZEIG9ic0tPBwDgNkns2dz4Ia64G+l48TvVew1u5Iipvf1NUNPyUThECCHE0tSZgEipVGLGjBno0aMHQkJCAACpqamQSCRwdnbmlfXw8EBqaipXRjMYUl9XX6uojEwmQ0FBgU5dFi9eDCcnJ+7Hx8fHJO/REM62ErzSxRe/vdkNUeH++HRoKwBlPUc5hcatMmOMYeKm09yxOXaOHtvVFwDQI8Ctxl+LEEIIMYU6s8osKioKly9fxrFjx2q7KpgzZw5mzpzJHctkMrMGRQDQtZkbujYrCygcrFU7SOcUFht1n4dPC3iZ6GtyqEwtKjwA7X1dzJ7lnhBCCKmqOhEQvfPOO9i9ezeOHj0Kb29v7rynpyeKioqQlZXF6yVKS0uDp6cnV+bUqVO8+6lXoWmW0V6ZlpaWBkdHR9jY8OfsAIBUKoVUWnOTjqtCnTW+oMi4ZfcXH2bzjo19flWIRUL0btGwxl+HEEIIMZVaHTJjjOGdd97Bjh07cOjQIfj58XNndezYEWKxGAcPHuTO3bhxA0lJSQgNDQUAhIaG4tKlS0hPT+fKxMTEwNHREcHBwVwZzXuoy6jvYQmkpfsTyUv0p9woz8WHWbzjMaXDWYQQQggpU6s9RFFRUdiyZQt27doFBwcHbs6Pk5MTbGxs4OTkhEmTJmHmzJlwdXWFo6Mjpk2bhtDQUHTr1g0AMGDAAAQHB+O1117D0qVLkZqairlz5yIqKorr5Zk6dSq++eYbzJ49GxMnTsShQ4ewbds27Nmzp9beu7HUecOMDYjSZIUAAHupFdr5OOP59pXnTCOEEELqm1oNiNasWQMACAsL453fuHEjxo8fDwBYuXIlhEIhRo0aBblcjoiICHz77bdcWZFIhN27d+Ott95CaGgo7OzsMG7cOMyfP58r4+fnhz179iA6OhqrVq2Ct7c31q1bV+eW3FdEKlYHRMYNeakDqPcHBuK10KamrhYhhBDyTKjVgIgZsF+NtbU1Vq9ejdWrV5dbpkmTJti7d2+F9wkLC8P58+eNrmNdoR4yK1YwKJQMIgMnRxcWK3jPJ4QQQoiuOrPsnlRMPWQGAEUGDpv9dzsDh288Vj1fTP/UhBBCSHnoW9JCaAZEhgybJT3Jx9h1JzWeTz1EhBBCSHkoILIQViIhN0z2Y/x9FCtUvUS303MxadNpfLLrMjc8BgCv/HCC93wzbD9ECCGEWCwKiCyIg7VqyteKmJvYeioJAPDHuYc4eD0dP8bfx8nETK7soyz+Dty5cuN2uCaEEELqEwqILIizjZh7fC4pCwCQrxHoqHexvqS1GSMAuNhKarZyhBBCiAWjgMiCOGkENfF3ngDg70ukzmg/9Bt++pPpfZvTztGEEEJIBSggsiD+Dey4x6mlGy5qBkQ/xd/X+7yZ/VuYJYcZIYQQYqkoILIgnw1vxTtOepKPayky7vjSo2zexGoA2D3tObPUjRBCCLFkdSK5KzGMOuO9Wq9lh3XK5MpLYCUUoETJ8N8HfdDYWTd5LSGEEEL4qIfoGZNdUIwSpWoHcPWqNEIIIYRUjAKiZ8zjHDn32E5CAREhhBBiCAqILEx3f7cKr2fkqgIia7HQ4HxnhBBCSH1HAZGF+erldnrP24hVqTk2HEsEQL1DhBBCiDEoILIw7g7W8NNYfq/WyNkaQNmGjXZSCogIIYQQQ1FAZIH+1lpKv29GT3w6lL8k31ZCyVwJIYQQQ1E3ggWy1+j96dTEBS09HaFUynhlaIUZIYQQYjjqIbJwnf1cAegGQJN7NquN6hBCCCEWiboRLNSvb3TDvsspmN6nOQDAyZa/aWNEK8/aqBYhhBBikSggslCh/m4I1ViC76i1izUhhBBCDEdDZs+QfkHutV0FQgghxCJRQPQMkVjRPychhBBSFfQN+gwJ9HCs7SoQQgghFonmED1DpvRuhqyCIgwIpgnVhBBCiDEoIHqGWItFOhs0EkIIIaRyNGRGCCGEkHqPAiJCCCGE1HsUEBFCCCGk3qOAiBBCCCH1HgVEhBBCCKn3KCAihBBCSL1XqwHR0aNHMXToUHh5eUEgEGDnzp286wKBQO/PsmXLuDJNmzbVub5kyRLefS5evIiePXvC2toaPj4+WLp0qTneHiGEEEIsRK0GRHl5eWjbti1Wr16t93pKSgrvZ8OGDRAIBBg1ahSv3Pz583nlpk2bxl2TyWQYMGAAmjRpgrNnz2LZsmWYN28e1q5dW6PvjRBCCCGWo1Y3Zhw0aBAGDRpU7nVPT/6Oy7t27UJ4eDiaNWvGO+/g4KBTVu2XX35BUVERNmzYAIlEglatWiEhIQErVqzAm2++Wf03QQghhBCLZzFziNLS0rBnzx5MmjRJ59qSJUvg5uaG9u3bY9myZSgpKeGuxcfHo1evXpBIJNy5iIgI3LhxA0+fPjVL3QkhhBBSt1lM6o7NmzfDwcEBI0eO5J2fPn06OnToAFdXVxw/fhxz5sxBSkoKVqxYAQBITU2Fn58f7zkeHh7cNRcXF53XksvlkMvl3LFMJjP12yGEEEJIHWIxAdGGDRswduxYWFtb887PnDmTe9ymTRtIJBJMmTIFixcvhlQqrdJrLV68GJ999pnOeQqMCCGEEMuh/t5mjFVa1iICon///Rc3btzAb7/9VmnZrl27oqSkBPfu3UNgYCA8PT2RlpbGK6M+Lm/e0Zw5c3iB1qNHjxAcHAwfH59qvAtCCCGE1IacnBw4OTlVWMYiAqL169ejY8eOaNu2baVlExISIBQK4e7uDgAIDQ3FRx99hOLiYojFYgBATEwMAgMD9Q6XAYBUKuX1Ltnb2+PBgwdwcHCAQCAwwTsqI5PJ4OPjgwcPHsDR0dGk9yZlqJ3Ng9rZfKitzYPa2Txqqp0ZY8jJyYGXl1elZWs1IMrNzcXt27e548TERCQkJMDV1RW+vr4AVI20fft2LF++XOf58fHxOHnyJMLDw+Hg4ID4+HhER0fj1Vdf5YKdMWPG4LPPPsOkSZPw/vvv4/Lly1i1ahVWrlxpcD2FQiG8vb2r+W4r5ujoSP/ZzIDa2Tyonc2H2to8qJ3NoybaubKeIbVaDYjOnDmD8PBw7lg9TDVu3Dhs2rQJALB161YwxvDKK6/oPF8qlWLr1q2YN28e5HI5/Pz8EB0dzRvucnJywoEDBxAVFYWOHTuiQYMG+OSTT2jJPSGEEEI4AmbITCNSY2QyGZycnJCdnU1/fdQgamfzoHY2H2pr86B2No+60M4Wsw/Rs0oqleLTTz+t8oo4YhhqZ/OgdjYfamvzoHY2j7rQztRDRAghhJB6j3qICCGEEFLvUUBECCGEkHqPAiJCCCGE1HsUEBFCCCGk3qOAiBBCCCH1HgVEhBBCCKn3LCKXmSVKS0vDjh074Ovri6CgIPj5+YExZvJcaPVdeno6Dh06BB8fH7Rs2RJubm61XaVn1uPHj3HmzBk0btwYQUFBXG5AYlppaWn46aef0LhxYzRv3hydOnWi3x01gNqZ6GDE5ObMmcPs7OxYnz59mLu7O+vVqxe7cuUKY4wxpVJZy7V7dnz44YfM3t6ehYWFMVtbW/b888+zq1ev1na1nklz5sxhTk5OrHv37kwsFrPo6Gh2//792q7WM+fDDz9kNjY2bMCAAaxFixasadOm7NSpU4wx+t1hStTORB8aMjOhjIwMDBs2DIcOHcKePXsQGxuLn376CQUFBTh06BAA0F8fJpCdnY233noLsbGx+Ouvv7B//3789NNPyMvLww8//FDb1XumZGRkYNy4cYiNjcXOnTuxZ88efPXVV4iPj8fOnTtru3rPjJycHLz44os4ePAg9u7di/3792P79u1o0qQJtm7dCoB+d5gCtTOpCAVE1cQ0NvqWSCSIjIzE//73P/Tu3RsCgQADBgyAUChE9+7d9T6HGEazzZ48eQKlUon33nsP4eHhkEgkGDlyJJycnFBYWKhTnhhHs+2SkpLAGMPnn3+OsLAwODs74+233wagyj2kXZ4YTrPdHBwcMHToUCxduhRhYWEAgDZt2kAsFmPYsGF6n0MMQ+1MDEWpO6pBLpejpKQEdnZ2AACFQoGCggLY29sDALKysjB+/HicPHkSoaGh6NWrF6ZNmwaRSFSb1bY4hYWFyMvL4+YH5eTk4P79+wgJCQEAKJVKCIVCTJo0CQKBAOvWravN6lo07c90ZmYm7ty5g86dOwMoa+thw4ahQ4cOmDdvXi3W1nJpf6YBoKioCBKJBIDqd8fEiRNx6NAhdO7cGa1atcK8efPg7OxcSzW2TNTOxBjUQ1RFCxYsQO/evTF06FDMmjULKSkpEIlE3BdJSkoKevTogfz8fHz99ddo2rQp/ve//+GNN94AoPpiIZWbP38+unXrhqFDh2L06NG4c+cOHBwcdIIhADh27BjXE6dQKGqtzpZK+zOdnJwMV1dXnWAoPz8fJ06cQKdOnQDQX9PG0v5M3717FwBgZaVa45KRkYGXX34ZBQUF+PnnnzFo0CDExsbitddeA0DtbShqZ2I0809bsmwXL15koaGhrFWrVmzLli0sOjqadezYkb3wwgtcGfWkPO0Jvj/88ANr0KABe/z4sVnrbImuXr3KevfuzVq1asX++OMPtnTpUtatWzfWrVs3nbJKpZLdvHmT+fj4sEuXLtVCbS1beZ/pUaNG6S0fHx/PfH19WWpqqplratnK+0yHhobqlL179y7v+ODBg0wqlbKkpCRzVddiUTuTqqJl90YoLi7Gjh070KhRI/z9999wc3PDK6+8gk2bNuGbb75BUlISfH19ufJBQUEAwC3lvHbtGnx9fSEUCml5ZyX++ecf2NjY4ODBg/Dw8AAAdO3aFa+88gouX77M9RAB4Nq2QYMG3PmYmBicOHECH3/8ca3U31IY+5kGgEuXLiEwMJD7d4mLi8P169cxderU2ngLFsOQz7T694Kfnx+Ast8d586dg4+PD5RKJf3uqAS1M6kqCoiMwBhDq1at0KNHD7i5uXFDCBKJBBkZGXBxcQGgu0pBIBDg0qVLuHDhAsaOHQtXV9faqL5F6datG/elq/7FVFJSApFIpHd8f9euXejduzeePHmCV199FbGxsZg7d675K25hDP1Ma/r7778RHh6OtLQ0TJgwAQcOHMDy5ctrofaWxZDPtL7fHVevXsWBAwfwyiuvoEmTJrVQc8tC7UyqigIiI6hXM2n/Z8rOzoaPjw+sra155+/cuYPbt29j9+7d2Lx5M0aPHk1/RRtIe1WeQCBAVlYW7Ozs4OTkxCublZWFo0ePori4GN9++y0iIiKQmppKmzQawNjPdHJyMk6fPo3U1FTMmzcPAwcORFpaGrW1AYz5TCclJeHMmTM4dOgQNm3ahBdeeAHvv/++uatskaidSVVRQGSE8rpQjx8/jo4dO0IsFvMm+d6/fx+//vorkpOTERsbiy5dupi7yhapvHY+cuQI2rVrBwcHB1475+bmQqlUwtPTE9u3b+cmAZPKGfuZTktLQ35+PsRiMY4ePYquXbuau8oWydjPdGZmJo4cOYLExEQcOnSIfncYiNqZVItZZyzVcYWFheVeKy4u5h0rFArGGGMlJSXM19eX7dixg7t269YtxhhjBQUF7NGjR6avqIXLzc1lcrlc7zXtdtbUpk0b9sMPP3DH169fZ4wxlpeXxxISEkxbyWeEqT7Tt2/fZowxlpmZyf777z/TV9TCmfozrVAoWEZGhmkr+QygdiY1iZbdl4qOjkafPn2Qnp6u97qVlRUYY9wkXfVfGP/99x+USiX69u2LR48eYfTo0WjRogWSk5NhbW0NLy8vs70HS/Dee+8hNDQU58+f13td3c4fffQRkpKSAKj+6rt8+TIeP36MAQMGcO0cFBSEK1euwNbWFm3btjXn27AIpvxMN2/eHI8ePYKLiwtvSIKY/jN99epVCIVCGobUQu1Malq9D4ju3LmDESNGYN++fYiPj8fGjRv1llu/fj0aN26Mbdu24f79+9z5q1evolmzZli1ahWaN2+OnJwcJCYmUiCk5eHDhxg9ejTi4uJw48YN/Pzzz8jNzdUpt2HDBnh6emLHjh0oKioCULaKzM3NDevWreO1c6tWrcz9Vuq8mvpMN27c2FxvwSLU1Gc6ODjY3G+lTqN2JmZTe51TdUNcXBx766232LFjx9iXX37JHB0duSEvtWPHjrEBAwawdevWsZKSEt61IUOGMIFAwEJCQtj+/fvNWXWLcunSJfZ///d/7NSpU2zLli1MLBazmJgYXpnLly+zMWPGsLVr1+q086RJk5hAIGBt27aldq4EfabNgz7T5kHtTMyl3qbuUE+sk8lkePz4Mfz9/cEYQ3BwMLp27YpNmzbxyhcWFuqsuCkpKcH69ethb2+PsWPHmrH2lkPdzgUFBcjIyICPjw8A1dJYJycn/PTTT3B3d+fKy+VySKVSnfvs3bsXT5484XaRJbroM20e9Jk2D2pnYna1G4+Z15YtW9iVK1cqLPPXX38xoVDIjhw5YqZaPXvWr1/PDhw4oPea+q+3CxcuMIFAwDZt2qTzFx0xHH2mzYM+0+ZB7UxqU70IiI4cOcJCQkKYQCBgH374IcvPz6+w/KBBg9hzzz3HCgoKdK6p03IQXceOHWMdOnRgAoGATZw4kSUnJzPGdNtMvZrptddeYy1btmR37tzRuRe1c8XoM20e9Jk2D2pnUhc885OqHz58iM2bN6Nfv36YM2cO1qxZgwsXLlT4nGXLluHkyZPYvn07iouLsXv3bvz3338AdHc4JSpZWVn47bff0KlTJyxcuBBxcXGIi4sDUH6brVmzBvfv38eWLVuQlZWFHTt2YOfOnRU+h9Bn2lzoM20e1M6kzqjtiKymZWdns99//51L+tmiRQv28ssvs6dPn1b4vOjoaNawYUPWtm1bZm1tXW43LlGRy+Xs4MGD7Ny5c4wxxgYMGMCGDh3K7feh/Vebuqt76dKlzNbWlrVo0YJZW1uz7du3m7fiFog+0+ZBn2nzoHYmdcUzHxBpi4mJYQKBgO3cubPcrtXbt2+zkSNHMoFAwN58800mk8nMXEvLd/z4cebl5cW++uqrcjdSu3PnDhs/fjwTCARs6tSpLCcnx8y1fDbQZ9o86DNtHtTOpLbUq4BIPf48aNAg1rVrV/bgwQOdMo8ePWL9+/dngYGB7PLly+au4jNB3c6TJ09mXbt2ZfHx8TplZDIZe+GFF1izZs24ng5iPPpMmwd9pqvH0Hk91M6kNll8QHTp0iX2+++/611toL2Vu/r4/v37TCgUsq+//pr7D/jw4UPGGGP5+fk6e7YQxm7evMmWLVvGdWNrKq+dk5OTmZ+fH/vggw9YdnY2Y6wsBURxcTE3cZLw3bp1i/Xs2ZP9+OOPjDH+lwl9pk0nJSWFPXr0iJuQrvk7hD7TpiOTyXifYUM+z9TOpDZY7KTqoqIiTJo0CW3atMH58+e5tAMAoFAoAKi2ci8pKcG1a9e4Y4VCAV9fX8yYMQMrV67Eb7/9hoiICHzwwQcoKCiAjY0NAgICauU91UUKhQJRUVFo3bo1rl27hsePH3PXlEolAFW7FhcXc5N01e3cqFEjTJkyBX///TfWrVuH/v37Y8KECcjNzYWVlRUaNWpUK++prioqKsLrr7+Oli1b4tixY7hy5QoA1SRR+kybTnFxMaZMmYLQ0FAMHToUgwYNglwuh0gkQnFxMQD6TJtCcXExpk6disGDB+OFF17Ajz/+CED1eS4pKQFA7UzqmNqOyKri66+/Zvb29qx79+4VJvVctWoVs7W1ZV9++SUrKipijJX9dZKUlMQEAgETCAQsMjKSPXnyxCx1tzRLly5lPXr0YCdOnOCd1/wrb9WqVczBwYHNmTOH+2tbs52trKyYQCBgI0aMYI8fPzZf5S3I4sWLma2tLevVqxdLTExkw4YNY+PGjWOM8Xsu6DNdPQ8fPmTdunVj4eHh7Pjx42zz5s2sWbNmbNq0abxy9Jmunjt37rC2bduy3r17s7/++otNmDCBBQUFsTfffJNXjtqZ1CUWFxBlZ2czFxcX1qdPH+7ctWvX2O3bt7mJokqlkr3xxhvM3d2d/fTTTzrj17/88guzsrJinTt3ZufPnzdn9S2GUqlkubm5LDQ0lMsSffz4cfb999+zf//9l5vEOGvWLObi4sJ+/vlnnXbevn07EwgErHPnztwKEqJr3bp1rE2bNmzbtm3cuc8++4z5+/tzx4WFhWzq1Kn0ma6mX3/9lbVt25alpKRw515//XU2d+5c7vjdd99lrq6u9Jmuhm+++YaFhYWxvLw8xpjq98maNWuYQCBgf/zxB1MoFOyDDz6g3x2kTrGYgEjzP8yGDRuYq6srO3DgAHvxxReZv78/CwgIYF26dGEbN25kjDF2/fp1buxZk0KhYH/88Qf7/vvvzVV1i3Xz5k3m4eHBHjx4wGbOnMkaNWrEunfvztzd3VmfPn1YXl4ee/z4cbkrlk6fPk3tXAH1XJ8nT57ofCF8+eWXLCQkhJs3oVQq2c2bN+kzXU1r1qxhtra23HFycjJr164dW7FiBTt69ChjjLH09HT6TFfTjBkz2HPPPccYK/vd/e233zKBQMDat2/Pnjx5wtLT0/V+nhmjdia1o84HRCdPnmSMlX15MKb6D9alSxcmEAjYpEmT2JEjR9iePXvYpEmTWKNGjdjBgwcZY4y2dTeCvnbOz89nrVq1YuPGjWOjRo1iV69eZU+ePGGXLl1izs7O7N1336VdYatA3db6Pp/q9vz333+ZUCjkJkYT4+n7TCckJDAvLy/WpUsXNmrUKGZlZcXCwsJY3759mYODA5s3bx43FEkMo6+dP/74Y9avXz+2Z88e7tzYsWPZ/PnzmVQqZZs2bWKM0e9oUrfU2YBox44dzMvLi7m6urLExETGGP8/z5kzZ9gHH3zAMjIyuHOJiYns+eefZ4MHDzZ3dS1WRe2cmZnJJk+ezBwcHNjIkSOZQqHgfult2LCBOTk5VZoygpTR19aaXyKabt++zZo0acL1eBLD6WtnzdVMiYmJbN++fSw4OJhbyceYKi+cra2t3q0LiC597azeN+jq1avs+eefZ05OTuyll15i9vb2rEuXLuzRo0fs5ZdfZkOGDKnFmhOiX51cZfbLL79g0aJF6NWrF4KDg7FkyRIAgEgk4sp06NABH330Edzc3LhzTZs2hZ2dHRhjyMvLM3u9LU1l7ezi4oI+ffpAIpFAoVBAKBSCMQYACA4OhkQi4VY7kYqV19aaqyM1WVtbQyKRoKCgwJzVtHjltbOVlRVXpmnTpsjMzIRIJMJrr73GrZYMDQ1FcXExLl68WCt1tyTltbNEIgFjDEFBQVi1ahVWrlyJBg0a4Oeff8bJkyfh5eWFwsJCNG3atHbfACF61KmASL20OCAgAH379sUXX3yBYcOG8XLbqMsIBALY29vznl9QUICUlBS0atUKdnZ2Zq27JTGknYuKigAAw4YNw2uvvYa//voLsbGxXLB07NgxtGvXDu3atauNt2AxjPlMqzHG0LhxY3h4eODEiRMAyrY4IPoZ286MMQiFQqSlpXFB6d69e9GhQwd06dLF7PW3FMa0s4+PDyZMmIBvvvkGw4cPBwCkpqbiwYMH8Pf3r5X6E1KhWu2fKnXz5k2duSjqLu7Lly+zYcOG8YbBtMtmZWWxpKQkNnHiRBYUFMTOnj1b85W2QMa2s3ro7O7du+z1119ndnZ2bOTIkeyVV15hrq6u3KRHmkekq7qfaaVSyf7v//6Pde/eneXm5tZ8hS2Use2sHqKMiYlhvXv3ZiEhIey7775jEyZMYK6urmzlypVmq7slqe7n+d69e+zhw4ds7NixrH379uz+/fs1X2lCjFSrPUTbtm2Dn58fhg4dim7dumHDhg3cNXVPRKtWrTBixAjcu3cPGzduBABu2AYA9u3bhzlz5qB9+/a4e/cu/vrrL3To0MG8b6SOq247+/n5YfPmzVi+fDn8/f1hbW2N48eP48033wRA2aU1meIzDajaVC6Xo23bthCLxeZ7Axaiqu2s7mnr168fFi1aBD8/P+zYsQOZmZk4fvw4ZsyYYfb3UpeZ4vNcUFCAdevWoU2bNkhKSsL27dvh6+tr3jdCiCFqKxI7cOAAa9q0KVu9ejXbt28fmzlzJhOLxWzt2rXcRF31XyAPHz5kkyZNYp07d+b2v1FP3rt37x5bvXo1i42NrZ03UsdVt51pxY3hTNXW6p45anv9qtvOhYWF3L0UCgXLysoy/5uwAKb83ZGQkMCOHDli/jdBiBHMHhCpu1I/++wz1rFjR95/mrfffpt16tSJ/fnnnzrP2717N+vUqRP79NNP2YULF1hkZCRLSkoyW70tjanaeciQIdTOlaC2Ng9qZ/Ogdib1ldmHzNTDK1evXoW/vz/EYjGXP+jzzz+HtbU1du3ahdTUVABlE/TCw8PRpUsXzJ8/Hx07dkRJSQnc3d3NXX2LYap2Li4upnauBLW1eVA7mwe1M6m3ajriOnDgAJs2bRpbuXIlt4EXY4ytXbuWOTg46AwPrF27lrVo0YLFxcVxZXNzc9nKlSuZSCRiYWFh7OLFizVdbYtD7Ww+1NbmQe1sHtTOhKjUWECUnJzMhgwZwtzd3dnYsWNZ69atmZOTE/cf7saNG6xx48bs448/ZoyVzQlijDFPT0/eao8rV66wrl278jZRIyrUzuZDbW0e1M7mQe1MCF+NBER5eXls3Lhx7KWXXmJ3797lznfp0oWNHz+eMcaYTCZjn3/+ObOxseHGmdVj171792aTJ0+uiao9U6idzYfa2jyonc2D2pkQXTUyh8jW1hZSqRTjx4+Hn58fSkpKAACDBw/GtWvXwBiDg4MDxowZgw4dOmD06NG4f/8+BAIBkpKSkJ6ejhEjRtRE1Z4p1M7mQ21tHtTO5kHtTIguAWNaG6CYSHFxMbd/ilKphFAoxNixY2FnZ4e1a9dy5R49eoSwsDCUlJSgU6dOOH78OFq2bIktW7bAw8OjJqr2TKF2Nh9qa/OgdjYPamdC+GosINLnueeewxtvvIFx48ZxG6QJhULcvn0bZ8+excmTJ9G2bVuMGzfOXFV6JlE7mw+1tXlQO5sHtTOpz8wWEN29exfdu3fHnj170LFjRwCqfFkSicQcL19vUDubD7W1eVA7mwe1M6nvanwfInW8dezYMdjb23P/0T777DP83//9H9LT02u6CvUCtbP5UFubB7WzeVA7E6JiVdMvoN7k69SpUxg1ahRiYmLw5ptvIj8/Hz/99BNt3GUi1M7mQ21tHtTO5kHtTEgpcyxlKygoYAEBAUwgEDCpVMqWLFlijpetd6idzYfa2jyonc2D2pkQxsw2h6h///5o3rw5VqxYAWtra3O8ZL1E7Ww+1NbmQe1sHtTOpL4zW0CkUCggEonM8VL1GrWz+VBbmwe1s3lQO5P6zqzL7gkhhBBC6iKzZ7snhBBCCKlrKCAihBBCSL1HAREhhBBC6j0KiAghhBBS71FARAghhJB6jwIiQgghhNR7FBARQgghpN6jgIgQ8kwYP348BAIBBAIBxGIxPDw80L9/f2zYsAFKpdLg+2zatAnOzs41V1FCSJ1EAREh5JkxcOBApKSk4N69e/jnn38QHh6O//u//8OQIUNQUlJS29UjhNRhFBARQp4ZUqkUnp6eaNy4MTp06IAPP/wQu3btwj///INNmzYBAFasWIHWrVvDzs4OPj4+ePvtt5GbmwsAiIuLw4QJE5Cdnc31Ns2bNw8AIJfL8d5776Fx48aws7ND165dERcXVztvlBBichQQEUKeaX369EHbtm3x559/AgCEQiG+/vprXLlyBZs3b8ahQ4cwe/ZsAED37t3x1VdfwdHRESkpKUhJScF7770HAHjnnXcQHx+PrVu34uLFi3jxxRcxcOBA3Lp1q9beGyHEdCiXGSHkmTB+/HhkZWVh586dOtdefvllXLx4EVevXtW59vvvv2Pq1KnIyMgAoJpDNGPGDGRlZXFlkpKS0KxZMyQlJcHLy4s7369fP3Tp0gWLFi0y+fshhJiXVW1XgBBCahpjDAKBAAAQGxuLxYsX4/r165DJZCgpKUFhYSHy8/Nha2ur9/mXLl2CQqFAixYteOflcjnc3NxqvP6EkJpHAREh5Jl37do1+Pn54d69exgyZAjeeustLFy4EK6u/9++/bIsD8VxGP9yDwxiesBgkSUtolgFu6CCzSCsWKziixgKM2ixmSw228q0aJIlfRH+qSsqkzs8yfC0+/EGz/WJZ+OwX7sY5/zRdrtVt9vV/X7/ZxBFUSTLshSGoSzLenmWSqXeMQKA/4wgAvDR1uu1DoeD+v2+wjDU8/mU53n6+vp7hHK5XL68n0gkFMfxy1q5XFYcx7pcLqpWq2/7dgDvQxAB+Bi3202n00lxHOt8Psv3fbmuq0ajIcdxdDwe9Xg8NJ1O1Ww2tdvtNJvNXvawbVtRFCkIApVKJSWTSeVyOXU6HTmOI8/zVC6Xdb1eFQSBisWi6vX6L00M4KdwywzAx/B9X5lMRrZtq1arabPZaDKZaLVaybIslUoljcdjDYdDFQoFLRYLua77skelUlGv11O73VY6ndZoNJIkzedzOY6jwWCgfD6vVqul/X6vbDb7G6MC+GHcMgMAAMbjDxEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB43xSj5hiwj31xAAAAAElFTkSuQmCC\n",
"text/plain": [
"