{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Read in the data" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy\n", "import re\n", "\n", "data_files = [\n", " \"ap_2010.csv\",\n", " \"class_size.csv\",\n", " \"demographics.csv\",\n", " \"graduation.csv\",\n", " \"hs_directory.csv\",\n", " \"sat_results.csv\"\n", "]\n", "\n", "data = {}\n", "\n", "for f in data_files:\n", " d = pd.read_csv(\"schools/{0}\".format(f))\n", " data[f.replace(\".csv\", \"\")] = d" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Read in the surveys" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "all_survey = pd.read_csv(\"schools/survey_all.txt\", delimiter=\"\\t\", encoding='windows-1252')\n", "d75_survey = pd.read_csv(\"schools/survey_d75.txt\", delimiter=\"\\t\", encoding='windows-1252')\n", "survey = pd.concat([all_survey, d75_survey], axis=0)\n", "\n", "survey[\"DBN\"] = survey[\"dbn\"]\n", "\n", "survey_fields = [\n", " \"DBN\", \n", " \"rr_s\", \n", " \"rr_t\", \n", " \"rr_p\", \n", " \"N_s\", \n", " \"N_t\", \n", " \"N_p\", \n", " \"saf_p_11\", \n", " \"com_p_11\", \n", " \"eng_p_11\", \n", " \"aca_p_11\", \n", " \"saf_t_11\", \n", " \"com_t_11\", \n", " \"eng_t_11\", \n", " \"aca_t_11\", \n", " \"saf_s_11\", \n", " \"com_s_11\", \n", " \"eng_s_11\", \n", " \"aca_s_11\", \n", " \"saf_tot_11\", \n", " \"com_tot_11\", \n", " \"eng_tot_11\", \n", " \"aca_tot_11\",\n", "]\n", "survey = survey[survey_fields]\n", "data[\"survey\"] = survey" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Add DBN columns" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "data[\"hs_directory\"][\"DBN\"] = data[\"hs_directory\"][\"dbn\"]\n", "\n", "def pad_csd(num):\n", " string_representation = str(num)\n", " if len(string_representation) > 1:\n", " return string_representation\n", " else:\n", " return \"0\" + string_representation\n", " \n", "data[\"class_size\"][\"padded_csd\"] = data[\"class_size\"][\"CSD\"].apply(pad_csd)\n", "data[\"class_size\"][\"DBN\"] = data[\"class_size\"][\"padded_csd\"] + data[\"class_size\"][\"SCHOOL CODE\"]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Convert columns to numeric" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "cols = ['SAT Math Avg. Score', 'SAT Critical Reading Avg. Score', 'SAT Writing Avg. Score']\n", "for c in cols:\n", " data[\"sat_results\"][c] = pd.to_numeric(data[\"sat_results\"][c], errors=\"coerce\")\n", "\n", "data['sat_results']['sat_score'] = data['sat_results'][cols[0]] + data['sat_results'][cols[1]] + data['sat_results'][cols[2]]\n", "\n", "def find_lat(loc):\n", " coords = re.findall(\"\\(.+, .+\\)\", loc)\n", " lat = coords[0].split(\",\")[0].replace(\"(\", \"\")\n", " return lat\n", "\n", "def find_lon(loc):\n", " coords = re.findall(\"\\(.+, .+\\)\", loc)\n", " lon = coords[0].split(\",\")[1].replace(\")\", \"\").strip()\n", " return lon\n", "\n", "data[\"hs_directory\"][\"lat\"] = data[\"hs_directory\"][\"Location 1\"].apply(find_lat)\n", "data[\"hs_directory\"][\"lon\"] = data[\"hs_directory\"][\"Location 1\"].apply(find_lon)\n", "\n", "data[\"hs_directory\"][\"lat\"] = pd.to_numeric(data[\"hs_directory\"][\"lat\"], errors=\"coerce\")\n", "data[\"hs_directory\"][\"lon\"] = pd.to_numeric(data[\"hs_directory\"][\"lon\"], errors=\"coerce\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Condense datasets" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "class_size = data[\"class_size\"]\n", "class_size = class_size[class_size[\"GRADE \"] == \"09-12\"]\n", "class_size = class_size[class_size[\"PROGRAM TYPE\"] == \"GEN ED\"]\n", "\n", "class_size = class_size.groupby(\"DBN\").agg(numpy.mean)\n", "class_size.reset_index(inplace=True)\n", "data[\"class_size\"] = class_size\n", "\n", "data[\"demographics\"] = data[\"demographics\"][data[\"demographics\"][\"schoolyear\"] == 20112012]\n", "\n", "data[\"graduation\"] = data[\"graduation\"][data[\"graduation\"][\"Cohort\"] == \"2006\"]\n", "data[\"graduation\"] = data[\"graduation\"][data[\"graduation\"][\"Demographic\"] == \"Total Cohort\"]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Convert AP scores to numeric" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "cols = ['AP Test Takers ', 'Total Exams Taken', 'Number of Exams with scores 3 4 or 5']\n", "\n", "for col in cols:\n", " data[\"ap_2010\"][col] = pd.to_numeric(data[\"ap_2010\"][col], errors=\"coerce\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Combine the datasets" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "combined = data[\"sat_results\"]\n", "\n", "combined = combined.merge(data[\"ap_2010\"], on=\"DBN\", how=\"left\")\n", "combined = combined.merge(data[\"graduation\"], on=\"DBN\", how=\"left\")\n", "\n", "to_merge = [\"class_size\", \"demographics\", \"survey\", \"hs_directory\"]\n", "\n", "for m in to_merge:\n", " combined = combined.merge(data[m], on=\"DBN\", how=\"inner\")\n", "\n", "combined = combined.fillna(combined.mean())\n", "combined = combined.fillna(0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Add a school district column for mapping" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "def get_first_two_chars(dbn):\n", " return dbn[0:2]\n", "\n", "combined[\"school_dist\"] = combined[\"DBN\"].apply(get_first_two_chars)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Find correlations" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "SAT Critical Reading Avg. Score 0.986820\n", "SAT Math Avg. Score 0.972643\n", "SAT Writing Avg. Score 0.987771\n", "sat_score 1.000000\n", "AP Test Takers 0.523140\n", "Total Exams Taken 0.514333\n", "Number of Exams with scores 3 4 or 5 0.463245\n", "Total Cohort 0.325144\n", "CSD 0.042948\n", "NUMBER OF STUDENTS / SEATS FILLED 0.394626\n", "NUMBER OF SECTIONS 0.362673\n", "AVERAGE CLASS SIZE 0.381014\n", "SIZE OF SMALLEST CLASS 0.249949\n", "SIZE OF LARGEST CLASS 0.314434\n", "SCHOOLWIDE PUPIL-TEACHER RATIO NaN\n", "schoolyear NaN\n", "fl_percent NaN\n", "frl_percent -0.722225\n", "total_enrollment 0.367857\n", "ell_num -0.153778\n", "ell_percent -0.398750\n", "sped_num 0.034933\n", "sped_percent -0.448170\n", "asian_num 0.475445\n", "asian_per 0.570730\n", "black_num 0.027979\n", "black_per -0.284139\n", "hispanic_num 0.025744\n", "hispanic_per -0.396985\n", "white_num 0.449559\n", " ... \n", "rr_p 0.047925\n", "N_s 0.423463\n", "N_t 0.291463\n", "N_p 0.421530\n", "saf_p_11 0.122913\n", "com_p_11 -0.115073\n", "eng_p_11 0.020254\n", "aca_p_11 0.035155\n", "saf_t_11 0.313810\n", "com_t_11 0.082419\n", "eng_t_11 0.036906\n", "aca_t_11 0.132348\n", "saf_s_11 0.337639\n", "com_s_11 0.187370\n", "eng_s_11 0.213822\n", "aca_s_11 0.339435\n", "saf_tot_11 0.318753\n", "com_tot_11 0.077310\n", "eng_tot_11 0.100102\n", "aca_tot_11 0.190966\n", "grade_span_max NaN\n", "expgrade_span_max NaN\n", "zip -0.063977\n", "total_students 0.407827\n", "number_programs 0.117012\n", "priority08 NaN\n", "priority09 NaN\n", "priority10 NaN\n", "lat -0.121029\n", "lon -0.132222\n", "Name: sat_score, Length: 67, dtype: float64\n" ] } ], "source": [ "correlations = combined.corr()\n", "correlations = correlations[\"sat_score\"]\n", "print(correlations)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Plotting survey correlations" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "scrolled": true }, "outputs": [], "source": [ "# Remove DBN since it's a unique identifier, not a useful numerical value for correlation.\n", "survey_fields.remove(\"DBN\")" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEwCAYAAABSVAGZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuYJVV57/Hvb0BUEJBR6TbM9IAaUVAkRBFvoSeEgJoI\noqIEjEI0xBOURI9BDEp7SQxGTVRIBDNy0ISQqMgtgiBOqxxARi6COgMYdRhQ2hsIHtQgvuePVc3s\n6dl16b12d3XX/D7PU0/3rqq3Vu2qvd+qXbXWKkUEZmbWTUvaXgEzM5s7TvJmZh3mJG9m1mFO8mZm\nHeYkb2bWYU7yZmYdNpQkL+lgSesk3SLphD7T95d0t6TriuGkYZRrZmbVts5dgKQlwKnAAcD3gDWS\nzo+IdTNm/VJEvCi3PDMza24YZ/L7ArdGxPqIuB84Bzikz3waQllmZjYLw0jyuwAbel7fXoyb6VmS\nbpD0X5L2GEK5ZmZWI/tyTUPXAmMRcZ+k5wPnAU+cp7LNzLZYw0jydwBjPa+XFeMeFBE/6/n/Ykn/\nJGlpRPxk5sIkuTMdM7NZioi+l8SHcblmDfAESSskbQO8ArigdwZJIz3/7wuoX4LvWdm+w8knn1w6\nrW7IiW2z7MUYu1jX2+/Z22uxvucq2WfyEfGApOOAS0kHjVURsVbSsWlynAG8VNLrgPuBnwMvzy3X\nzMzqDeWafERcAuw+Y9zpPf+fBpw2jLLMzKy5RdXidXx8vJXYNstejLFtlu33vDhi2yx7S3vPqrue\nM98kxUJbJzOzhUwSMYc3Xs3MbIFykjcz6zAneTOzDnOSNzPrMCd5M7MOc5I3M+swJ3kzsw5zkjcz\n6zAneTOzDnOSNzPrMCd5M7MOc5I3M+swJ3kzsw5zkjcz6zAneTOzDnOSNzPrMCd5M7MOc5I3M+sw\nJ/k5MDo2hqTSYXRsrO1VNLMthJ/xOgckwerV5TOsXMlcvMexsVE2bJgqnb58+Qi33Xbn0Ms1s3ZV\nPeN16/leGZs7GzZM1Rxbyg8AZtZNQ7lcI+lgSesk3SLphIr5niHpfkmHDaNcMzOrlp3kJS0BTgUO\nAvYEjpD0pJL5/g74XG6ZZmbWzDDO5PcFbo2I9RFxP3AOcEif+V4PfAr4wRDKNDOzBoaR5HcBNvS8\nvr0Y9yBJvwEcGhH/DPS9OWBmZsM3X1Uo/xHovVbvRG9mNg+GUbvmDqC34veyYlyvpwPnSBLwaOD5\nku6PiAv6LXBiYuLB/8fHxxkfHx/CapqZdcPk5CSTk5ON5s2uJy9pK+Bm4ADg+8A1wBERsbZk/jOB\nCyPi3JLpriefUW5NsXNSrpm1a07ryUfEA5KOAy4lXf5ZFRFrJR2bJscZM0NyyzQzs2aG0hgqIi4B\ndp8x7vSSeY8ZRplmZlbPfdeYmXWYk7yZWYc5yZuZdZiTvJlZhznJm5l1mJO8mVmHOcmbmXWYk7yZ\nWYc5yZuZdZiTvJlZhznJm5l1mJO8mVmHOcmbmXWYk7yZWYc5yZuZdZiTvJkteKPLRpFUOowuG217\nFResoTw0xMwWh9HRUaampkqnj4yMcOedd87jGjUzdccUTFRMnyh/T1s6n8mbbUGqEnyT6bb4OMmb\nmXWYk7yZWYc5yZuZdZiTvJlZhznJm1mn7TpaXf1y19FuV78cSpKXdLCkdZJukXRCn+kvkvQ1SddL\nukbSc4ZRrlmuqgTQ9S//lmL91BQBpcP6jtcoyq4nL2kJcCpwAPA9YI2k8yNiXc9sn4+IC4r5nwr8\nJ/Dk3LLNck0ngH7U8S+/bRmGcSa/L3BrRKyPiPuBc4BDemeIiPt6Xj4C+PUQyjUzsxrDSPK7ABt6\nXt9ejNuEpEMlrQUuBI4ZQrlmZlZj3m68RsR5EfFk4FDg3fNVrpnZlmwYfdfcAYz1vF5WjOsrIq6Q\n9DhJSyPiJ/3mmZiYePD/8fFxxsfHh7CaZmbdMDk5yeTkZKN5FVF226kZSVsBN5NuvH4fuAY4IiLW\n9szz+Ij47+L/fYDzI2J5yfIid53aJglWry6fYeVK5uI9Sqordk7KXcwkld94pXvbS1LtPAvxPUuq\n7KCMifL1rtrH0I39LImI6Ltzsy/XRMQDwHHApcA3gHMiYq2kYyX9aTHbSyR9XdJ1wIeBw3PL7aqx\n0bHKOr1jo2P1CzEzKwylq+GIuATYfca403v+fy/w3mGU1XUbpjawmvLT8ZVTK+dxbcxssXOLVzOz\nDnOSNzPrMCd5M7MOc5I3M+swJ3kzsw5zkjcz6zAneTOzDnOSNzPrMCd5M7MOc5I3M+swJ3kzsw5z\nkjcz6zAneTOzDnOSNzPrMCd5M7MOc5I3M+swJ3kzsw5b0El+dHTXykfhjY7u2vYqmpktaEN5/N9c\nmZpaDxWP4J2aqn8osZnZlmxBn8mbmVkeJ3kzsw5zkjcz6zAneTOzDhtKkpd0sKR1km6RdEKf6X8k\n6WvFcIWkpw6jXDNbPKpqy7mm3NzJrl0jaQlwKnAA8D1gjaTzI2Jdz2zfBn4nIn4q6WDgo8B+uWWb\n2eJRVVvONeXmzjDO5PcFbo2I9RFxP3AOcEjvDBFxdUT8tHh5NbDLEMo1M7Maw0jyuwAbel7fTnUS\nfw1w8RDKNTOzGvPaGErSSuBo4LnzWa6Z2ZZqGEn+DmCs5/WyYtwmJO0FnAEcHBF3VS1wYmKi59Uk\nMJ67jmZmnTE5Ocnk5GSjeRVR3m1AowVIWwE3k268fh+4BjgiItb2zDMGXA68MiKurlleTK+TJKq6\nNQCRu/5zQRKsXl0+w8qVpestidWUx66kJra62AW5vdokqfQTJrq3vdJ3qtpcvefq73P1d1kSTFQs\nfKJ8vav2cSp58e9nSURE352bfSYfEQ9IOg64lHSNf1VErJV0bJocZwBvA5YC/6S0p++PiH1zyzYz\ns2pDuSYfEZcAu88Yd3rP/68FXjuMsszMtgRjY6Ns2DBVOn358hFuu+3O2uUs6F4ozWxhGR3dtajv\nvrmRkRXceed353eFOmzDhqmay6/lB4BeTvJm1pgbNC0+7rvGzKzDnOTNzDrMSd7MrMOc5M3MOsxJ\n3sysw5zkzcw6zEnezKzDnOTNzDrMSd7MrMOc5M3MOsxJ3sysw5zkzcw6zEnezKzDnOTNzDrMSd7M\nrMOc5M0WmbGxUSSVDmNjo22voi0gfmiI2SIzrCcG2ZbBZ/JmZh3mJG8PGh0tvwwwOupLAGaLkZO8\nPWhqqvxnftU0M1u4nOTNzDpsKEle0sGS1km6RdIJfabvLulKSb+Q9MZhlGlmZvWya9dIWgKcChwA\nfA9YI+n8iFjXM9uPgdcDh+aWZ2ZmzQ3jTH5f4NaIWB8R9wPnAIf0zhARP4qIa4FfDaE8MzNraBhJ\nfhdgQ8/r24txZmbWMt94NTObI2OjY+Utk0fH5mUdhtHi9Q6gd22XFeMGNjEx0fNqEhjPWZyZWSs2\nTG1gNf2bJ6+cWjnwcm+4If3dNFf2N4wz+TXAEyStkLQN8Arggor5VbfAiYmJnpUfz15BM7Mu2Xvv\n9HfTXNlf9pl8RDwg6TjgUtJBY1VErJV0bJocZ0gaAb4KbA/8WtLxwB4R8bPc8s3MrNxQOiiLiEuA\n3WeMO73n/ylg+TDKMjOz5nzj1cysw5zkzQY0OlZec2J0bH5qTpjVcX/yZgOa2rCBso7dp1YOXnPC\nbJh8Jm9mVmGx/2LzmbyZWYXF/ovNZ/JmZh3mJG9m1mFO8mZmHeYkb2bWYU7yZmYd5iRvZtZhTvJm\nZh3mJF9i19HR0gYQu46Otr16ZmaNuDFUifVTU0TJNE1Nzeu6mJkNymfyZmYd5iRvZtZhTvK2qI0u\nK793IonRZQvz/knVA57n8yHP1n2+Jm+L2tQdUzBRMX1iYd4/qXrAM+Q95Nmsl8/kzcw6zEnezKzD\nnOTNzDrMSd5aNzq6a/XN09Fd215Fs0XLN16tdVNT66G06RlMTWn+VsasY4ZyJi/pYEnrJN0i6YSS\neT4k6VZJN0jaexjlmplZtewkL2kJcCpwELAncISkJ82Y5/nA4yPiN4FjgY/klmtmZvWGcSa/L3Br\nRKyPiPuBc4BDZsxzCPBxgIj4CrCjpJEhlG1mZhWGkeR3ATb0vL69GFc1zx195jEzs2GLiKwBeAlw\nRs/ro4APzZjnQuDZPa8/D+xTsrw4+eST4+STT47tttsxSHfk+g4jIyuiysguI+Wxu4xUxq4YKY9d\nMVIdO7J8efV6L19eGrt8pDp2+UhF7PLydQZi+fKa9a54zyN173lkxcD7Kiu2Yh+3uZ+r9nFEe/u5\nah/n7ufa72NObMZ+rtrHbe7nqn0cUb+fd9hhuwdzJRBRkqMVKbEOTNJ+wEREHFy8fktR4Ck983wE\nWB0R/1G8XgfsHxGbtTmXFLnr1LOs8ibvEzCscqzY1hU1ZEDe3mZzRBIR0bca2jAu16wBniBphaRt\ngFcAF8yY5wLgj4uV2Q+4u1+CNzOz4cquJx8RD0g6DriUdNBYFRFrJR2bJscZEfFZSS+Q9C3g/wFH\n55ZrZmb1si/XDJsv1yxOvlxj1p65vlxjZmYLlJO8mVmHOcmbmXVYpzsoG9llpPTJQCO7uMGtmXVf\np2+82vzxjVez9vjGq5nZFspJ3sysw5zkzcw6zEnezKzDnOTNzDrMSd7MrMOc5M3MOsxJ3sysw5zk\nzcw6zEnezKzDnOTNzDrMSd7MrMOc5M3MOsxJ3sysw5zkzcw6zEnezKzDnOTNzDrMSd7MrMOykryk\nnSRdKulmSZ+TtGPJfKskTUm6Mac8MzObndwz+bcAn4+I3YEvACeWzHcmcFBmWWZmNku5Sf4Q4Kzi\n/7OAQ/vNFBFXAHdllmVmZrOUm+R3jogpgIi4E9g5f5XMzGxYtq6bQdJlwEjvKCCAk/rMHsNYqYmJ\niQf/Hx8fZ3x8fBiLNTPrhMnJSSYnJxvNq4jB87KktcB4RExJGgVWR8STS+ZdAVwYEXvVLDNy1sna\nIU0f+0vnwPvVbG5IIiLUb1ru5ZoLgFcX/78KOL9qPYrBzMzmSW6SPwU4UNLNwAHA3wFIeqyki6Zn\nknQ2cCXwREm3STo6s1wzM2sg63LNXPDlmsXJl2vM2jOXl2vMABgZWcHGK3KbD2m6mc03n8mbmS1y\nPpM3M9tCOcmbmXWYk7yZWYc5yZuZdZiTvJlZhznJm5l1mJO8mVmHOcmbmXWYk7yZWYc5yZuZdZiT\nvJlZhznJm5l1mJO8mVmHOcmbmXWYk7yZWYc5yZuZdZiTvJlZhznJm5l1mJO8mVmHOcmbmXVYVpKX\ntJOkSyXdLOlzknbsM88ySV+Q9A1JN0l6Q06ZZmbWXO6Z/FuAz0fE7sAXgBP7zPMr4I0RsSfwLODP\nJT1pkMImJycHXc+s2DbLXoyxbZbt97w4Ytsse0t7z7lJ/hDgrOL/s4BDZ84QEXdGxA3F/z8D1gK7\nDFLYlrZzFmtsm2X7PS+O2DbL3tLec26S3zkipiAlc2Dnqpkl7QrsDXwls1wzM2tg67oZJF0GjPSO\nAgI4qc/sUbGcRwCfAo4vzujNzGyOKaI0L9cHS2uB8YiYkjQKrI6IJ/eZb2vgIuDiiPhgzTIHXyEz\nsy1URKjf+Noz+RoXAK8GTgFeBZxfMt/HgG/WJXgoX1EzM5u93DP5pcB/AsuB9cDhEXG3pMcCH42I\nP5D0HOBLwE2kyzkBvDUiLsleezMzq5SV5M3MbGFzi1czsw5zkjcz6zAn+XlQdP+w1yxjdmsyriJ+\nG0l7SXqqpG1mU3afZT0iJ94WPu/j7lrQSV7SeyXtIOkhki6X9ENJRzWMvbzJuJLYx0m6UNKPJP1A\n0vmSHjfLdZ8s1n0pcB3wUUkfmMUiPt1n3Kcalv1C4L+BDwGnAt+S9PxZlD3TNwcNHLQLiyL2pozY\nizNizxg0dghlvz0j9uhBY2lpHxfxbe3nnG2d+xkZeF9JOnA28+dWoZxrvx8RfyXpxcB3gcNINXX+\ntSxA0sOAbYFHS9qJ1HgLYAead6dwNnAa8OLi9SuAfweeOYt13zEi7pH0GuDjEXGypBvrgoovzJ7A\njpIO65m0A/CwhmW/H1gZEd8qlvl44L+A0i+EpDeWTQJyzvIuBcYqyj2sbBIwWrVgSftUxO5dE7u0\nIvYFVbG5Zdd4DfDOAWPfAZxZNrGtfVyU3cp+rlG5rXM/IzUq91WNVdRs714LPclPr98LgU9GxE+l\n2mr0xwJ/AfwGcC0bk/w9pLPaJraNiE/0vP5XSW9uGDtt66Iq6eHAX88ibnfgD4BHAn/YM/5e4LUN\nl3HvdIIvfLuIr/K3wN+TOpSbqfIXn6QPlU0ivY8q/wH8G/1bS9cd1NYAX2TjPu5VV+4PSdV+e2Oj\neF3ZPUdu2ZLuKZsEPLwmtuxEQWzaMr2ftvYxtLSfc7Y1mZ+RnH0l6YKK2EfVld1roSf5iyStA34O\nvE7SY4BfVAUUDa4+KOn1EfHhsvkkHRgRl5VMvljSW4BzSDv15cBnp4/sEfGTBuv+TuBzwBURsaa4\n3HNrXVBEnA+cL+lZEXFVxfqfGBHvKZn8VUmfJbVhCOBlwJrps6mIOLdPzHXAeRFxbZ+yXlOz2kcD\nbwJ+2WfaETWxNwLvi4iv9yn392pi1wLHRsRm21XShprYbwMHRMRtA8Tmln038Izpfp9mGTsCHATc\nNTMUuLImtq19DO3t55xtnfsZydlXzwOOAmZ2ASNg3wZlbxQRC3oAlgJbFf9vB4z2TDswY7nXVUz7\nTsXw7SG9rxMz46vW/8yK4WMlMbsDjy6ZNlKzLl8Anl22LWtinweMlUx7ek3sS4HdS6YdWhP758DT\nSqa9vsH2zyn73cC+JdNOqYldBTy3ZNrZNbGt7OOW93POts79jOTsq4tJl1z7TftSXdm9w6JuDCXp\nuogou15XF3t9RPzWgLFVvwKaLmPgdS/ic9a/6lfAIMtbCvwiIu4b1jJtYfE+XrwWdO2aBnL6uck5\nup2SETstt4+enPV/2WxmrqtJEBE/mYsvf1s1TWZbe2HIZefURhr45mlb+7gou639nLOtcz8j81Zl\ndbEn+bZ+hgyjE7Xcdc9Zh81iJS0tGR5FRk2CnCpupNoPg3pHRuyqjNjcsi/NiK2sBrlA9zG0t59z\ntnXuZySnyuqsqpwu9BuvA5G0BNgvIqpubnw3o4hhHFxyDxSfzIjtt/4D1yTIrMrYSk2T3NoLmWUP\nXFMlsxpkK/u4iG9rP+ds69zPyMD7KqfK6UwLNsnnJOqI+LWk04DSa9YRUbYR50vfJF3z0zUi4l3F\nP3+bUXa/A0xOTYKcqoxt1TTJrb2QU3ZOTZWBq0HS3j6G9vZzzrbO/Yzk7KucKqebWLBJfgiJ+nJJ\nLwHOjVncXc79FTCEJP3/+ozblvST9lHAuyqW31S/A8w/AjsBmyUA4L01y8up4vZxYAWw2Zef1Cit\nykXAI6J4hvCMcidrYq8G7ouIL/aJvbkmNrfsNcDX+33GJE3UxOZUg2xrH0N7+zlnW+d+RnL2VU6V\n003nX8i1ayS9D7iK2SdqAQ8UL39FqlsvUpLdoUF8Ts2VN/UZ/WCSjojGN1wkbQ8cD/wJqc77+yPi\nBxXzNzrA5OhXs0jSS4GbImKzD76kQyPivCGUu2dEfGPA2J0iYuZZ4LzoV3ZOTRVJuwM/jogf9Zk2\n0u9MeYAyWtnHxbKGup/brBWUs68kPQ9YX/Kr6+kR8dXGKzKb+pbzOZCS8q+L4X9ILVbvBe5pGP/1\njLLfB7yE4iCYsZztSc/C/Q6pRs7ODeOWkur3fgeYAHZqGPemPsPbSNdhfzak/VJaP79B7KtaKjcn\n9qoWt9enM2I/vNj2ccv7OWdb535GcvZVbXubBVu7JtI7+GZELImIbSJih4jYPhqciReulfSM2ZZb\n/Ap4I+mSxi8l3SPp3oobR/2WsVTSu0k/ubYG9omIE6LiLLwn9u9JPzHvBZ4aERPR8Cw0It4/PQBn\nkG5oHUNquTurDtaqVjEj9viWys2JndX1zyGXnbPPnpMR29Y+zi27rW2d+xnJ2Ve11aEX7DX5wrWS\nnhERawaIfSZwpKT1pOvc05drKrv8jYiQ9M2IeMoAZU4n6cNISfapETHzpk2d6ZtEJwF/rY199TS6\n3FT8PH0jcCRwFukAM8xLFTnX99pq19BWbNtlt1Fum+0/FmNsrtrtvdCT/ECJunBQRrk5B5esJB0R\nA/+6GsIBZq4t3BtANizex/Ordnsv9CQ/cKKOiPUZ5Q58cMlJ0kOQdYBp6LsZsTlnef/TUrm5Z6Zt\nlZ0T+92WyoXFuZ8X9mck54ZBVwdSVa/NhrbXa57e+8NIl3vOJT245C+Bhw1p2afWTD8M+ACpP/wX\nz3LZ+wBvAF5PukTVO21pRdxmnVT1jgOeUlPuJ6rG1ZR9fNU40vMUymJfVjUOeHVVLLB98f9Jxb7e\np2z+Ie/j5wDbFf8fVezvFQ2X/XjgocX/48X+fuQ8bOvcz0jOvnpO1TjgrbXbbRg71kN3BlJVzVXA\nymL4KKkv/yaxjwI+TKoffC3wQVK10Sax/0RqZn50MVwCnNYw9u3ATaQm7u8Avgac1DB2sxoZwI2z\n2F7XzXi9FanCwKBlX58R26h2yfT7A54LTJKe1/CVhrHHkx5go+Jzcl1VguxXdhH7NOB6Uk+PX2wY\newPp6sMTgFtIDY0+29K2HvgzMst9NXDs9LDQL9fY/HtKROzR83q1pKb9bJxDenLXS4rXR5Ja7jVp\nvPG7wJOj+BRLOgtoWl/6SFKXsL8oYv+OlBDeXRYg6XXA/wIeN6PZ/PbA/60rUNKJwFuBh/fUvBLp\nckNlZ1+SjgD+CNhtRtP57YHKZxUoPcbxBcAuM5rs70D/lpX9TLcheSFwRkT8V1EbrIljIuKDkg4i\nNax6JfAJmvcD86uICEmHkM76V0n6k4axv46IXyk9Ke7DEfFhSddXBWRu69zPyMD7StKzgGcDj5nR\nPcIOpBOJxpzkbabrJO0XEVcDSHom0LThxWNj0wZX75b08oax3yI90mz6XsryYlwT3yNdZpp+oMxD\ngTtqYs4m9dn9HuAtPePvjZ6HwpQ1pIrUVfN7JL0nIk4sK6Skcc+VwPeBR5MuTT1YNulMt8r3SPvj\nRaRfS72xf1kTO+0OSacDBwKnSHoozTsrnL4G/ALSZalvSPWPa+tdz+IAeRTwO0UL84c0jL2/SNqv\nYuNT0+pic7Z1o89IhZx9tQ2pf5utSQeVafeQ+tdvbEG3eLX5J2kt6eES0y3txoCbSWceERU3n5Ue\nVH4N6ZIPpA/jvhHxvxuU+0XgGUV8kPoG+SrwU1LBL6qIPa+IvayIPbBYzu1F7Bvqyq9Ydm6//znP\nPLgqIp5VMu0hEXF/ReynI+IlJdO2BQ4mtWC9VekxlU+NiEuL6aUthCWdSXpW8m6kSy5bAZMR8dsN\n39Mo6cx6TUR8WdIYMB4RH28QuwfwZ6TGR/8uaTfg8Iho1PW3pBHS5wTgmmjQbqUn9mmkvmwAvhwR\nX5tF7ENIB8cnFqNurtp3M2JXRMR6FV0TxwA15pzkbROSVtTMck9FAriX9PSu6csBW7GxL56Iito9\nkvavKjT69B/SE/uqmtizqqZXyeniIje+xdjSA1Nx5r036Qlpdyt1U7xLRNxYTB+4W4IivvTA1iC2\n6sD2MlJL9klSwn0e8OaI+FSD5b4B+FPSDWqAF5Muc5U+XnRG/P6kvnu+W5S9nNQy+EsNYp9Cuhw2\n/VDxHxWxm/VpU2o2F/A9eCCv6fieGbEDNx0nr8n6wO93CNurrdhGNyTnaHvllF0aS7oZv3PP68cA\nX2u43BspagQVr7djdjder6Xn8YWkM/prG8ZeSc9jAEm1iq6czXZZsN0a2IKVU6f3ExmxOU3Hh9Wl\nw5aiiy1el8Sml2d+zOzuQzzQ8/oBZvc+HxI9HbtFxC00vw+xXUSs7omdJB1kGvONV5utTnRrIGm3\niPhOg9gtsXFPjoV6/fcSSZ8D/r14/XLSTdUmzgS+IukzxetDgY/NouyvSvoX4F+L10fSvDLDtyW9\njY0nSEeRngvQmJO8zaeFlAA+Bfy2pMsj4oCK+aqmASBpL2BXer5PEXFu8Xe/jHV8ZUbsCTNHzOOB\nLcecHNgi4s1KT1t6bjHqjIj4TNn8M2I/oNRv/XTs0RFRWXVzhteR2gNMVwD4MnBaw9hjSG0/ziV9\nf75MakfSmJO8AYsiAQz7y79E0luBJ6rPY9oi4gPF37q61B8D9iLV6f/1dDgbb9JVxd7L5ge+n5LO\n8t4UFTfXJP0mqWrfHvRcyoqIxxV/+9VbH9qBrULOLxcY8oFtmqRTIuIEevZLz7hKkj4REa8kNfya\nOa6JPys+Tx/oiT+e1Fiwzu/FjNphxU3kxo//dO0aA0DStRFRmwAkLa1LfBWxVw96ZivpKVVJryb2\n92cmPaUHOhwK/AXwkZkxEdHoAdFFj6V71M/ZN/ZdpGqeZ5MORK8gNd2/DnhdRIxXxF4BnAz8A6nO\n+NGk686lD44pGg59knRm+Q8zp08f2Bqsd+kvlwaxdQe20ksRdQe2mnI3qzEk6cZo0B/VzFhJW5Gq\nnzba7yVlN6r9VBI7q2q5PpO3acM6sx3o0sV8n9UWN8JOKb7oTa/N9nOVpD0iommr4F4vioin9bw+\nQ9INEXFCsS+qPDwiLpekSJ3xTUi6ltTFQ5lXkA5sMxvYNJbzy6Xwj5Qf2D5Gqj1S5kw2HthWUhzY\natZ34FarymjVXMS33bIZcJK3jdpOAPP65Z8WERdLeiGwJ5seIN7ZJJ5U//kqSXeSegCdTXfY90k6\nnHQZBVLjselWu3U/sX9Z1Fm/VdJxpBa+lY+WHNKBbb9Bf7kU5vvANnDL5shr1Qztt2xOZlPf0kP3\nB+D5GbGNOuYqid2szjJwQ9m0GfNdW/y9aea4BuV+hJSoN5AOFDcBq2ax3t8qvoi7McseS0lVOy8k\nNXD5YfH/E0hP9HpuTewzSEl9Gekg92lSAm663i8E/oqUIN8OvL1h3Cpgj4z9fBVwOOkgvKT4/+re\n/V0Re2URcy5wHKlR0s2DrsuMZbfSJmF6m1RMe0hNbG0bEJ/J2yYi78w259LFvJ7V9nh2ROxVnN2+\nQ9L7aV7qMZ4bAAAGbUlEQVS1DuCHEXFB/Wybi3T9+Q9LJl9REzv9QJufMcvaFpI+Qnq4/ErgX0jb\n+pqG4Tm/XCBVH/wgqdfRAK4GjpL0cFLirnJ8sd5vAN5VrH9la+dZaLO6amkbkKjv/qD2foSTvG2i\nxQTQ1pd/+kByn6TfIF0rfWzDWIDrJZ1NOgv/5fTIaHAjUtJjgNey+T2MYxrEXkbqk/zu4vVOwDkR\n0eRBOzkHtlWkGjA3sfGSXGNtHdgamKtGWK2X7SRvM7WSAFr88l8o6ZGkvsmvI31pPjqL+IeTkvvv\n964Sze5DnE+q9/x5Nm1R2cSjpxM8QETcJWnnhrE5B7aBf7lAqwe2LZaTvM3USgJo8cu/DnggIj6t\n1MvhPsB5Tdc7InLOKLeNBvW0S/xa0lhE3AYgaVeanxHmHNgG/uVSmNcD2zy1/8htGzCnl4qc5G2m\nthJAW2e1b4uIT0p6LunBJe8D/pn0nN9akpaRnob1nGLUl0mPlbu9QfhFkl4QEZ9tuK69/hq4QqmL\n5uleFf+0YWzOgS3nlwvM/4FtKA3ABq0a3NCcNACb5iRvM7WVANo6q+19StJHY3ZPSYJUs+Vs0nNT\nIfUtciapT/s6xwMnSvof4H423sOofeB6RFwi6emkxH49aR/9vOE6D3xgy/zlAvN/YMtu/5HbNmC+\n24DM5CRvM7WVANo6q815ShLAYyLizJ7X/0fSXzSM3ZF0w3m3iHin0gM0Gl0ak/Qa0kFiGelRh/uR\nqif+boPwgQ9smb9cYP4PbNntP8hvG9BKG5AH5dTv9NC9gaJPbtLZwx/1jmsQuwz4DPCDYvg0sKxh\n7L2k5PNz0iPO7iU9oKTpeu8MnERKXC8Ffqdh3LbAYcBvFq8fy+weTH056ex9q2I4Cri8Yew/kzqq\nWlu83on0xKQmsTeRzuym2xI8CTi3YexFwOmk3gwfSXpcYtO+1S8rEs3WxfBq4LJZbK8lpMsTby9e\njwHPbBj7muJ93wWsLj4rX2gYm9P+I7dtQCttQB6cf9AV99DNoa0E0NaXfwjbawVwAakx0w9IZ5fL\nG8ZeV/y9vmdc0229pvh7A/DQ4v9vNIwd+MBGnwZL/cZVxLdyYCvmH7QB2P6kyys3k1qq3sTsHhrS\nagOwOf8SeFhcQ1sJoM0vf+b2OgvYqef1UuBjDWO/Qjr7n072j6H5r6bPkA7CE8CXSDeuPzsP73fg\nXy5FfFsHtoFbNpPRqrmIb61lc4STvIchDjkJoK0v/xDe82ZJeRaJ+kjSr4Dbgb8hnSm+bIB12L9I\nQtvMw/sd+JdLEd/KgY3izLvn7yNID+RuEjvwoycXwuAbrzZMx5Buyv0DqTbBlaRLNk3cX3ThGvBg\nvfmmDapuL6p9ngdcJukuYP0s1jvHkt7OrSQtpWGFhoj4t6KDrQNIN+QOjYi1s12BqHjI+Rx4J+lB\n0r3v932kfd/Eh0jJemdJf0O6f3JSk8CIeHHx74Sk1aQb15c0LDen/UdW24C2G4A5ydsw5SSAtr78\nud5P6sph+iEOLyOdlTcSEetI1VYXi72ip7fGiPiJpNp+0Xvmb+vAltP+I7dtQFttQAAneRuugRPA\nIj2rJSI+LumrbKy6eFgM1kHbYjHwL5dpLR3YBm7/EfltA9pqAwI4ydtwZSWARXhWC0CR1Luc2Htl\n/XJp0cDtP4bQNqCtNiCAH/9nQyTpj0lP0tkkAUTEJ8qjbLEpzoSnf7l8YTH8clHxuD1J7yHVOT9b\nzR/BdxmpIdP05/go4MiIaNKqebrF67akPm5m1QCsiN+ZjQ3AHg78ICK+1CQWnORtyBZjArDuk3QR\n6TkDB5Iu1fwcuCY2fUpVWewNEbF33biK+CX0adkcEV9pENu3ZXNENGnZDMy2eaxZjYj4ZkScWgxO\n8LZQHA58DjiouJG5FHhzw9gfSzpK0lbFcBTw41mUfRopOR9RvL4XOLVh7PGkuvLrI2Il8FvA3dUh\nm/I1eTPrvIi4j57aMBHxfdLzV5vIqRoMqeX2PpKuL8q+S9I2DWN/ERG/kISkh0bEOkm7z6JsJ3kz\nsxq5bQNabQPia/JmZhX63aBtetO2mPdI4OWkewFnUbQBiYhPVgZuvpz9KdqARETjB5X4TN7MrFpu\n1eBW24A4yZuZVctuG9BmGxBfrjEzq7GYqwY7yZuZdZjryZuZdZiTvJlZhznJm5l1mJO8mVmHOcmb\nmXXY/weG6b6pbFmIxAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "combined.corr()[\"sat_score\"][survey_fields].plot.bar()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There are high correlations between `N_s`, `N_t`, `N_p` and `sat_score`. Since these columns are correlated with `total_enrollment`, it makes sense that they would be high. \n", "\n", "It is more interesting that `rr_s`, the student response rate, or the percentage of students that completed the survey, correlates with `sat_score`. This might make sense because students who are more likely to fill out surveys may be more likely to also be doing well academically.\n", "\n", "How students and teachers percieved safety (`saf_t_11` and `saf_s_11`) correlate with `sat_score`. This make sense, as it's hard to teach or learn in an unsafe environment.\n", "\n", "The last interesting correlation is the `aca_s_11`, which indicates how the student perceives academic standards, correlates with `sat_score`, but this is not true for `aca_t_11`, how teachers perceive academic standards, or `aca_p_11`, how parents perceive academic standards." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Exploring safety" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEQCAYAAACeDyIUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXt8HXWZ/99PLifnJG1acEOBtibcChWotFrEBTXlUsRl\nK4Jauroukp8uIFLUdS11F6qIgqw3drdWMFJdbKmuslJlSenaqF0v6WK1aKiUhUSo2ERZq9XQpu3z\n+2PmNOcyczJz7mfO83698srJN5OZ75wk388816+oKoZhGIYRloZKT8AwDMOoTUxADMMwjLwwATEM\nwzDywgTEMAzDyAsTEMMwDCMvTEAMwzCMvCipgIjILBH5toj8XEQeE5F3u+MfF5HHReQnIvI1EWlP\n+ZmbRGSX+/3FKeMLRGSHiDwhIp8u5bwNwzCMySm1BXIQeK+qng68ErheRE4DNgGnq+pZwC7gJgAR\neQnwZmAucAmwWkTEPddngR5VnQPMEZGLSzx3wzAMIwclFRBV/bWq/sR9vQ94HJipqptV9bB72A+B\nWe7rJcD9qnpQVYdwxOVsETkWmKqq29zjvgRcVsq5G4ZhGLkpWwxERLqAs4AfZXzrauAh9/VM4JmU\n7+12x2YCz6aMP+uOGYZhGBWiLAIiIlOAfweWu5ZIcvyDwLiqri/HPAzDMIzi0VTqC4hIE454/Juq\nfiNl/CrgdcD5KYfvBmanfD3LHfMb97qeNfcyDMPIA1WVyY+aoBwWyBeAQVX9THJARF4LvB9Yoqr7\nU459ELhSRGIicgJwMjCgqr8G9orI2W5Q/W3AN/BBVSP7ccstt1R8DnZ/dn/1dm/1cH/5UFILRETO\nBd4CPCYi2wEFPgjcBcSAR9wkqx+q6nWqOigiXwEGgXHgOp24s3cBa4E48JCqPlzKuRuGYRi5KamA\nqOp/A40e3zolx898DPiYx/ijwJnFm51hGIZRCFaJXmN0d3dXegolxe6vdonyvUH07y8fJF/fV7Ui\nIhq1ezIMwyg1IoJWYRDdMAzDiCAmIIZhGEZemIAYhmEYeWECYhiGYeSFCYhhGIaRFyYghmEYRl6Y\ngBiGYRh5YQJiGBFkdHSUbdu2MTo6WumpGBHGBMQwIsb69Rvo7DyNiy66hs7O01i/fkOlp2REFKtE\nN4wIMTo6SmfnaYyNbQHmATtIJBYxPLyTjo6OSk/PqGKsEt0w6pyhoSFisS4c8QCYR3NzJ0NDQ5Wb\nlBFZTEAMI0J0dXVx4MAQsMMd2cH4+DBdXV2Vm5QRWUxADCNCdHR00Nu7mkRiEe3tC0gkFtHbu9rc\nV0ZJsBiIYUSQ0dFRhoaG6OrqMvEwApFPDMQExDAMw7AgumEYhlE+TEAMwzCMvDABMQzDMPLCBMQw\nDMPICxMQwzAMIy9MQAzDMIy8KKmAiMgsEfm2iPxcRB4TkRvc8aNEZJOI/EJE+kRkWsrP3CQiu0Tk\ncRFZnDK+QER2iMgTIvLpUs7bMAzDmJxSWyAHgfeq6unAK4F3ichpwApgs6qeCnwbuAlARF4CvBmY\nC1wCrBaRZF7yZ4EeVZ0DzBGRi0s8d8MwDCMHJRUQVf21qv7Efb0PeByYBbwe+KJ72BeBy9zXS4D7\nVfWgqg4Bu4CzReRYYKqqbnOP+1LKzxiGYRgVoGwxEBHpAs4CfgjMUNU94IgMcIx72EzgmZQf2+2O\nzQSeTRl/1h0zDMMwKkRZBEREpgD/Dix3LZHMXiPWe8QwDKPGaCr1BUSkCUc8/k1Vv+EO7xGRGaq6\nx3VPjbjju4HZKT8+yx3zG/dk1apVR153d3fT3d1d4F0YhmFEi/7+fvr7+ws6R8mbKYrIl4DfqOp7\nU8buAJ5X1TtE5APAUaq6wg2ifxl4BY6L6hHgFFVVEfkhcAOwDfgWcJeqPuxxPWumaBiGEZKq68Yr\nIucC3wUew3FTKbASGAC+gmNVDANvVtXfuT9zE9ADjOO4vDa54y8D1gJx4CFVXe5zTRMQoyxYy3Qj\nSlSdgFQCExCjHKxfv4GenuuIxZwdAHt7V7Ns2dJKT8sw8sYEBBMQo/SMjo7S2XkaY2NbcPYe30Ei\nsYjh4Z1miQTALLfqxPYDMYwyMDQ0RCzWhSMeAPNobu5kaGiocpOqEdav30Bn52lcdNE1dHaexvr1\nGyo9JaMAzAIxjJCYBZIf9r5VN2aBGEYZ6OjooLd3NYnEItrbF5BILKK3d7UtgpNgllv0MAvEMPLE\nfPnhMAukusnHAil5IaFhRJWOjg5b+CYhU2R7e1fT07OI5uZOxseHzXKrccwCMQyjJPilOpvlVp1Y\nGi8mIIZRLApZ6M1dVXtYEN0wjKJQaLqtBczrA7NADMNIoxjWg1kgtYdZIIZhFEwxrAdLda4PzAIx\nDCONYloPFjCvHSyN1zCMgilmuq2lOkcbs0AMw/DErIf6wtJ4MQExooEt3ka5sSC6YUQA61hr1Apm\ngRhGFVHP6a9mdVUWs0AMo8appgK80dFRtm3bxujoaMmvZVZXbWICYhhVRFeX0zcKdrgjOxgfH6ar\nq6us8yjngj46OkpPz3WMjW1h795HGRvbQk/PdWURLqMwTEAMo0wEeaKvhgK8ci/o1WR1GeEwATGM\nMhDmiX7ZsqUMD+9k8+bPMTy8k2XLlpZxpuVf0KvF6jLCY0F0wygxtRYYr8R8k63fUwsXyy2c9Y5V\nohtGFZJ8oh8by36ir0YBqcTGT8uWLeXCC8+3LKwao+QWiIj0ApcCe1R1njv2UmANEAfGgetU9X/c\n790EXA0cBJar6iZ3fAGw1v2Zh1T1Rp/rmQViVBW1ZoEksbTa+qJa03jvBS7OGPs4cIuqzgduAe4E\nEJGXAG8G5gKXAKtFJHlDnwV6VHUOMEdEMs9pGFVJNQTG86Gjo4OFCxdW/TyNylFyF5aqbhWRzozh\nw8A09/V0YLf7eglwv6oeBIZEZBdwtogMA1NVdZt73JeAy4C+0s7eMIqDuWiMKFKpGMh7gD4R+QQg\nwJ+74zOBH6Qct9sdOwg8mzL+rDtuGDWDdaY1okalBORanPjGf4jIG4EvABcV6+SrVq068rq7u5vu\n7u5indowDCMS9Pf309/fX9A5ypLG67qwNqYE0X+nqtNTvv87VZ0uIisAVdU73PGHcWIkw8AWVZ3r\njl8JvEZVr/W4lgXRDcMwQlKtQXRw3FSpE9stIq8BEJELgF3u+IPAlSISE5ETgJOBAVX9NbBXRM52\ng+pvA75RprkbhmEYHpTchSUi64Bu4EUi8ksci+IdwF0i0gi8ALwTQFUHReQrwCAT6b1Jc+JdpKfx\nPlzquRuGYRj+WCW6YRglw2pJaodqdmEZhlFnWIv26GMWiGEYnhRiPdRq9X09YxaIYRhA4ZtBFWo9\nWIv2+sAExDAiRqGLfzH2A7EW7fWBCYhhRIhiLP7FsB5qtf+XEQ5r524YEaIYrePTrQcnfpGP9WD9\nv6KPCYhhRIhiLP7F3A/E+n9FG8vCMowKUoo6iWLt7mc1HPVFPllYJiCGUSGSC30s5lgNxdzG1RZ/\nIywmIJiAGLWB1UkY1YbVgRhGjWB1EkYUMAExjApgdRJGFDABMYwKUOo6iUIr0Q0jCBYDMYwKUsos\nrFIE543oYkF0TECM+qYcwXnL8IomFkQ3jDqn1MF5a9FupGIWiGFEiFJaIJZ6HG3MAjGMOqeUwXlL\nPTYyMQvEMCJIKeIUZoFEm3wsEGumaBgRpBRNDHM1WbTAen1iFohh1BHFWOgzz2Fpw9HA0ngxATGi\nS6GLfykWenNrRYeSBNFFpFVE/lFE7nG/PkVELs13koZhhCds+mxmJXoxdir0wgLr9U2QLKx7gf3A\nK92vdwMfCXoBEekVkT0isiNj/N0i8riIPCYit6eM3yQiu9zvLU4ZXyAiO0TkCRH5dNDrG0atE3bx\n9xKbUi301tOrvgkiICep6seBcQBV/RMQxsy5F7g4dUBEuoG/BM5U1TOBf3LH5wJvBuYClwCrRSR5\nrc8CPao6B5gjImnnNIyoEmbx9xObKVOmlGSht73P65sgAnJARBKAAojISTgWSSBUdSvwfxnD1wK3\nq+pB95jfuOOvB+5X1YOqOgTsAs4WkWOBqaq6zT3uS8BlQedgGLVMmKd8P7HZt29fyRb6ZcuWMjy8\nk82bP8fw8E4LoNcRQdJ4bwEeBmaLyJeBc4GrCrzuHODVIvJRYAz4O1V9FJgJ/CDluN3u2EHg2ZTx\nZ91xw4g8YfYoz7Un+sKFC7nwwvNLkm5re5/XJzkFxHUf7QQuB87BcV0tT7EYCrnuUap6jogsBL4K\nnFjgOY+watWqI6+7u7vp7u4u1qkNoyIsW7Y00OI/mdjYQm8k6e/vp7+/v6BzTJrGKyKPuXGK/C8i\n0glsVNV57tcPAXeo6nfcr3fhCNQ7AFT1dnf8YRwLaBjYoqpz3fErgdeo6rUe17I0XqPuKUW9hxFt\nStUL68eulVAIQnrg/T+A8wFEZA4QU9XfAg8CS0UkJiInACcDA6r6a2CviJztWkVvA75R4JwMI7J0\ndHSwcOHCvBd+67prBCGIBbITZyEfBv6IIwSatCYmvYDIOqAbeBGwB8ei+Dec7KyzcALy70uxRm4C\nenCyvpar6iZ3/GXAWiAOPKSqy32uZxaIYRSAFQfWJyWpRHfdT1mo6nCYC5ULExDDKIxt27Zx0UXX\nsHfvo0fG2tsXsHnz51i4sFBnhFGtlMSF5QrFdJy6jb8EplereBiGUThWHGgEJUgrk+XAl4Fj3I/7\nROTdpZ6YYRiVwYoDjaAEcWHtAF6pqn90v24DfhA0BlJuzIVlVJqoZC9F5T6MYJQqC0uAQylfHyJc\nKxPDqBuilL3kl8mV2ajRqF+CWCDvBf4GeMAdugxYq6pV2dDQLBCjUtRD9pLt/RFdShVE/yTwduB5\n9+Pt1SoehlFJ8ul4W0tP86VqCW/ULkGC6OcAu1T1LlW9C/hfEXlF6admGKWl2It32OylWnN32d4f\nRhaqmvMD2I7r6nK/bgB+PNnPVerDuSXDyM26dfdrInG0Tpu2QBOJo3XduvuLet729vk5zzsyMqKJ\nxNEKP1VQhZ9qInG0joyMFGUepaAW52wEx107Q623QWIgP1HVszLGdqhlYRk1SqljFUGyl2q1WC8Z\nA0lt1GgxkGiQTwwkSDv3p0TkBpwNnQCuA54KOznDqBaSrpixsWxXTDEExK/jbaqw5Gq7Xs0E7Qps\n1AdB0nivAf4cZ2+OZ4FXAO8s5aQMo5RUotI6M96xefO3a7ZYr9BGjUZ0mNSFVWuYC8sIQjldMblc\nZoA9zRtVQamaKX4c+AjOzoEP4/wHvEdV78t3oqXEBMQISrkqrWs13hF1rNI+nVJVoi9W1d8DlwJD\nOK3d3x9+eoYRLYKmAVtzwuqj1lKoq5bJ0rSAn7mfPw+81n3907DpXuX6wNJ4jQAUmsYb9ueDpvca\npcfSkb2hRGm8t+O0LxkDzsZp7f5NVa3KYkJzYRmTUWgab74/by6T6sBcit6UqpXJCpwsrJer6jjw\nJ+D1KRe9KOxEDaOSFFpRne/Pe2Uv1VIrk6hgLsXiESQGgqo+r6qH3Nd/VGeP8iR3lGRmhlEiCl1A\nirUAhfXDm9gUB9vvpIiE9XllfgDbCz1HMT+wGEhFGBkZ0YGBgZrxIxcak8j180Hei7B++FK1Xqln\nau1vttSQRwykGAt2VfXFMgEpP7W6uHktIGEWFa9jc70XqccPDAzotGkLXPFwPtrb5+vAwIDndSoR\n9LUFtr4wATEBKTtRymhJLv5Tp87XlpbpumbN3Ue+V6hVkSksa9bcHfh9CyM2xaJWHwqM/CmJgAAt\nucaAr4e9aCk/TEDKSyUWt1LgtfhDQtesuTvwYur3XvT19XmKxZo1d2tLyzRtaTlRW1qmVU3n3ig9\nFBjByUdAggTRf5BrTFUvDx95MaJCVDJahoaGaGrqJDWzCk7hhhveG3gTJb/3AvDM2rr33rXs33+A\n/fsb2b//AGvXftFzbuUO+tq+H0Zg/JQFOBZ4GfA4MB9Y4H50AzuDKhTQC+wBdnh8733AYeDolLGb\ngF3udRenjC/A+c98Avh0juuVRp4NX6JQJDcyMqItLdMzLJCjNZE4UdvaXhrYwvJ6L0ZGRjQWm5Z2\n7qamKQqJLItn69atOedYjpiEWSD1CcV0YeHsg74F+IP7OfnxIHB54AvAecBZmQICzMLprfV0UkCA\nuTgbWDUBXcCTTPTr+hGw0H39EHCxz/VK9w4bvkQh4Lpmzd3uoj5P4WiFOzQen67Nze1pi2ksNm3S\nWEjqezEyMqLNzVMUjlKYr3CUNjS0KJySJkxwst58883lut2cROGhwAhHUQVEJxbkK8Ke1OMcnR4C\n8lXgzAwBWQF8IOWY/8RpH38sMJgyfiXwWZ9rFft9NeoIJy7RrlOmnHEkTpG5+Dc3TwkllBOxkUGF\ntQqD2tZ2emgLpNxE4aHACE4+AjLphlKq+jUR+QvgdCCeMv7hyX7WDxFZAjyjqo+JpFXOzyQ95rLb\nHTuIsxdJkmfdccMoKpdffhknnNAJwPz58xkaGqK1dQ57994HDABnk0i8JdTmU11dXfzpT7uAc4ET\ngKc5cGCc0047iZ07z8H5U97NmWeeyrnnnluS+8oHv42xDCPJpAIiImuAVmARTkPFN+L8J+WFiCSA\nlUDJWqCsWrXqyOvu7m66u7tLdSkjQiT3CInFnGB4b+9qLrzw/KzFf2xsPHSSgEgD0E+ydxa8iqGh\nZ3G8sW3AH3nyySsYHR21RdsoC/39/fT39xd2kslMFFzXU8rnKcD3wpg5pLiwgDOAX+Nsi/s0MI7T\nJv4YHBfWipSfe5gJF9bjKePmwqoyat3d4Rc4HhwczAqATxYDycQrvbetbZ62tZ1a8+nPRnSgRGm8\nL7if/yQix+O4k44LqVPifqCqP1PVY1X1RFU9AccdNV9VR3AC9EtFJCYiJ+DsPTKgTu+tvSJytjg+\nr7cB3wg5B6NERGFvBSdFdSbpabzHMzAwQCJxUtp4PH5iqJRWr/Tew4ef5dChPZQ7/dn6aRlFZTKF\nAf4Rp4X7FTiWw3PAh4MqFLAO+BWwH/gl8PaM7z9Fdhrvk2Sn8b4MeAwnxfczOa5XbGE2chCVlM/B\nwUHfoHZYCyRXi5PUrKZyZzpZdbmRC0qUhfUmYKpOiMkDwIKwFyrXhwlIeYlKJfrAwIAmEicoTFeY\nozBd4/Eu7evrC5WFFbQXVq6xUhAVoTdKRz4CEsSF9Y+q+gcROQ84HyeQ/tk8DR4jYtRCJbqf2yZ1\nvKuri4MHf+N+JwHAoUPO162tc4BfAJ8DfkEicYqnC2t0dNStWv8ae/euYWzsa2lV6177gXiNleKe\nrbrcKAVBBOSQ+/kvgHtU9VtArHRTMmqJat9bwS8+kzn+9a//h5sp9QBwD/AAIo3Mnj3bFcjngIXA\nc74C6SzGSW/vNcAVqLbntUgXEqvwuudaEHqjBpnMRAG+ifPo9RTOf0cLtie6kUE1ZmHlyqzKHG9p\nma4tLS92K9AXKByt8XiXDgwMBI5V+MVRBgcHQ827kFhFkI7AVl1ueEGJYiCtwOXAKe7Xx5ES3K62\nDxOQ6qdcYuMXn1m7dq1HWu0ZORf/IHN24ihnpp03kTgjZzzIq+2JIwBbFAYUtoSKVUwWk6pGoTeq\ng5IISK19mIBUN+XMBApngbRrPH5GqMU/6PXCBNwdETrR0xIqxRwMI4kJiAlIVVOJxc3PbZM5HmaD\np3yup5r+9O/3XmzdurVgN9jixZe45zhZIaGLF18S6h6M+sQExASkqilmym+hW8+qOjGLtWvXHlmc\nk4t/W9u8vPY5z3VsprVx6623+brXwrrBMu/JEY8tR1xg+cRh6pl6dfOZgJiAVDX5WCBh9x0PyoRY\nvDStsC8en65tbadqPD49y1rJ93pe9x2PTw/sXgtjCa1du9atY9GUj1N07dq1od+jeqSeiy1NQExA\nqp6gLp7UY1P/mYvhBvPa4Km5uV3j8elFX9BV/S2vN71pqWstnKKQ0Ouvv2HS92gyipUJVo/Ue/zI\nBMQEpCYIYlX4xST6+voKdoP19fW58QFN+ThJW1vnZJ3XK2Mr7PVyWyBb1CvbqhA3yvXX3+ApTEZu\notJVIV9MQExAagL/1NX0uoypU8/M+mfu6+sr2A3mCEhrxlN6q7vNbHrPq1wWSJhFPtOq8IuBFGux\nyozvGJNjFogJiAlIleOXupq5mE6depa2tLR7/jOHcfH4ucG8+ls1NbVljfldLx9feZAsrLDxIKO4\n1HOxpQmICcgRqnGxCVOXkXRjOUHtOWlB7eS5Jru/ies9oM5Wsg+kiVDquScsgoltZ/0K8Ir1pFqo\nEBqloRr/d8qBCYgJiKpW72KTy8ec6yk/NVMqF5n/+AMDA9rQ0OHGA+YoJLSh4UVHRGHr1q168803\n69atW12rZKo63XhfqjA9retu6rnz9ZXn2423Uq6Vel1I6xUTEBOQqvbjTja3Qp7yvURz48aN6pWR\ntHHjRr3++uVpwtLT8/+0qWlq2rFNTVPTXFiTBfhzBcD9RD1oi5RyB3er9SHEKB0mICYgVZ9JEtRt\nE+Y+/MTmfe97n2ZnW52s1157rYewxDyOPUk3bNjg617zKjoMk3qcPMdki3Sh/bHCUs0PIUbpyEdA\ngrRzN2qIrq4uxsb+l9S23S+88FTVtO1etmwpjzzyIDfe+Jc88siDLFu21PO4MO3H/fa6mDlzJrA7\n7Rywm1gsBswiffva6R7H/oonn3zS89yjo6OoHgb2u59T9wPZwt69jzI2toWenuvYvn07mdvlqh7H\n8uV/57t3SCodHR309Pw18DrgrcDr6Ol5a8la5tfC3iG2NW+VEFZxqv2DOrdA/DKMquXpMdN1lKtG\nIai14vfE3NfXp42NM9VpTDhf4WhtbJyp99xzj4cF0qwwI+1YmKH33HOP57mdosP04LxfjcqGDRs8\nXWmxmHf7+KD3V68WiLnXSgPmwjIBmXD9jLjujpGK9ptKJZ8q6aBzyMyqSncdbUlz/Tjb1L5YU7ev\nbWj4M3VqQyaOhVbt6+vLKsx705uWanPzjDQhbGrq8K1RccZPSBOnWOz4wO9FJWMg1ZbOWu3iVsuY\ngJiAFD3FNMhTXtBjnT5Np2TFJJJ9mvLNUkqdQ2bGltdC6JVx1dTU5lpu0xXmaTILayLFeEJYnPqU\n7MV/69atvtfzOkdz89y09yIWm+trgWS2XonFptVlFla1x/hqGROQiAhIof+4hT495hKhIFXkfhlJ\nfq3KUxfezOaGfsKUWmk92Rzuu+8+XbJkid53331H5uS1IK9Zc7e7sM/U5uYpumbN3Z4LVjz+Yg8h\nnGhYmHm95O8kHp+u8fjJGo9P1zvv/IQG7Zqbj1vSrxLd72/L6/hiCEixRcgskNJhAhIBASmWf7eQ\nf1y/p7xbb70tq1ttkNqO1BbmjutowpXT3Dxb+/r6Ajc3HBkZyYqjvOlNS9WvBfoZZ8xPcz+deeZZ\nOjAwoLFY9tP/RHPDkxRatbGxVdesuTtrbk7Furf7yet6qqmxn9xuMK8n6YmdDifckrlavPvFmfz+\ntryOL2bH42LHKqrVvVbrmIDUuIBUy9OV3zychTO90M6vitxv3BGFLZoak3CCzCdlPNGfpK2t6WO5\nAtIQzxpbvXq157F33HFHwHMc5Vok2a6t17zmAs3ctMmv7sR7HnFfEcokTOzI79itW7d6/j78rEI/\n8S70b6iYlki1uddqnXwEpORpvCLSKyJ7RGRHytjHReRxEfmJiHxNRNpTvneTiOxyv784ZXyBiOwQ\nkSdE5NOlnnclqFT6ZGZKZEdHB729q0kkFtHevoBEYhHLl1/DwYMKfAf4CfAdxscP88wzz2Qd29u7\nmn379nneywc/+H4SiStob/9bEokr6O1dze7du4FfkZlCu39/+tj4+DB79uwBZpOegjuTpqbpwCJg\nAbCIeHwGDz/8MJnpszCTb37zmzhpuxPHQ6vHsV0cPjwVkT9zx/YD0NBwFN///jbgIWAd8BD9/d9n\n/fr1ZKcHz3THM+fcQXNz+vuTSJzEvn37sn4/+/btI5E4Nuv+vI4dGBjwuNYsNm3a5Pn72LRpk+f7\nCR1Zx4b5Oyz133JHRwcLFy4sWSqzEZCwihP2AzgPOAvYkTJ2IdDgvr4d+Jj7+iXAdqAJ6AKeBMT9\n3o+Ahe7rh4CLfa5XfGkuE5WwQILGGfyshA0bNmQdO9m9ZD49XnXVVeqVQvuqV70my1Xh94TtlVY7\nuQUyYQl5WwRH+birWjzfiw996EOhLJB4/Cjf37V3VX665eb1d1EvFohRfKhWFxbQmSogGd+7DPg3\n9/UK4AMp3/tP4BXAscBgyviVwGd9zlfUN7XclNq/G7RdSKawrFixUr1aoPf19fmKUNB7WblypceC\nntCVK1d6ClNjY6umupQaG1v16qvfqZl+fKdt+wxNTdeFGbphwwZtaEgKhhOTEGlRkbhCuyZjIBDT\nFStWZsVLGhtP8lx0N2zYoGeeeZamuraSMRBnn/K4wiyFuC5efMmk+7Wnvp9h/i789gPxO4fX8cX4\nO7RYRW1RqwLyILDMff3PwF+lfO/zwOXAy4BNKePnAQ/6nK+ob2olKJV/N+i+3F71DPH4dM9MoMl2\n7AteHxJLEwWI6Z13fiJrIR0YGNDGxlnuMaeqU8NxnLa0ZD8xOwWDLZoat4GY3nZbdufdqVPPUpEW\nd5E/XiGmIi2+T+hwjDqW0jxNWkx9fX2qqrpx40bt6enRjRs3HnkP/Bo1+me1ZVsbYf4uwmZhpTaW\nnOzYMFisonbIR0CaCvSAFYSIfBAYV9X1xTzvqlWrjrzu7u6mu7u7mKcvOR0dHUX37aa22Rgbmwfs\n4KMfXYTThmMHjq/aiTM4zASOA7YBXYjM4uabl3HbbXcCfwCUL3zh80diHc45IdXXnbyPye5l7ty5\nLF58AZs2bQGeB16gu/s8br75trT59vQs4p577uLQod8CPzwy58OHz6Gx8UQy/e1PP/000IATt5nn\n3uc5JBIJt03KHhyv6R4OHBhCtQEnprEXmIbqW/jxj39MInEsY2OLcOIbz9LS8meMj/+Ww4ebceIi\nh2hsfIGWOk/8AAAYHklEQVT58+cDcOmll3LppZceub/t27czPn4I2JryPr+S7du3s3jx4rT3x4kR\nTMd5bnJasahOY2hoKFQ7mrlz5zJ37tysca/fx/r1G+jpuY5YrIs77/wXentXs2zZ0qL8HZbib9ko\nDv39/fT39xd0jooJiIhchdPc5/yU4d04Eb0ks9wxv3FPUgXEcEgGNcfGJkShubmT97//jXz0o4to\nbu5kfHyY3t7VzJ49m7GxJ4BTgROApxkb+yPxeByAxsZGDh1yzpves2pChMIsdqOjo3zvez8C1pNc\nvH/wg7/h8OH0oPahQzPYsmULXoFxrzm0tbUBx2ccezxNTU309Pw1//Ivr8P5s3qGiy++mAcf/BHQ\ngxN+GwKmMmPGDA4e/A2OEDlicejQ8zQ2NnH48HePXK+x8dWT3GXmPI7zPGrKlCmMjT1HqkC+8MI5\nfOc73+PVr15MY+MMDh3awxe+sMa3j1jyPU2KTq4F3OvBoqdnERdeeL4t/BEn8+H6Qx/6UPiThDVZ\n8vnA+Y98LOXr1wI/B16UcVwyiB7DWblSg+g/BM4GBCeI/lqfaxXbsqsaCnEHTLhRjlKn99JRvm4U\nvy1fY7HwOwQGqS73ar/S2nqyp+vILzB+yy0fymplEiag7ASNvY/1qlHx2m7Xry5jZGTEt1V8Jn7J\nCk7MxnuvkkzC1F9YZbeRhGqMgeD4BH6F8/j2S+DtwC5gGPix+7E65fibXOF4HFicMv4y4DH3Zz+T\n43oleGsrT6FFWWHaYTgCkt3avLV1ju9CE3QPDL92542NbQrT3LjGNPVrbrhy5UoVSWhqLEYkkdJe\n/aU+AWJHkK6//gbPRbOtbY62tJyeNpZInKFr167NKlKMx0/33W7X7713Av8Tc25sbPU8/q677vIQ\n74SHuLUeiblkXitM9pNlSxlJqlJAyv0RRQEpxj952P01vJ66HQvGW4CCtjjxSg91AtUtHgKS3dzw\n2muvzbJWJvZP9966NhaborHYDI3FpvjuzxGPT58kzTV1HokjAf4gVteEIE/MGU7yFICJhIIJsYEm\nzZVCnXq9fCyKKGVLWdA+f0xAIiogxXAzhBWhzN5Na9bc7WZhTVMnJXbaETeKl1Xh/ZQ/T1taTtLM\nlhzOxk8tmupec75uylhIY7px48as+2hpma6Njelb1ya74/plP2Xe37p192els1599Tt0YGDAt+VI\nUKvLzyXoJSCqSasprjBbIa5Llrze9+fD7paY6++j1hdea/NeGCYgERWQYrkZwjxpOgvsUZpInKHx\n+FF66623aSJxojqupJdqcv+KiZTfLZqaduqV3usUziWfrpNCEXML8LIXSJGj3cX/ZHfxn+25f/ot\nt3gX8H3yk5/0XXgze1NdffU73PlOWDHJ2ErQNiJ+v6fBwcGCmiH6NVP0S6FOikgULIqgmCuucExA\nIiogquHdDH5PlEGeNP1cWF79ppwtX5PCkr4xUuac/YoRb7zxRvVy0TQ3t6mXWyrzPpw28XMyfv4U\nd+va7PN+4hPJTrjp9xKLzU67D3ixNje3aTx+Rto5/BoZTjQ9zD7Wa7+SsL//zJ/PZZlGwaIIgyUD\nFI4JSIQFRDX83hj5mvJ+QfRY7MSsxdGvuWHyCT31SdrvvFdeeaXnORYseLkG2b3QL9vKKSTMFizH\nZZYpOCer4zbboqmxjtbWkz2LFMO0EfF6L/IhaJypXkQjFXsvCscEJOICEoRi/CP5b8GanXnkuLD8\nn7pThWxiD4z0877zne9UOE7TM66OdTOzglW4O61C0rvjegekY75dcye2v01aILO0paU9JcNrXpog\ne6UjZ+48mGmNZWaJFWopFGrZRIkoJQNUgnwEpKKV6EbxmSgY9K4MD8L06dOBaTjdXztxMq7bee97\nr+Yzn0kvOnSqr3eTWsQHv2LKlClugVovY2NOceA//MPf0NIyg/37J84bj8+gs7MT+B1OeU8b8Efg\ndcRiJ3jex+bN3z5SOX3gwBCf+tTtbiHiRBX5977XwzPPPEMicSpjY/+FUxjYRSJxPrFYjIYG5fDh\nc0hWlycLBFML+OAcPvKRj9De3o5Tsb/f/ZxevX3gwBC9vau58MLz3ev3HpmHSA9Tpkzhqqv+lgMH\nJgoPr7rq1fz+97/nxhv/PnBxoB8iDUDC/Vy/LFu2lAsvPD9QAaVRJMIqTrV/YBZIwRbIRAxkyxF3\nTjJlN1fmUeqTn1f2UmPji1x3UHpcY3Bw0O1DNRHUhphvQNorC8sp7EvfB94vwO+Mn6hO48QXK7Rr\nLHZcVh1IPH667z7nQTe7mmjqmO26m6gNSS/sLOfverLz11Mcpd7BXFjRFpCwMZCgleF+58hMc831\n85njfk0IL7/8TVkL7MjIiDrxhxZ1mhS2KDTraaedkeaWSu4m6FXY57cYey3o3rEK7/bqfX19nunI\nbW2npo35NaFMJJIbZnkVBwZP7fWilIFjS4mtP0xAIiwgYf+hg9YoTHa9oHuUZ15vIjNqouMtnJwV\n14jFprnBbq89NxKamVZ73333eQpTU9OUrPMODg56Vt/7xW2cVOV04c1dELkly7LJLHJMCktmDU1j\nY1xzFQcGoVQWiAWk6xMTkIgKSLHcUkHPEaZS26+Q0HnKb057+ncKA0/IWjSdDaVOyRg/RicC68mg\n9rHa09PjBqon9viIxY7TtraXZi3cTluQkzNEzFmk/dq6eGVKee2X4WXZ5Oo3lll3smTJGwq2QFRL\nEzi2lNj6xAQkogJSjH/oXDUKQa7X1jbHXaTT5+DntvHfRyOzlqQ1ZUOp1PGY58/fd9997iI9TeEM\nhWna1NSmDQ3pLqzGxlbXsskWsXvuucezMC+ZbZXZpyszjjIhphNjyfiMV9NEv4I/Z7fDifsIGwNJ\nUuxYhVkg9Uk+AlLfaRs1QnrLdMinZbrTJvzJtHOMjf0vU6ZMCXS9Q4dGOHz4maw5AJ57Xz/wwAN4\n7Q/e0KBAN87e3t00Nzfw1re+1R0/B5jjfla8WrE3NzfjPCd8F6e35ndRFQ4fPgz0A48C/Rw6pDz3\n3HM4OxY8BNznfm7m6aefprV1DvDfwHLgv2lp6WL58r9nbGwLe/c+ytjYFnp6rmP79u3u/XUDC4Fu\nGhuP4dChduAK4BrgClTb2bx5MwcPzkib88GDx7B582bP9+gNb7gUeAEYBV7gb//26rwyh4qxP/jo\n6Cjbtm1jdHSUjo4Oz33uLavJyCKs4lT7BxG0QFQLr0TPVaMQ9HpeY35Pq95xjYTecMNyz7oFx8XT\nok4H3ha9+OLXerp4HGslO6PJ2UUwdewUveKKK9TLDbZy5cosV1NjY8Kz4tzLwnIaNwYvXHSq9f0s\nEO8srFJlQIWJjVkWVn2BubCiKyCqhVWie7liJnNLeF0vaBrvyMhI1r7jDQ1xz1RgLxGKxaboRIPF\nZBFgiy5fvtxzkXZcVekL+oc//GHPhf6Tn/xk4FYtg4ODPi1ZskXM2Ws92Xo9/Z4z4yhLllzmeR+5\n9pgvlNx/F8HdVSYs0cQEJOICEoRcC0IpK3W9gs/r1t2vLS3tGo+/WFta2n2v5xVzSSTmuKIw0ZUW\nmlwLJFtYnI616YFup/4ivfsvnKR33XWXT6fg49XPQktdNP26604E5ydEOpkNlineTj1MdkKBn7VS\n6ILu93fhlaacK75m1kp0MQExAZk04F6Kf/Qw6b1e+Fsg2ftwTATAs9vKZ4rYyEhyo6r04LpfUNtJ\nzfVu3pg5X2cO0xXmabJNvN9ivHbt2qzxqVPPcl1Y2SnGxVjQM/H7u/BLggianZdIHO2ZfGDUHiYg\nJiBlz6Ap1vWCuomSLp4g/Z8cN1r6It3Q0JZmjaX2t/JKzfXDOTauTiV7/Egab9Dq+eTCm1ms6dUJ\n2W/nyDBuyWJYpl4iNGXKGYGbTRrVjQmICYiqFq82IIj1UMyagdTrTbaQBpmb3/7iGzZsSBGhU49s\nmFXok3iuxdirlsSrWHPCuklPMfaah5MY4d1K34tCOxR43XdLS7tOnTq/KL9/o7KYgJiAHKEYXV6D\nuCVKafF4WQm5yLxn7/3FW/W2227ziEnkXghTzx3WTZi7lsQvJpFeFOm1IE/WPj7IexTm/Uz9nSRF\nKN8dEI3qwwTEBKQohBWFUgbnC8k882vn7rUJVkvLbDcTK9viKXTb2GIUZvpbIMGKQ8MSJq5lbdSj\ngQmICUheeNWMBH0K9jtHOckleJn7i/s3U0xkdQRuaIgXZdvYfFvDTHbuUqXgWmpvfWICYgISGr/a\nAL+eTtXIZC6lzOwsryf3WGyuZu9I2OqZ8pvPtrFBCzOThLW8gu5zX0jGlsU1oo0JiAlIKHJlDQXN\nBKoGwj4xeweDi1eXkWueQQozi3Fer2Ny3UdmAoPFNeqPqhQQnO3Z9gA7UsaOAjYBvwD6gGkp37sJ\n2AU8DixOGV+A04jpCeDTOa5X9Dc2qvg9aXrVLVT7E2hYP7xXMNhPNKPg489lVXhZJlG4ZyMc1Sog\n5wFnZQjIHcDfu68/ANzuvn4JsB2nA14X8CQg7vd+BCx0Xz8EXOxzveK/sxElbN1CtT+Bhn2a9wsG\ne2V91bqPP5/fda3fsxGOqhQQZ150ZgjITmCG+/pYYKf7egXwgZTj/hN4hXvMYMr4lcBnfa5V5Lc1\n2vg9adbrE2iUF02/rYdrzdo0SkM+ApJ8ui8pItIJbFTVee7Xz6vq0Snff15VjxaRfwZ+oKrr3PHP\n41gbw8DHVHWxO34ejgWzxONaWo57ihKjo6MMDQ3R1dWV1rLbb9yoXTJ/p6Ojo3R2nsbY2BacdvM7\nSCQWMTy8037ndYaIoKoS5meaSjWZkBR1xV+1atWR193d3XR3dxfz9JGjo6PDc7HwGzdql8zfaXLv\nj56eRTQ3dzI+Pjzp3h/2YBEN+vv76e/vL+gclbJAHge6VXWPiBwLbFHVuSKyAseMusM97mHgFhwL\nZIuqznXHrwReo6rXelzLLBDDCElQUVi/fgM9PdcRizmbjvX2rmbZsqVlnKlRKvKxQMolIF04AnKm\n+/UdwPOqeoeIfAA4SlVXiMhLgC/jxD1mAo8Ap6iqisgPgRuAbcC3gLtU9WGPa5mAGGWh3p7Ezd0V\nbfIRkJJvaSsi64DvA3NE5Jci8nbgduAiEfkFcIH7Nao6CHwFGMSJfVyXogbvwkkJfgLY5SUeRvRI\n3Wq1mli/fgOdnadx0UXX0Nl5GuvXbzjyPb85V+u9BGVoaMhza96hoaHKTcqoLGGj7tX+gWVhRYZS\n7cxXKEG68WbOuVrvJQxWYBhtqNY03nJ+mIBEg2perMJuzlSsuppCO+kWg3pN764H8hGQkruwDCMf\nqtld0tXlBJCdxggAOxgfHwbwnPPAwEDB95J0mS1a9I4sl5nfsV7utUJZtmwpw8M72bz5cwwP77QA\ner0TVnGq/QOzQCJBNVsgqt5P4qWq7M9vl8LS9O4yogvmwjIBiRLV7i4JsuFSMSr7+/r61G9738x5\nFKuyPAoxGyMc+QhIWdJ4y4ml8UaLWkyVLXZl/6ZNm7j44jcAPyCZPguvpK/vAX772/9Lq8v41Kdu\n5z3vWVFQqq2l69YntVyJbhie1GI1fLEr++fPn09zcwPj4904PUaHaG5uYPbs2Vx22TLGxrYwNuYs\n9O95zyJXRIJXlmeSjD8554TUmE2t/S6M0mICYhhVTkdHB1/84ue5+upraGz8I4cOKV/4wufZt2+f\nu9Afh1Nf20VzcycLFpzF8PDOvC239CQBR5jGx4fp6uoq9q0ZNY65sAyjRvBqhDhz5kmMjzcBJwBP\n09w8zu7dTxVsKSRblqRaMZZxFW2qtpVJOTEBMeqF0dFRZs06hQMHvkvSUojFXs2zz+4qiqupFuNP\nRv5YDMQw6oihoSESiZM4cGAiVhGPn1i0WEUtxp+M8mKFhIZRQQrpj+VX0GixCqNcmIAYRoUotGI8\nuZdHIrGI9vYFJBKLQmdcGUYhWAzEMCpAMWstLFZhFAOLgRhGjVDMWguLVRiVwlxYhlEBLH5hRAET\nEMOoABa/MKKAxUAMo4JY/MKoFqyQEBMQwzCMfKjKPdENwzCMaGICYhiGYeSFCYhhGIaRFyYghmEY\nRl5UVEBE5D0i8jMR2SEiXxaRmIgcJSKbROQXItInItNSjr9JRHaJyOMisriSczcMw6h3KiYgInI8\n8G5ggarOw6mKXwasADar6qnAt4Gb3ONfArwZmAtcAqwWkVAZA1Ggv7+/0lMoKXZ/tUuU7w2if3/5\nUGkXViPQJiJNQALYDbwe+KL7/S8Cl7mvlwD3q+pBVR0CdgFnl3e6lSfqf8R2f7VLlO8Non9/+VAx\nAVHVXwGfAH6JIxx7VXUzMENV97jH/Bo4xv2RmcAzKafY7Y4ZhmEYFaCSLqzpONZGJ3A8jiXyFiCz\nCtCqAg3DMKqQilWii8gbgYtV9R3u138NnAOcD3Sr6h4RORbYoqpzRWQFoKp6h3v8w8AtqvqjjPOa\n4BiGYeRBLbVz/yVwjojEgf3ABcA2YB9wFXAH8DfAN9zjHwS+LCKfwnFdnQwMZJ407BtgGIZh5EfF\nBERVB0Tk34HtwLj7+W5gKvAVEbkaGMbJvEJVB0XkK8Cge/x11vTKMAyjckSumaJhGIZRHiqdxltU\nRKRBRH4sIg9Wei6lQESGROSnIrJdRLLcd7WMiEwTka+6RaI/F5FXVHpOxUJE5ri/sx+7n/eKyA2V\nnlcx8SoKrvSciomILBeRx9yPmv/diUiviOwRkR0pY75F3H5ESkCA5TgurqhyGCfBYL6qRq0G5jPA\nQ6o6F3gp8HiF51M0VPUJ93e2AHgZ8EfggQpPq2j4FAVfWdlZFQ8ROR3oAV4OnAVcKiInVnZWBXMv\ncHHGmGcRdy4iIyAiMgt4HfD5Ss+lhAgR+p0lEZF24FWqei+AWyz6+wpPq1RcCPyvqj4z6ZG1RWpR\ncCvwqwrPp5jMBX6kqvtV9RDwXeDyCs+pIFR1K/B/GcN+Rdy+RGkx+hTwfqJdN6LAIyKyTUTeUenJ\nFJETgN+IyL2um+duEUlUelIlYimwvtKTKCYeRcG/c4uCo8LPgFe5Lp5WnAfV2RWeUyk4xqeI25dI\nCIiI/AWwR1V/gvOUHtVU3nNdN8jrgHeJyHmVnlCRaAIWAP/q3t+fcMzpSCEizTgteb5a6bkUE4+i\n4Cki8leVnVXxUNWdOGUFjwAP4WSMHqropMrDpA/jkRAQ4FxgiYg8hfN0t0hEvlThORUdVX3O/TyK\n40OPShzkWeAZVf0f9+t/xxGUqHEJ8Kj7+4sSFwJPqerzrovn68CfV3hORUVV71XVl6tqN/A74IkK\nT6kU7BGRGQBuEffIZD8QCQFR1ZWq+mJVPREnePdtVX1bpedVTESkVUSmuK/bgMU4pnXN45rNz4jI\nHHfoAqKZDLGMiLmvXI4UBbsdsi8gQkkQACLS4X5+MfAGYF1lZ1QUMr01D+IUcUN6EbcvlaxEN8Ix\nA3jAbdXSBHxZVTdVeE7F5AacTgPNwFPA2ys8n6Li+s4vBN5Z6bkUmxxFwVHiayJyNBNFzDWd5CEi\n64Bu4EUi8kvgFuB24KuZRdw5z2OFhIZhGEY+RMKFZRiGYZQfExDDMAwjL0xADMMwjLwwATEMwzDy\nwgTEMAzDyAsTEMMwDCMvTEAMwzCMvDABMYwiICKnunt9PCoiJxR4rneJyC4ROeQWr6Ve4/si8oKI\nvLfwWRtGYZiAGEZxuAz4qqq+TFWfLvBcW3HagQxnjP8WZ9+NOws8v2EUBWtlYhg+uO1HvgLMxNnv\n4lbgNOAvgTjwfVW9RkQuAW4EDorIBap6QZBzqapnV15V/an7M5Ix/huctveXFukWDaMgTEAMw5/X\nArtV9VIAEZkKPKKqt7pff0lE/kJVvyUia4A/qOonQ5zLMGoac2EZhj+PAReJyMdE5DxV/QNwgYj8\n0N1LehFwegHnMoyaxgTEMHxQ1V04+5I8BtwqIv8I/Ctwubv39+dxXFlhz/UREfmHID+W18QNo0yY\ngBiGDyJyHDCmquuAf8IRAAWed/dmeWOe57qTYBtm5dpdM6q7bho1hMVADMOfM4E7ReQwcAC4Fifb\n6mfAc8BAgefyRETeDfw9zh4wPxWRh1T1ne5ucf8DTAUOi8hy4CWqui/8rRlG4dh+IIZhGEZemAvL\nMAzDyAtzYRlGEXErx/+LiQC4uK8vUNX/yzj260BXxnEfUNVHyjNbwygMc2EZhmEYeWEuLMMwDCMv\nTEAMwzCMvDABMQzDMPLCBMQwDMPICxMQwzAMIy/+PyEmVXogO5R6AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "combined.plot.scatter(\"saf_s_11\", \"sat_score\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There appears to be a correlation between SAT scores and safety, although it isn't thatstrong. It looks like there are a few schools with extremely high SAT scores and high safety scores. There are a few schools with low safety scores and low SAT scores. No school with a safety score lower than `6.5` has an average SAT score higher than 1500 or so." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Plotting safety" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAO4AAADtCAYAAAC4ekmMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeYXGXZuO9z5kzf3nvJpvfeKyn0EkA6IipVRaXY/T4U\nsOH3fSj+lCIoKogoXYpAekgvpPdke++700/5/THJJpPZMrs7M7sbzn1duZKcc+Z9n9mdZ973faqg\naRo6OjpDC3GgBdDR0ek9uuLq6AxBdMXV0RmC6IqrozME0RVXR2cIoiuujs4QROrupiAIuq9IR2cA\n0TRN6Ox6t4oL8MQrR8IvjY7OEMZZ9im23HkRn+eHt4zq8p6+VdbRGYLoiqujMwTRFVdHZwiiK66O\nzhBEV1wdnSGIrrg6Or1AU32ontaBFqNnd5COjo4fTfHhKF6FLX/xQIuir7g6OqHQobR5ixCN1oEW\nR19xdXR64uxKuwhRGnilBV1xdXS6RVO8OIpXDyqlBV1xdXS65KzSLkaULAMtTgD6GVdHpxMGs9KC\nvuLq6ARxVmmXIErmgRanU/QVV0fnHIaC0oK+4urodKDKHpwlawa90oK+4uroAENLaUFfcXUGIaqq\nsmPNP9n8yV9orqsiMT2LOcvuYPri6xGETgtC9G++00prL7gIb/MpVJ8Da8bUsM8TTnTF1Qk7ss/L\n4V2raa6vIiWrkJGTFiCKhpBf//af/4vjJz8l74bJjMifS1txPWv+9f+oKj3AVXc8GlZZzyitNWsm\nztINAJiSR4d1jkigb5V1wkrp0d38+lsL2bHxKRzeD1j378d46pFl1FWeDOn11aVHOLDzI8Y/soKk\ncTkYYywkjc9hwncuZs+Wf1NXcSJssqqyG2fJGgyWJDz1h/wxyKKEFJsVtjkihb7i6oQNl6OVl5+6\nh1v+aw5j5+Z1XN/89hH++usv880nP8Fg6P4jd2DbR6TOKkSymgKuSzYTqbMKObD9YxZnF/VbVlV2\n03bodURrIsaEAiR7GpriQxCliGzHw42+4uqEjc82vs2IaRkBSgsw5+pRxKZIHP1sXY9jKIoPwdz5\nx1IwGZBlb7/lVGUXLXtfwpg0nJiiS5HsaQB46g9iTh3b7/Gjga64OmGjruoohZOSO71XODE5pO3y\niInzadxWhqaqAddVRaVxeykjJy7ot5xyew1x427Glj0rYHVV3M0YLIn9Hj8a6IqrEzbik3KoPtnW\n6b2qE23EJab3OEbB6BmkJBdy5LkNeJocALgb2jny7HrSM0eRO2Jyv+U0JRRgMMcFXFO97YhGe7/H\n7gpN02g/+RHOso24qz9DcTXSnxa3+hlXJ2xMWXANT3/vWeZfP4qs4Ukd14/uqKD8cD033ru8xzEE\nQeCLDz7LB6/+ip0/fBODSUL1KUxZsJJLbnokYudPd90BLOkTIzI2gNxaiilpBKaEQhRPK77WMtT6\ng3BaeUVrEsa4PAzm2JDG0xVXJ2zEJaZz1Z2P87v7fsTU5UVkDo+jeF8jBz8t46YH/h8mc2hpcSaL\njau/9CiX3fJ9nG1N2GITMZoiGxShye6Ipu15m4ux5S0EwGCOw5A67uzcmobqbsLXdByPt91/sYcv\nKF1xdcLKhNmXkTdiKrvWv07xznJSMubyzV+txB6X1POLz8NoMhOfnNFvmTz1hzHG5SCaYjq9Lztq\nkWyp/Z6nKzRNBUHocrcgCAIGaxIGa1Lga7pBV1ydsBOfnMGSlV8baDE6UJx1+FpKsBcuQ+gkEMTb\ncARrztyIze9tOIo5aWSvXiMI3ZufdOOUzoWPIGLLnYuzbEPQLU3T0DS1U4UOF7KjBimm/zuHc9EV\nV6dbNE3D53Wjqt1v3QY7oikWU+Jw3NW7A677mk9hSiiM2Lya4kUQjWEfV98q63SKpmnsWP0PNn/4\nLA21tZjMJqbMv5ol1z2I1R7X8wCDEGNcDoqrEV9LKcZ4f5CIr7Wsw2gUCTx1kQnq0FdcnU5Z++Zv\nOLDp9/z2+ekcrr6T/2y6hoykPfzll7fh83oGWrw+Y0mfiLe5GMXTiqbKCKIhoiGOiqcFgyUh7OPq\niqsThKO1kc0f/pm/vrGc6bMzEASBrJwYfvn0PNLT3Ozf+sFAi9gvbHnzcZVvxlO7D1PKmIjNo3od\niEZbRMbWFVcniBMHtjB9Tg6p6YEfOkEQuOG2Qk7s/WiAJAsPgiBiy1uAr6UUydp5iGY48LWVI8Vm\nR2RsXXF1ghCEjoCeIFRV6zE4YDByfnihaLQRO+rqiM5pShqBt+FIRMbWFVcniKLxc9mxpZzqSkfA\ndU3T+MdfTzF84sUDJFkfEQSg73HBfZ9WxGBJQHE1hn1sXXF1grDFJLDg8ru4beXHfLquAlXVKD7Z\nwoP3bKCpOZbxsy4Jeo2qqhQf3sHhXWtoaawZAKm7o5stRIQxp0/CXbMn7OPq7iCdTllw1f3EJGby\ngwefpaL4fWLiYpiy8Dpu/843kIyBSe6nDm3nzecfxmKHxLQYXn+2kjHTlnHllx6PeIxxSAgioAKR\nC7LocurTq67sagjreVroLrVIEATtiVcis0fXGTqoqooodr45a6wp45lHV3L34/OYOD8XQRBwObw8\n98ONGMRxrPzqr6IsbTCuym1Y0icjGEw9PxwBNE3FWbIOe8GSXr3uh7eMQtO0Tg0K+oqr0yNdKS3A\nlo9fYuHKEUxacLbqhdVu4q7H5vPQpa+x7Po6bLGJHNrxCcf3fIimKhSMXcr42ZdGcTUW0DSNSJnU\nXJXbEc3xmJM7j0f2r7qJyM4GJFvwqqtpKoqrEbm9CtXTApqG4XRVjq7QFVenX1QWf8b8lflB122x\nJgrGZFB2fA87PnkBu6mWe+8uxGgUefHPf2DbJ3/k9u/8DVtM+IMTgujYKkcGTfEiGIw4Tq3CkjUd\ngzk+6Blz+kScJWsR0icjt1ejuJvwG8z8XycGaxLGuFxE83gEQcBZ9mm3c+qKq9MvrPYEGmvag65r\nmkZTTTvHPlvNqMJW3nj9EgwG/8p9xx0juffeLaz+56+44s6fRV7I7vxbYcKUUIgxLg931Q4ALJnT\nAxIXBEHElDQCub0KKSYTU8qYfkVs6VZlnX4xed4NfPjSYbxuOeD6ztXFqKqZkwfW8fhjkzuUFvyB\nHD/5yST2bH4/LMXfekKIklVZEA1Ys2dhSh6Ns2Qt3ubigPvGuFzMqeMwWJP6HWapr7g6/WLM9GUc\n2vUhP73tfS6+bRSJaXb2bKxk83snufXB53nx8VsZPjw4KSEjw4aAhs/tQoox0dJQzc51/6KpoZTk\n9GFMW3gdsQlhSm6P8Fb5fAyWeOyFS/E0HMVRvBpr1ixEU3jrWekrrk6/EEWRa+/+NYuu/DFbPxR5\n6w9VeNuncd9jb5M3YjI5hcNYu7Yy6HW7dtVjtcdgtsWyb+sH/Pb7l1HlXIdtTCNlDR/xm+9ewrE9\nwfmzfUIQ+lWYra+Yk0diy1uAu+YzXFW7wiqDvuLq9BtRFBk7YxljZywLujdjxT1844FfsHZNEjk5\n/tIxDQ1u7rp7K7NWfAVnWyNv/fGHXPrExSQPS/G/6BIYvrSIfzzxbR55ai1ma+clZ3ohIahKP8fo\nG4JoxJY7D9lZj+PUJ5hTx2EMoVOC0EMzbX3F1QFAUeSIJMtPmnsFI2bcxuixb3HpZWu4+pp1FA77\nF7FZy5h98ZfYvfFt8mcXnFXa02SMzSBjXCb7tn7Y6bia4kNT5U7vnY8paQSu6p0DsuqeQbKlYC9c\nhuJqwFGyDlXuPjWyp1RAfcX9nHPq0DY+fv1/KT28B1EUGT19MSu+8DApmZ1XhSg5uovNHz5Lxcn9\n2GLimTDnemavuC0omupcFlx5L9OW3MTxvZ+iqgpf+8WcjvNra2MV8Xmdr6jxuXZauwifdFXtwGBN\nwpw8qsf3KEpmLGkTcFftwJo1o8fnI4UgCFjSJqDKHhynPiGmaEWX1TF6Ksyur7ifY47v+5SXf3s/\n2SsSueGVO1n54m0Yh7fx3GM30VhTFvT8/q0f8NrT93DRZTJP/2sZD/1sLHWlr/G3//kyiuzrdi5b\nTAIT517O5PlXBRid0rJHUneoqdPX1B5qJK2LPkGa4kVx1of8XiV7OqLRhrf5VMiviRSiZMaaNRNv\nw7Gun+nEFxxwP9xC6QwNNE3jg1d/zox751CwYDgGowGT3cTYlZMYtryIte/+IeB5Wfby3l8f5Wcv\nXMTVt48lMzeOSbMy+fmflmIyVrNvy/t9kmPinMuoPVxH8eZAhTq66iiOGjejp10ULLvq869UPZQw\nPR9z6jh8rWUontY+yRpOJHsqcjdfPD0Vr9MV93NKW3MdTXWVZE8PjnoqXDKCw7tWBVwrObKTjOwY\nRk8KDMUzGERW3jGCg9vf7pMcZmsMX3z4ebY+t5v3vvchm5/dwjsPvce+V4/wpUdeRJKCt+DexuOY\nkob3KS/YluuvfqENkLHqXARB6LF+clfoZ1ydkPB5PdhiOz/H2mJM+LwtfR47Z9gEHvm/tRz5bB3N\ndRVMu6aAEZPmd9kMW3bWYU4Zg7fxmL+0ag81iM9FEERsufNwlm3Anr+4zzKHA2NCAb6Wkj5VmdRX\n3M8psQmpJKZmUbGjJOjeqTXHGD11acC1vOGTOLq3mqZ6V9Dza/9dSsHo+f2SxyAZGTt9GXMvvYNR\nUxZ1qbTnWoYNlsTTMb+9QzTFYEoYhrtmb5/lDQdSbA6+1mBbQijoivs5RRAELr3p+2x/ZjOn1h9D\n8Sl4HV4OvrGHkx+fYPGV9wU8b4tNZMZFN/Cju9dQUeI/I3o9Mq89v4/t62uZvuSmqMitOGqR7P6u\nf1JsJnJbcHBHKBjj89BUGV8fXx8OBEEALbisDoCvraLb1+pb5c8xwyfM49YHfs8nbz7Flqf/hGgw\nMHraYu7+8askpecGPb/shu+y7u0Y7rv6JWLjzbQ2OckZPoE7f/BKn3oD9QVv03Gs2bMAEM0JqJ4D\nfR7LmjkVx6lVGCwJEavG2BNSTAaKoxopJrPjmqapeOq6f1+64n7OKRwzk7vGvIKiyAiC2G3urSiK\nLFn5DeZffjfNdeVY7HHhiycOEU1TEET/xzYc9ZBt+QtxnFqNfdjyXp2Vw4UpsQhXxeYAxXVX7cCa\n2b2/WVdcHQAMhtA/CkaTmdQu/KtncJSs61CwkBBEBIPp9B8zgsF4+m9Txx9UJagVpqZ4cVVs9T8r\nmU+/5uy/RckMorHrTnmiEWvWTFzlm7Hlzgtd3jAhiIYAy7LibvYn0lu7D8DQFVcn7Liqd2FKHonx\nnFWkJzRVQVO8p/94/CGNshvV03rOdS+WjMCO9Lb8JaDJaLIXVXGjyR40xYPqakeT3R1j9YSvtQy5\nvTrszblCwWBJQHE3YbAk4qrcjr1waY+v0RVXJ6z42ioREHqltOBfeQTRCsbeNZcWBAEEI4LJiEh4\nU+eihTl5NK7qXRhMsZhTxoS0ZdcVV6cDn9fN4V2raW9pIDN/DPmjpvXqHKnKHrz1h0JaMXTOIhhM\nqN52NNmD/ZxO9d2hK64OAEf3rOeNZx5k9MRU8gpi+PCvzyIaU7jpm88Rl9h94TLwuzScpeux5y+K\ngrQXHqbE4QEGqp7QFVeHprpy3nj2QX77lyVMnuk/42maxu9/uZt//r+v8ZUf/RPF1YirYisxwy/t\ndAx39S4saRMHrgSqKp9zPj57JvafeU//W+35rHs+iquBmKJLIv6+TAkFvXpeV1wddq55lSuuH9ah\ntOA/O977yGTeee11Kk4dIF6rRDR1nn7na61AECWkmPSIyCc7avHUHeheeUTDORZpE6LBhGi0IVgS\nz1qlu7Eud4XqdeCq2oEtZ24/30V40RVXh4aqw1x2ebA/1mAQmTg9g6rD60ibdzW+luCUOFV24W04\njL1waYdlNNxoig9jQkFEO8d3xZlaUarX0WndqIFKztdDHnWIScji1LHgJAFN0zh1rAmr2YAxLhtB\nsqL6nAH3naUbT9dV2oOrfAu+ltKwyyea41AHMBXPmjkd1+myq0FoyulidNFFV9wLFEX20dZch+zr\nufzp5IU38uqLR6ipDKyP/PG7J2ltkhk1/3bAn4wuO85WpHBX7cCSPskfKC8YiBl+Kd7mUyjuvmcK\ndYZosqN6g2s3RwvBYEI0xXTedU9Te8ydjQT6VvkCQ5a9rHn9N+xY+w8EQUOWVSbNu5IVN34Xs6Vz\nP2d24ThmX3oPNy5/hpU3Dye3MJYt62vZtqGKL3z5h0gmfxyvZE/DVb0bU0IhvtYyBMnfQkR21GLL\nmQOALW8BjpMfYy9Y0iuDjip7/NFSnaxeAxGKeD6WjCk4S9ZiLwhM7NdUBYToK+7A/0R0wsobzz5E\nS+NqfvmPy/nzplv4zbsrMRr38Ldff7nbYnDzLv0qX/r+PzhVNpUP34/HGL+SL9//AwqmXtXxjD/s\n0Ifqc+FtPIYpYRie2n1Ys2effUYQseUvwlGyLuTzn+ysx1m8Glfltr6/8QgjCCKSPSM4m0hTBuSL\nRVfcC4jq0sOUHt3Kd59eQkaevwh5crqdB36xAFmu4cS+7vvRpGUXseKm73DNV3/N1MkTSSicF2yF\n1TScZRuwZs/BWfYptvzFQc+IkgVLxlRcFZt7lNnXWuYP2ii6BNFgRm6v7t2bjiKmlDF46w8FXNM0\nBQZgq6wr7gXEsb2fMmt5PkZT4AdJFAUWXpHLsb1rQxpH9TrQZBeSLdjSrGkq5rTJOMs2Ystb2OX5\nTrIlI9nT8dQd7HIeT+Mx5PYabHkLEAQBc/pk3LX7BkVZmc4QBAFjYhHexnOKvKkqgr5V1ukPosGA\nz9P5h97rURANnZcCPR9X5Vas2TM7vWfPX4Sv6SjWzGmIPcQVmxKLUGU3vtbgpHB37V40xYs1a3rH\nNUEQsGbPwlWxJSQ5BwJTQgG+ltKOY4Cm6WdcnX4yZtpStn5STFuzO+C6xy2z5s1TjJ1xSY9jeJtP\nIcXldlnv1139Gca4XAzW0BLnrZlT8TYeRfG0dVxzVWxDNNqxdBKXazDHIZrjgpVdEAbNSmxOm4Cn\nbp//P7o7SKe/JKXlMnXhF/jvOz9iz6ZynO1eDu+q5rG7PiFn2Cxyh0/q9vWaquBrOok5aUSn971N\nJ8BgxBgfXBmyO2x5C3GVb0JTfDhK1iPF5WBK7Dqf15I2AU/9wYBOBaIpdkBdQuci2dNQnA3+VETd\nHaQTDlbc9D12rx/Jiz9/kbqKVSSmpTNt8W3MXnFbj+F+rqrtWLqo9C87apCdddjOsSCHiiAasOUt\noP3EB9hy54e0Wtty5uIs34Q9byHgX4lVTwsGS/eFwqOFJXMa7uqdSDFZA7JV1hX3AkMQBKYuuo6p\ni67r1esUdxOCIGIwB7fEVL3teGr3YysILk4eKqLRRuzIq3p+8MzzJjuSLRVvcwmmhPyO7XNop/TI\nYzDHockeVNmFaDBHfX59q6wDgKtqJ5bM6UHXNcXXpdsn0phTxuBrOo6meBFNcajetp5fFEUsWdNx\nVWzV3UE6A4On/hDmpJFBgQSapuEoWYstv2u3T6Sx5s7FWb7ZP38fq/5HClGyYorP79KQF9G5oz6j\nTsi4qnZFfA5N8SK3V2OMzwuev2yj3+0j9a6cTDgRJStSbJbfMDYIseUtQLL3XGgg3OiKO0hRZQ/e\nxqMRn8dVsTUgZPEM7urdGOPzQ3b7RBJz0gi/71Tpvqfs5wldcQcpcntlxGNgZUcNojkuKJDC23gc\nwWDCGJ+HLHtpqC7B0dpJZkwUsebMHdCuA4MN3ao8SJEdNRjskakoAf7zq7tmL/bCZYHzttcgu+qx\nZs1i43vPsfmDF7BaRVpbXeSPmMQlt/2U5Ize+XHDgSiZiR93c9TnHazoK+5gRVV6V1C8l3hq9mBJ\nnxRgKVa9bXjqD2DNmsWaN56i/MDf+WDVcg4cv56jJTdz0xcE/vzzm2lvaYiYXN0xUAaywYiuuIOW\nyJVEUX1OVG9bgFHF7/bZhC1vER5XO1s/+gt//9cSRo32l6KxWiW+/q0JXHpZJttXvxwx2XRCQ1fc\nQYi/JUXkfKbnG6Q0TcVRsqbD7VN+Yi9jxqWRlR2ceH/tF/IoO7IxYrINBRRF5tDO1ax7+1l2rXsD\njyv6oZi64g5CFGcDBmtyRMb2tZQixWYhnJMp5Cr7FGvm9A63j2Q0097eecmb9jYfkjH6kUKDhYbq\nEn73vYvZ9vHPiI1dQ+nRF/mfby/myGfroiqHbpwahMhtFRgTi1Bc4T1LapqKt/FYQKeBztw+ucMn\nUV3tZvvWGmbMOmsgU1WN5/5wjJFTvxpWuSJBU105W/7zJ0oOf4pkNDN6+tXMXHoTJkvf22mqqsor\nT93NtV/J58rbzmY2Hdpdw6N3Pcj9T7xHfHJ0eg/pK+4gRPU5MJhjwz6uu3JHQFijt/EYgsEcFHxh\nkIxcetuj3Hz9Gv78x0OUl7WzfWsNt35hNTUN8Uyef3XYZQsnlcWHeO7RaxlReJBfPzOZHz1RhKv+\ndf70s5v6ta0tPrQNo8nNFbeODbg+Zko6Cy4vZOe61/oresjoK+7nBMXTgobWkV2jeFqQHXXYcjsv\n9D1u5sXEJKTy0svP8NijH2CPjWPc7Gu59eE7kIxni8Apikz58T3IPi/ZwyZgsXVeND2afPjyf/HQ\njydx/W2jO67NWpDFt7+yjs3/eYnF13ytT+PWVxczelJKpzHbYyYns+a96EV36Yo7hGlvqWfbJy9T\nfGgdBsnEqGlXMnXhtZjMwSGK7sod2PIXd/zf23AUS+aUbsfPHzmV/JHPdXn/4I5P+M/f/puUFCOx\ncSb++bt6Zl98B4uueSDqCQlnaGmsobb8BFffGOjzFQSBO+8fw8P3vd1nxY1PzuTA1uZO75083Ex8\nYnCSRqTQt8qDDNXnRJAsPT7XUF3CMz++igTren74eCEPfCeNhuK/8dIvbsHjdgQ8K7fX+A1S5/hB\nNdndrxjk0mOf8f5L3+ON1+dyYP+VbNl0Mfv3X03tsTfZ9H7Xyh5pvG4HMXEWjMbgj3ZisjXoZ9Mb\nhk+YR2Odjw0fnAy4Xnq8iU/eOM7URTf0eezeoq+4gwy5rQJjbFaPz334yqN8+WsjufNrEzquLVqe\nx4NfXcem919gybUPdFxXXA1hb9i89T/P8NOfTGTevLPj5uTE8PLL85m/4AVmXXwnkhT9BmBJabk4\nHQrHDjUyYkxgnPWqD0rIH9V5oYBQMBgkbv7mM/zhJ19m7TulTJydTNmJdta9d5LLbvtxVCPK9BV3\nkCE76jDYzgmM6CSVzdneTPGhXdz85TEB1wVB4KsPjGPf5jcDriveNsRzjF2KqwnRktAvOcuP7+Wy\ny4IzisaMSSQmRqK5LrhAXDQwSEYWXHEvD929gZKT/o4Kmqax7uNSnvvNfuZcck+/xs8qGMs3n/yE\n9IJb2b+zAEVbxtd//gFTFqwMh/gho6+4gw6tY0sriEZQFTAEfr96XO3YYixYrMG/vrQMOy7HeZZT\nVQ7IGfU2n8ScMob+YLXHUFnpoKAg0Prtdsu0NLuw2MJvFQ+V2Rd/CVVVuOmSZ0lNt+No9yAY7Fx/\n39NkFfTvfQOYrTHMXHpTGCTtO7riDmZECU31BQRLAMQlZaAoBo4caGDUuMBAjXUflZI7YmK3w2o+\nJ6Kx7/5MgHGzr+MXv3iHt95KRxTPGqKeffYwOUXjiIlP6df4/UEQBOZd9lVmLrud6tIjGE1m0nNH\nDpjBLBLoW+VBhL8PzdkPl2CQAiodnsFgkJh3+d18976NVJadLeeye1s1v/nZZ8y99L6IyzprxRc5\ncsrGsuUf89ZbxaxeXcHd92zmsccPcfGtP434/KFgNJnJHT6RjLxRF5TSgr7iDioUZy3SOedb/1Y5\nWHEBZq+4A9nr4tolfyS/KAm300dTk49Lb3+cgtFduyUUdwuiuf+VEk1mK7c98jc+2/gWP378HWSv\nm5yR87nnsduITQjugKATXnTFHUT42ioDz56nt8qdIQgCC668j5nLv0jFyf1IkonsogkYDN3/Sr1N\nJzAnjwqLvEaTmRkX3ciMi24My3g6oaMr7iBCk10BZ09BlNCUzlfcM5gtdoaNnRX6HL7OO6vrDC30\nM+4gRhCNXa64oeLvOxt9f6pOZNFX3E5QPC14avZizZ0X5d6ngQYUQTSiye4ung2m7Pgetq/6C421\nJ0lIzmX6RV8kJ9dfTBxA8bR2/FtnaKMr7mlUrwNP/QFUn8vf7kJ2RVVpFU8boum8AP1uzrjns231\n31n/1v9x3VfHMmpiEScPNfLac19n6txrmHfJHQD4mk5gShoebtF1BoDPteKqsgdP3QFUbxui0YY5\ndTyi0YbsqIUoby/ltgqk80Idu3IHnU97Sz0fv/ornn7rKrLy/Svq+BmZzF1RwH2X/4Pxs1eSEpOJ\n6m1HNA1cYIRO+PjcKa6m+vDUH0JxNSFIZswpY4P65XjqD2HLWxBVuRRXA6bkkQHXunMHncu+LR8y\ne2lBh9KeISXDzpKriti77RMuygmPJVlncPC5U1xXxTbMKWOwpHUeXeQ35hijfLYF0ILmFELcKrsc\nLaRkdF5OJjXTytGDLf5dxflbcUCRfeze+DZ7N/0Tl6OF7GFTmHvxV0jL0bfUg5nPpVW5u+r8npo9\nWNK67yMbNUJwB4G/1My2NdUdXdLPZcuqSnKKpuBtOonxvJ60iiLz6m/v58C2Z7jm7jTu//lk8keX\n88LPbuLE/s1hexuDgfaWBja8+zxvPv8Iq17/DU115QMtUr/4XCpuV2iahio7o+7n1FQfdFJD2b8C\n91ymtWj8XGQllhef3IHX4+/aLvtUXv3DHuoqvYydvgzV0xp0JNi3+X08npP86MWLmbakgGHjUrn2\n3sl845cLeOuF76Kqg6vJVl85eXArv/3uxbS0fcCYuU1g/JTf/+gqPtv41kCL1mc+d1vl7vA2HceU\n2Hk39kgit1cj2fueLyuKIrc//CfefO4hbl/wGvkjUyk7UU9yRhE33fkdDFLn3eT2bX2TS28fiXRe\n0vn4OdlYY3ZRfnwPeSO7r5Ix2PF53fzjd9/gnl8uZPTM7I7ri64fyS/v/CkFo2eSkNJz/vNgQ1fc\nc5DbKrAm0OTaAAAgAElEQVSfU94lavO2V2Hu5/Y8Jj6F2x95iYbqEhpqSliw1EVCrAVjfB6q14Fg\nDN5FeN3txCclBl0XBIG4ROuA1AsON4d2rCJvVHKA0gJkFiYy45Iidq1/g4uu/foASdd39K3yaRRX\nIwZz/5LL+4qm+BCl/tcqVlyNWL2lZCdAeuEU7PmLMCUU4m06gem88y1A7vCZ7FgdfNZra3ZTfLiG\nrMJxQfeGGq1NNWQO69wFlj0slraWqihLFB50xT2Nu24/5rQJPT8YZjRNC8lX2+XrVQV3zV4cJevw\ntZZjzZmLPX9hQHsR1dPSUd3xXGYtu51N7xez4d1jqKr/LN1c7+S3D61jyoJrsMcNfIvN/pKaVcTx\nz+o7vXdsdwOpmSM7vTfY0bfK+Fc8QRCj3lRK0zScJWsxp3ef+N4ZsqMWT/1hBEHAnDoOSydjaJqG\nr6UYTVM6HSM+OYPbH/kT77zwPV59ajcJKTFUlzYyffEXWH7jd3ot02BkxKT5fPCKwJrXDrL4C2M6\n8nL3bSzl0NZKLn7ymgGWsG/oigu4a/di7sKvGyk0TcVZshZL+uSQm0drig933T5UTxuSLQVb3vwg\n36+macitpXhbSgAwxRdgy1vU5ZjZheO496fvUFd5EpejhfScET2WnfG6nXz26TuUHN6AQbIwbuZV\njJi0AFEcfBs4UTRw+0Mv8rf//Qob3zzJsEkpVB5voaakjVu//RzWmP7nJg8En3vF1TQN1dsW5CqJ\n7JwqzuI1WDKmYrAGG4fOx9dehbfhKIIoYU4dH7Tt1TQNua0cb/Mp0MAYn4std0HIVR8EQSAtO/gM\n3BktjTX86Wc3UzDSyrJrcnC2N/HeKz9m1/qx3PD13/WYDzwQJGfk841ffMSJ/ZuorzrFjMUZjJqy\naECqUIaLwfdTjjK+lhKM8dErq9mhtJlTMVh6VloEAdXTii1vQcDqqmkacnsVvqYTaJqGMS4bW65/\nBS4/uY9PX/4WlcUHsMXGM3XBTUxduDIsSvX+X3/MspWZfPFbUzuuXXLDaH7wpY/ZvupVZq+4rd9z\nRAJRFBkxcT4jJs4faFHCwuDb20QQxdOG6g10cfhaijHGF0Rlfk1TcRSvxpI5PTSlBWw5czEnjwpQ\nWsXnwnHqE1SfA2vuPOz5CzElFiEIIge2f8xLT95J/NgWVvxwFhNvymH7pmd59emvo6qdn3VDxdHa\nyIkD2/jCXYFGPKPJwC1fn8BnG1/t1/g6ofO5WXHdtftQPa3YC5d1XFM8rYim2LAVEms79h5SbCbW\njKlB9zRNxXFqFdbsmRj6UfNJ01RcpeuxF1wUVP1Rlr28/acfcfmjS8kY5bcqJxckkTclm9cf+oBD\nO1czbsbyXs/pdrZRVXIIR1szcQl2rPbggI7sgnjamxv79qZ0es0Fr7iqtx1n+WbMqWOxnOfu8dTu\nxZoVetmX7tAULwZrElJMJu2nPsGWu6DDN6upCo7i1VizZ/X7LO0q+xRr9qwgpQU4dXAb8RmxHUp7\nBoPRwPgrRrBn85u9UlxVVfjg1V+zbdWrGNJTUNudCG3N1FS0kZ4daMDas6WS9LzoR519XrmgFddd\ndwDV1Yi9YAnCebHAmqqgaWqnCtAXPA1HMCePwmBNwmBJwlW2EVPKGCR7Oo7iVViz5/S7daa7dh9S\nXC6GLroQeN1OLHGd9x2yxJnxuFt6Nd+Hr/0v2/d/jHz/tcixNtA0pDdW8eTDa3jsj5d2rLwVxS28\n9H97uOrO/+ndGxriyLKX3RveZsfG1/G42ykcMZ35l9wZlVYkF6Tiql4HzorNmJNHYUntPPrHU7cf\nS+r4sM2puJs6VnRRMmMvXIq7ejfu6t3Y8xf2O4Hd11oOqowpoaDLZ3JHTOaNP1bgcXgx2wMtpqc2\nVVA4ekXI83lc7Wz75O/47r0GYk8XsBME5Gsu4vhL73DrvJeZtnAYznYfhz+rZvkN32H4hHl9eWtD\nEln28ucnv0qDp4q4xaOxx+Zxat8R9vzXddzx8HPkjww+LoWTC05xPXUHkV312PMXBbTdOB/F3YQl\nPTzpe5qmIhB8TrZkTMGS0f8gfdXbhrfpeI9x1HGJaUyYfTn/+fk6lj44D3uSDUVWOfDBIcp2VXPN\nz0LvJldTfhwxKQHizotxNoh4LplH3Dvbyci/E8lk5vI7FgyKvrjRZPf6t2jwVJH19RUIp/3X1sJ0\nTLlJ/OuP3+fBX34Y0SLsF4ziqj4nrvLNmJKGY08d2+2zvrYKpJjwZYT4Wkoj5lLSVAVn2aYAo1p3\nXPnF/+Y/rz3JK/f8k7i0eNob20nNGsZXfvC3XoUwWmyxqA4nqBqI530A213Y4pKYsnBoRh2Fgx2f\nvkHc4tEdSnuG2MmFNL69i5qyo2TkRa7qyAWhuJ76w8iOGmx5C0M6s3obj3UbTdRb5NYyrLmR2SY6\nS9f5/bMhhmMaJCOX3fIDLrrmARqqi7HFJpCYmtPreVOzhhEXm0zDgRMw4ZxqGKqKccshZi6+s9dj\ngt//3FRbDgIkpuYM2dYgHlcb9rjgL2tBEDDG2iKeWTXkFVd21CE7a7Hnh6aIqs+JKFnD+oHROik7\nEw5cVTsxpYzpNrG/quQw699/jtLjn2GxxTBt3vXMXHoTFlsM2cP6foYXBIEb7vo5L/zyK8jVTaij\ncsHhwrjtCFn2TKYtvq7XYx7csYr3X/05blcrmqZhj0ni8lt+wKjJ4fsSjRYFI6ZTvP8Y1oJAC76v\n2YGrppH03MjW+BryARiSPRVUBVV2hfS8u2YP5vTJYZtfdjZgsCb3/GAv8TadRJSsGGMyu3zm2N6N\n/PFnt9GWUU/R1+aQurKILbte5k+/uhNZ9vZbhpyiiTzwxJvMjJtAypqjZO9r5Irl9/Dl7/yx1+GC\nx/Zs4PUXv0fGzROZ+KsbmPTkjaReP4bXnnmYkwe39lvWaDP/kjtp3XiUtj3FHSWDfC1Oal5az8yl\nN0f8zC90Vqeo46YgaE+8ciSiAoQDTfHiLN2AvXBp989pqv+5EFfnUHCWb8aaOS2s3QIUV6O/0mQ3\n229VVXny24vJv2MaiePOboU1VeXAkx+xaOE9TF98fdhk6i+/+6+VxK7IJmlqYcD1+i3H8G5q4Z4f\n/X2AJOs7JUd28s/nv4fH50CKteGqbmDm0pu55MaHEMOQafbDW0ahaVqnW8Mhv1UGEAwmTMkjcdfu\nx5LW9fbQW3+ozw2dNVVBUzxoshv19N+a7EH1toe9xYevrQKDPa3bZypO7gMTJIwNrOwgiCIZS0ex\ne/1bg0ZxfV4PNcVHyZs0N+he0rRCtr/4Z1RVHZTZRd2RP2oaDz35EdWlR/C42snIGxW1ht4XhOIC\nGONy8bWUobg7TxoHkJ11mLvw656Po3gNcnsVxvg8QABBQDBYECUzgmRBMJgRbTEYEwp7HKu3WNIm\n4K7dh7vuQJd+aK/HidFu6fSsLsWY8bodYZfrfMpP7GXNO7+n5MguTBYrk+ZcycLL7wpKlRNFEUEQ\nULwykjXwS05x+zBIxiFrpBIEgcz80VGfd2h9xfWANWc2rsqtnZYplR21SLbQ+7baC5ZgyZyOJnsw\np4zBljMXa+ZUzKnjMCUWYYzLQbKlhqXkTGdY0iYgiEZc1bs6vZ9VMI628jo8zc6ge427yhg2ek5E\n5DrDsb0b+dOTX0Yc62X241cw/lvzONX0Kc8+diNuZ1vAswbJyMgpC6ldeyhonJrVBxk7a/mQVdyB\n4oJSXEEQsWROw125Peiep/4Qpl5uk83JI7EVLMHbfApH6XrUXjTgCgfm5JEYLMk4K7YE3bPa45i5\n7GaO/n4t7nq/omiKSvX6wzRsK2buii9GTC5N03jnL48y/p755C8fhyXJTlxeMuPumocpx8SWj18O\nes0lN36H+lVHKfvXdlyVTTgrGin9x1aaPy1hxfUPRkzWC5ULZqt8BrmtEuG8VVCV3QgGU59cNoIg\nYs2chip7cFduQ5CsWDKnRq3TgSkhH0Ey4ShZfzon9+zKdPENDyO9YWLzo3/FkhiDp81BUlo+X/ne\nX4hP7nu5156orTiO1+cgZWKgf1gQBHKWjmTvy/9m8dX3BtxLySzg/p+8zvr3nufQ06sRBBg7bQUL\nf/o08UnpEZP1QuWCUVxNlXGWbvBvY+PzAu55avaEHN7YevA1DPZ0BFFCisnAGJeLYDAhSmZseQtQ\nXE04S9YixeZgTo5OoTFjTCaCwYSzeDW2giUdXxqiKLL8+m+x6Mp7qK86hcUWS1JabkhjtrfUs3fT\ne7S3NZJVMJYxUy/qsv7y+SiyD4O583OpwWxE9nXuikpMzebqLz3K1V96NKR5dLrmgtgqK+4mf65r\n1swgpfV3Jwjs9N4dMcMvBU3BmjMHQbLiqt6Ns3QDztINuCq3o6k+bPlLECULjlOrkNtrIvGWgpCs\nyViyZuA49UlQVUiT2UpWwdiQlXbX+jf59UPLWX/4TXY5t/Puu7/mfx65mMbaspBen5YzHF+7h7ay\n4Pzb6q2nGDlhYUjj6PSdIb/iehqPoThqsQ9b3un21dt4DFNS6HmioikWU/Jo3FU7sWbNwHhO60tV\nduFrKcXbeBQ0zb8Klq5DMMVgz1vYaVOtcGIwx3U0Ajs/TTFUasuP8+7LT5D49csxpp+twuFYv5+/\nPnU/DzzxTo+GIkkysXTlA6z97e8Zf+98EorSULwy5euOUr3hJNf+9POV3jcQDFnF1TQVV/lmDLbU\nbgMV5PbKXncnMMZmoXpa8DQcDdgOi5IVc/IoSB51WgYNxdWAr7kYR+l6Yoat6LNChYK7Zg+mpBGI\nkrXPY2xZ9QqW2aMClBbANn8cTZvfpPzEPnKH91zxcvbyWzFIRlb/7ml8Pjeyx0tO0QS++sOXSUzN\n7vH1Ov1jSCqu6nPiLNuINXNGt1USFVdjyLWdzsecMgZnxVZkRw2SvXPjiSAISLYUJFtKn+boDb62\nSjRVwRgX2na4K2prTiFNCc4SEkQBY1YKjbWlISkuwIwlNzBt0XW0NtZgMluxxfbtZ63Te4bcGdfX\nUoqrYiv2got6LG3qrtuPuR/J8tasmXhq96N6Ix/M0B2qz4W3/hDWzP4nZ6emFSBXBJ9NNVXDW1Ef\n8jn5DKJoICElS1faKDNkFFfTNFxVO1HczZ2Wogl6XvH2uzuBIAjY8hfhLNuI1s8KiX1F0zScZRuw\n5YXH4DN72S24Nx/BV9sccN356UFibYnkFEW3MLxO3xgSW2VN8eIoXY8ldTxSTGj+SXftvrB0JxBE\nCVvufH9ebP6SqEf4uCo2Y82cHrbaWOk5I7jilh/w7tOPYZlQAIk2tON1iK1ebv/+X/QIpiHCoFdc\n2VGLu2YPtryFIYcXaprWaSPnvqDKLuT2KhR3C76m472yUPcXT+MxDNbkkFuUhMq0RdcyctIC9m56\nj7bWerIvG8uY6csGZWV/TVPxtZRhjM+NWtDLUGBQK6677gCaz4G9cFmvVgJfS3Gfgv9VnwtfWzmK\noxY0fzd2QbIgxeUQO+rqjg+OpvpQXE0YrEkRsyIr7iYUR223FvP+EJuQyrzLvhSRscPFmbK2xoQC\nnKUbEQQBU8roXsWcX6gMSsX111naiDE+H1OI2Tzn4msuxtaDC0j1OfG1lqM4685RUivGuBxMiUVo\nshvFWY/sqsfXeBxf0wk4UxBOEBHNcfhaSrBmzei1fD2hqT5cFduwD+t98fJo4WpvYee61zl2cCMm\ni40ps69h9LQlYclDBX+DM0fxamy58xFNdsxJI9BUBW/DYTx1BxGNVsxpE/rlGhvKDDrFVTwtuMq3\nYMud26eSpoqnFdEcF7BCq16HfyV11vkvaBpIVgyWeAy2VBR3E6gymuLG23Qcmo4jSFYkWwrmpFEI\nRlunK76jZG1f32a3OEs3BPUKGkw01JTy/OO3EDMymaR5ufgcHv79xuPs3Pgvbnmg/42/VNmDs2QN\ntvzFiNLZOtGCaMCcOg4z/t+pu2YvmuxGsqdhOq9NS2e4HK2AP0FjqDOoFNfbdAK5rbLLKKhQcFft\nwGBL7bAEq952NFX259Ea7f5xBQEUD5rsQbKlYEoo7JPxxxibja+1rN++1QD5qz/DlDQy5BDNgeCN\nF35A2vLh5F5ytjNExrwR7H/yI3au/Rczl97U57FVn9NfpaTgom4LFIgmO7ZsfxcKub0aZ9lGAMxJ\no5BiAv3uJw9u5T+v/YKa0hMAZBaM4pIbv0f+qGl9lnOgGRSKq2karootGCyJ2PIW9Oq1qteB4qpH\ndtb7q1N421EVL6IxBkGyYI7NwmBLQTTHh30FMyYOx1m6LmyK62urADSMcb2vyhgtWhqqqSo+yKxv\nBiqnKBnIvnw82979R58VV/G04qrYgr1waa9sB1JMBlJMBpqm4m04gqfhMIJkwZI2gdITB/n7b7/G\n/PtncfmcuWganNh4kr/+393c8fCL5A4PT23taDPgiqv6XDjLNmDJnIbUSdE1TVNR3c3IznoUdyOc\n508VjFYkawrmlDFRX6UEQUAwmFBlT78T6lWfE2/DEewFF4VJusjgbG/GkhCLaAw+y1pTY3G2NvVp\nXMXViKt612lDZN++YAVBxJwyBnPKGFSfC0/dPj585SfMuWs6RfOHdTw3cvFwFK/Mqjf/jy898uc+\nzTXQDKji+lor8DYewZY7H8XT0tFRLxABgyUBgy0FU2Jht90JBgJL2sTTzcP6bqTqKGJXOLiVFiAp\nPRd3UxueJgfmxMCysU0HKsgq6L4YfWfIjlo8dQf82+Mw7YpEoxVj6mQqik9x6fzg4oDDFw5n/f97\naUjWuoIBVFx39W5AQJM9eGr3YbClYIzLCzIsDXZEUwyqr38hka7yLVizZgy6L6XOMFvsTFv8BY6+\nsI7RX1vUUUOqraSesnf3cce3n+vVeL62SnzNJ7HlLw77710QBAQEVEXFcN4OQZUVBFEYUp+1c4m6\n4mqKD2fp+tOd7FJRFTfW7PC0uhwo+mOk8jQcxWBLCXuQRSS55MaH8fy5jW0Pv0biqBxkpwdHRSNX\n3fEoeSND75XkaynB116NLTcyXeINkpHhk+Zw+KMjTLgqMGb94H8OM3L8VJyl6zFYkzCnjIloZle4\niXpdZWfZJiwZUxCNVnwtpYAWsb470ULTNJyl63tdr1lxNeGpP9hjkIXP62bf5vcpObQGUTQyYupl\njJ4aPp9pX2lpqKb02C6MZhtF4+ZgNIV+zvc2nUBxN2PNjKxlt6bsKH984lYmrhzDqGUj0FSNwx8f\n5cC7R7nrx6+SmjUM2dWAt/4QmqpgShyGFNv31ii+9ip8LaUdFu/+0F1d5QFQ3I0d37DOii1YM6aF\nLQ53IHGWb8KSMS30sEzVh+PU6h5dX47WRv7yi1sYPgzuuD0Pt1vh98+cRDHkceM3n0cyDr4wxZ7w\n1B9GU71YwhBLHgq1FSdY89bTHP1sPQCjpy1hydXfICWzIOA5TdPwNZ/EU7ufmBFX9CpBRdNUXJXb\n8dYfJmbE5WFJ9RxkBdHPkUOVLwilBbCkTeqVkSrUIIuPX32clVfF8ZunZnasAl/96mguu3wVmz54\nkYVX3dvt6wcb7tp9CKIUNaUFSMsu4savPdXjc4IgYEoswtdW0SulVdxNuCq3Y0mbiKZ4opKfPfTM\naYMU0WQP2Ujlrt6NKWlUj+4rr8fFge2r+O//mhSwdZMkkccfm8S+T1/rl8zRxlW9C1Gy9LmbRDTo\nqtdxV7hr9+KpP4y9cBnexmNYs2ZGULqzRFVxz5RJBU7nt15Y3xvG2Bx8rd0XXPO1Vvifjeu5vIvb\n2YrVaiQ52RJ0b8SIeFqa+uYzDZDH66a24gTtLQ39Hqs7XBXbMFiSoppd1Rd8LSUh2VxUnwvHqVUY\nrMnYcuaguJsQjPaAEM1IEtWtsuKoxWDz98SRHTUh59YOFYyJRThL13drXXZX7yJmxBUhjWePS0ZR\nDRw61MSYMYEVJtasqSQ7v6jPsiqKzNo3n2L7qr+TmGSlsd5BwajJXHL742GtGaVpGq7yTRjjC0L6\nshpo5NbyHnsde5tO4GstD+jH7Kn+DFvBkmiICER5yZMdtUinm1nJbeVIsYP/F9kbzo2k6gpr9iyc\npRs6bZNyPgaDxKwVX+TLX9lCS8vZWsUlJW08+NAupq+4p8+y/ufln+Ku+4j1W69k14GVHCq+iasu\nV3jp5zcHtRDpD+6qHZiShg8JpYXuex1rqg9HyTo0TcWev6hDab1NJzAmDotqUkhUFVdT3IhG6+l/\neyPWd2cgORNJ1RWSPc1fiK50fUjKO/+Ke5ES5pOb9xrXXreeSy9bw/gJbzN+wVcYN6NvaX+tTTXs\n3fQuf3ttCbl5/gwsq1Xiwe9OYuaseHate6NP43aKIPYpy2sg6K64oK+tEkfxWqxZMzCfs93XNBVf\nczGmCDR/644oHzKHZpRKb/AbqYIbcZ2LZE/FnDoOZ8naHpVXFA1cevuj3PezDzGk3Ul80X1863/W\nMvfSr/RZxpIjO5k9P4e4+GBX0rVfyKP82IY+j30+pqTheBuPhW28SOJpOOIvv3sOmqbirNiK4qwj\nZtjyIIOiu3o3loz+F/HrLVF2B/k/pJqmciErcSiRVJItBdInns477bmWVXxSOlMWXhMW+SSjhdYW\nX6f3Wlu8GIzhM7AYzPF4guLPByea4gtIJTzj5rFmTu80sk31udBkV4/VRvuC6m3v9n7UVtxzlVVx\n1mG4gMuPGBOL8Dad7PE5yZqMJX0yzuLVp38+0aFo/BwO7q/n0IHAMq0+n8rzzxxjzPTwfEEMJVTZ\nHXB0c9fuxdNwBHvhsi7DUV2V2yLi/tE0DWf5pm6fiZriqu5mREsCAL7W8kGdc9pfQjFSncFgTcKS\nORVn8ZqoKa/JbOXiW37Eyss/5i9/OkxJcSvr11Zw3RUfI1qGM3paeK2joiXBX2VkEONtOIIpeRSq\nz0n7qU/8bp7s2V0anGRHLQZLQrfJ/n3FXbW9Rx9/1BTX31jab1HWetGEa6jSk5HqXAyWRCyZ03Gc\nWhU15Z2y4Bquued3/OkljYuXfMKD3zxK0rDbueEbfwh7DLQpcTjexuNhHTPcKJ4WFGc9rsrt2PMW\nIYhSp32Jz+AJU/nf8/G1VfoTTyzdJ51E7YyruBoHvfM9nIRipDoXgyUea/ZMHKdW+StARMG1UDhm\nJoVjIh/pIxqtaFFuCt4bNE3FW38YyZ6BwZqMs/xTJFsaki0Nb9MJTImB/nJPwxFMSSPCnhKoKV5a\nD/2L2OGXYUoa3u2zUbQqawiiISQXyIXCGSNVqBjM8VizZ51upTkwnRMiyWD93Ws+J6bkkcjt1Ugx\n6djzF2NOHYspcRi+5uIAuTVVQW6rCGrnGg7aT31C7MirelRaiLLiwmlfWSclai5EQjVSnYvBHIct\nZw6O4lUXlPIaYjJQHNUDLUYAvpZSHMVr8NQfwpYzF3v+wqCazea08Xjq9nX83121E0uEUhHt+Ysx\nJRSE9GzUg4Xl1jKk2OgbpnxeD/VVxTjbomck6Y2R6lxEUyy2nLkX1MprSijA21w80GL4a1ZX7cJR\nshZNlbHlL/ZXH+nCyCTZ01GcDacrhjrQVBmDOT4isvXG7hOVM64qexBE/w9G9bZhMEcvkkZVFda8\n+TRbPv4bZpsRV5uLwjEzuOKOn5KQnBnx+f3Nx3p/FhJNMdhy5+M49Umvqx4CKLIPTdMGTb6uIBpB\nlQdsfsXVhLtuHwIC5vSJvVI+S+Y03FU7UWUntpzIdJboLVFRXMVZh8E+MH7b9//2GNXVn3Lfc5eT\nnB2Hx+lj4z/288LjN/O1J/6NxRa5LvK+1jIkW2qfXQaiyY4tb8Fpg9VFIdWkqqs8yUf/fJIjuzag\naSo5w8ex7NoHKRo/p08yhBVBRFOVfnVQ7A2apuFtPIbcXonBnIAtZ16f5jaY41BlNwZr8qDJH4/K\nVvmMKyjaxonWplp2b3ib2362hORsf/V6s83I0junkDkqlt0bwhiTex6apvpD6FJ7X/XwXESjDVve\nQhynVqMpnUc7naGxpoznH7+Z+LEO7nz5Vu76152MviaNV3//DY58tq5fcoQDY3wevtbSiM+jym6c\nFVtxlq5DNNqx5y/GkjG5X18YtrwFWNIm9PxglIiK4mqy0+8e8ZwNwogGJUd2UDg5B2tscDLDhKW5\nnDi4PmJzu6t2hq2ekmi0YstfiKN4NZri7fK5df/+A2MuLmLKdZMw2UwYJJHh84ex5Jvz+PDVnw+4\nVVeKzUZuq4jY+HJ7DY6Sdf744bQJ2PMXhy0rabBVg4yqccofMRW+dh09IRnNeJ2dr1Iehw9jGGNy\nz0XxtKJpSpeZJn1BlKzY8hd1q7xHdq9h1LJgX3netFzamutobawJmzx9QRBEf9+mMKJpKu7afThK\n1qK4GrDlLcCWM2fIBvhomooqe1C93adWRjXJQHU3I6aO7/nBMFE0bg6vP1dHzakm0gvPKpEiq2x7\n+ziLLv1+ROZ1V27vsVtgXxAlC7b8Jf4udvlLgtMiBaF7xRgMq4bB5DfY9TNUUPW2467Zg6YqmFPH\nRGQbq2kaaDKa4kNTfR1/0/F/b+D1sHgABASDsUd7RsQV9/ztWTS3HCaLjUtv/j5/fvBJlt89maJp\nWTRWtbHmz/uw2woYPS38nQM8DUcwJg6PmAFGlMzYCy7qVHnHTF3KoY+PMfuO6QGvKd5eQkJyJnGJ\naRGRqTeYEobhbTrR57pTvpZSvE0nEE0x3bpx+oriacNTuw9N9fkt+aIBQTR2KJNgMPn/Ntr8/ag6\nrhtBkKL2+Y644qqeFsQI+b1CYdri60lIyWbjB8/ynz98gD0+kakLbmLW8lv73Q7yfDTF6+82GOES\nJoLBdFp512DLX9RR52jhFffyzKPXI5kNjL9sDJJF4sTGk2x+YSc33v+bqHyoFE8bgiAimuyd3jfY\nUvA2HO7VmJrqw12zD9XbijEuL+xdD86EPMrOOkRTDJbM0MvsDhQRr6vsD5hOQJAs+JpPYUkfmt3R\ner8izjwAAAl9SURBVELTNBzFq7DlzI3a+crf/HkVtrxFHZVFGmpKWfX6/3Jg2ycoskLhuKksXflt\nCkZP72G03qPKbuTWMmRHTccWXTTFoKk+VK/jdMmaYJvGmdK0PdEf32soyM4GPPUHQANzyigke3rP\nL4oiA1pXWXHVY0oswttwBOkCTeU708nAkj4pqkYRwWDEXrgUx6nV2PIWIBptJKfnccP9T6Hdp6Fp\nWtgaWmmqjNxW6W8FejqQQpDMGONysSYWBSVFnCku7iheg8GSgDltQkcQiWC0oXodna7K4fK9dvk+\nFB+euv0onlYM1qSwjx8tIm+c0lQE0YDibsQ0iOvp9hVN03CWbcCcMiYozjVcqD6Xv2azqqBpCqjy\nOX+rSDEZtOx/hYSJX+w48wlC3xtaaZqK4qzD11J6NqtHNCDFZGPNmh5SIMiZ4uKmxCIUdzOu8s0A\nmNMmYkoagbfpeMDuS5XdfmOT7MKUOAJ7mI17vtYKvE3HEUQJc+p4LJaBO76Fg6halQebLywcuMo/\n9XdBt0fO8OOq3IbBHO9foQQDgij5jSSSDUQRQZAwJhRCH7v9Ke5mfC0lZ1ucCgIGWxrm1PEdW/D+\nYLAkYMtb4D+rnm6lqnrbsaRPQm6v8TeiNpjCvmNRfS48tXtRZRdSbHZInSOGCkOnPdkgxFm2CWNi\nEVJMZM9G1uyZuKs/w5Ixud9jqT4nvpZSFGddxzXRkoAxoSBiwfNnEEQj1oypHX12HCVrkWxpYVUo\nTdPwNZ3wtxE53ZV+qPp0uyOiiqspXhAlVJ8TQer/N/dgwlm+GWNCPsaYyCcqiJL1tK+wd3G+muLF\n11aB3FYFmt/HKBhtGOPyMCWPivoO6HzfaziPFoqnBU/tfjRVxpQ4rNedE4caEVVc2VmPZEuLesRU\npHFVbMUYl4MxigXdLemTcNfuwdpFKVBNVZAdNf7E/TORVQYjxtgcrNmzBtQAEynfq6YqeOoPorga\nEc2xEfHrDlYiqriKowZT0gjcNXtCyuofCrgqtyPFZET9i8hgiUd1t3QEtCiuBr/x6EyjMUFEisnA\nkj55UPggI+l7lR21eOoPgwDmlMhETQ12Iqq4qs+BaIqBbto6DCVcVTsx2FIHrBG3OWUMzuLVCAYT\nBmsy5uSRp3++g4dI+V41xes3bHnbkGyp2HKHphsnXOjGqRBxVe/CYEkMubRIJJBiMgZlo7RI+V41\nTUNuLcPbfBJBNGJOm4DBHBcGiYc+kQ95lN0IhoHfuvUHd/VnGExxmBKHDbQog4pI+V5VnxN37V40\n2Y0xLhdb3qIL0pXYHyKmuGfOYnJbxZDuyueu2Ytgsl8wZ/Rw4Pe9Hjrte50cFneLpql4G48jt1ch\nGq1+n+4F5okIJxFTXNXbhmiKQ26vxpo9O1LTRBR37T4EyRzQne3zjrNsIwZLkr83bBjsFoq7CU/d\nATRVwZQ04oJ344SLiCiu6m3HVbEVS8ZkvPUtQ9KI4Kk76A+PO6972+cZ2VGDaI7vdzkeTZXx1B1E\ncTdiMCecdlf9//bu5aeNK4oD8G88foztNEQpgeAmBRZRUGgbtRJErdKqabbddNNF/9Z02S5SpRJN\nEaFAgfI0GL8wHt+Z++hiHAPB2Bew52GfbxlYjMSc3DPnnntuOGY5RUXPAldyBna4COnUmkPOnsMw\nLSiEcwh2J6ywBADXPjM6qNjB38hMXf8Mc6u90Yghee8JrPHeX+ExLG4UuEpysMIShF2CEU8iNToL\nM/WRNyjtcBGifojUWLSO8bGjZSjJh3JvsBOnvInEyOSVi0SSM69f2D1BPDs+UP3CQbpy4J4WEfZh\nxEwkR2daL7lSEo38XxB2wTuBEbGXnxVXoDijleADXv/vKrLTL/V/v7IJt7LpFbDGPovMrfRRoRW4\np/tpG4Dh3b6WnfzuzM8l2MFbCLvoBWwEX3yntAblnPSkkX/QOEfvkByd6fp70ql52zjCRWLk02YB\ni7Zx+qFr4Na3foOSvPmH+PbcH0IpCZZfgGiUkRr7PLLTLZzSvxCscmkf8DBTSoLX9pC95HtfKQnn\naNkrXCWysO6Hf+zLIOgauLHU7Qsp77mAHf8C1v0v+/aA/eaUNyAapZ7NQB40LL+AVJv/kIVd9LZx\nlETq48dUyPNZ18A920yvpEAjvwDJKrDGn0Y6YAG0zqWmc3NBP0ooKelCsCqs5u2KSrpgB4sQrAzT\nuov0g6+vfKcR6Q2NFddrErf3/4RkVVhjT2Gmezfo2w/8JH9hEJhb3QKv7SH9ybOAnir87OZtDO7x\nLpziCoyYidS9WVgW1QGC1jVw33/TSqfW8zlA/SbsIuy9N5BODbdnfmr9u3u8A7e6jcyDEFyEFVKS\n2958Yd5A/NYEbeOEjHZV2TCi0/2kpAt75zUMMwVr4ivw493Wz9zaHtzyJjIPvwnwCcPPMEyMzP5y\n6XxkEizNDxQFIBplfXa0DH68i3RuHrFkFvXt35Ge8GYK81oebnFVa6bvsDPM5NBMk4gi/dwn5Ptx\nwi6itv4KsXga2akXrZVCSQ7DTHpTE4rLSD98HvCTEnJzeituwNczdnI2Lc5O/XDuO0w0SjBTI+D1\nAlhhiRoCyMDQT5VDWJjw0uIdpHPP2n6LscI7JO9Mgx287fl9M4QESXvFDdMrL+wS7P033tSFDqdV\nRP0QjNvITL6goCUD5QorbvAvvpK8mRYnLqTFH5LOCSRv4NajHyloycDR3g4Kuqp8mhbPa002jCWz\nGHnysw9PRoj/rvDhGkzgikYJtfVXreJT2MaREhIEzVRZ+p4qK8lh776GEeueFhMybDSLU4CfKy47\n+gf8eBvp3BwdwCakDc1lTPlS4BGNcjMtTjTTYgpaQtoJRQPGaVocp7SYEA2BN2Cw4gp4dQvWxBzM\nFK2whOjQikbVhxW3lRY3V1kKWkL0+d6AoaTw0mLDpLSYkGvy9VifU1yBW/kPVm6eVlhCbkBvubvh\ndpBoVHCy/itgmMhOv6SgJeSGtBswrrMddDYtzkx+H8k7hAgJo741YDjFVbiVTVi5ObqMmJAe027A\n0C1OCfY+LY4102IKWkJ6Te90kMaNe0oK2Ht/ADAoLSakz/Q7pzps2zilNbjlDUqLCfGJfqrchmBV\nLy0GKC0mxEfaKy6v7SMWTwNmAoYRh1NeA6XFhARDK3DNzCiSdx8BkkO5dUjhti6xJoT4z+jUh2wY\nRnjnshIyBJRSbbdzOgYuISScqMOfkAiiwCUkgihwCYkgClxCIogCl5AI+h8QyB9cmRxmdgAAAABJ\nRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "from mpl_toolkits.basemap import Basemap\n", "\n", "districts = combined.groupby(\"school_dist\").agg(numpy.mean)\n", "districts.reset_index(inplace=True)\n", "\n", "m = Basemap(\n", " projection='merc', \n", " llcrnrlat=40.496044, \n", " urcrnrlat=40.915256, \n", " llcrnrlon=-74.255735, \n", " urcrnrlon=-73.700272,\n", " resolution='i'\n", ")\n", "\n", "m.drawmapboundary(fill_color='#85A6D9')\n", "m.drawcoastlines(color='#6D5F47', linewidth=.4)\n", "m.drawrivers(color='#6D5F47', linewidth=.4)\n", "# Temporary bug: if you run the following line of code in the Jupyter Guided Project interface on Dataquest, you'll get an error. \n", "# We're working on a fix, thanks for your patience! This should work fine locally on your own computer though.\n", "# m.fillcontinents(color='white',lake_color='#85A6D9')\n", "\n", "longitudes = districts[\"lon\"].tolist()\n", "latitudes = districts[\"lat\"].tolist()\n", "m.scatter(longitudes, latitudes, s=50, zorder=2, latlon=True, c=districts[\"saf_s_11\"], cmap=\"summer\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It looks like Upper Manhattan and parts of Queens and the Bronx tend to have lower safety scores, whereas Brooklyn has high safety scores." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Racial differences in SAT scores" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAE1CAYAAAACmZAqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGMVJREFUeJzt3XuUZWV95vHvAwiiCNFBu5VLY0BpRVHJQIiascALaIyY\nqCM6xkvGSGZEGc1kgIyJFZfjSLIyM1HHC4qKcVYYUUfxCiiUUfGCQgtRmotEBIQ23gFFufzmj7Mb\nKkV11ek6G3adl+9nrVp99jnvOfvXp08/9Z537/2+qSokSW3aZugCJEl3HkNekhpmyEtSwwx5SWqY\nIS9JDTPkJalhvYR8ksOTbExySZJjF3l85ySnJdmQ5MIkL+5jv5KkpWXS8+STbANcAjwR+B5wLnBk\nVW2c1+Z4YOeqOj7JrsDFwJqqunminUuSltRHT/4g4NKquqKqbgJOAY5Y0KaA+3S37wP80ICXpDtf\nHyG/G3DlvO2ruvvmewvw8CTfA74BHNPDfiVJy9juLtrPYcD5VXVokr2BM5PsX1XXL2yYxHkWJGkr\nVVUWu7+PnvzVwJ7ztnfv7pvvJcCHu0K+DfwTsH5LL1hVq/rnta997eA1tPTj++n7uZp/puH9XEof\nIX8usE+SdUm2B44ETlvQ5grgSQBJ1gAPBS7vYd+SpCVMPFxTVbckORo4g9EvjZOq6qIkR40erhOB\n1wPvTXJB97T/UlU/mnTfkqSl9TImX1WfBvZdcN875t2+htG4fBNmZmaGLqEpvp/98v3s17S/nxOf\nJ9+3JLXaapKk1SwJdSceeJUkrVKGvCQ1zJCXpIYZ8pLUMENekhpmyEtSwwx5SWqYIS9JDTPkJalh\nhrwkNcyQl6SGGfKS1DBDXpIaZshLUsMMeUlqmCEvSQ0z5CWpYYa8JDXMkJekhhnyktQwQ16SGmbI\nS1LDDHlJapghL0kNM+QlqWGGvCQ1zJCXpIb1EvJJDk+yMcklSY7dQpuZJOcn+cckZ/exX0nS0lJV\nk71Asg1wCfBE4HvAucCRVbVxXptdgHOAp1TV1Ul2raofbOH1atKaFlq7di82bbqi19fs25o167j2\n2u8MXYakKZSEqspij23Xw+sfBFxaVVd0OzsFOALYOK/N84EPVdXVAFsK+DvLKOD7/cXRt02bFv33\nkaSJ9DFcsxtw5bztq7r75nsocL8kZyc5N8kf9LBfSdIy+ujJj7ufA4BDgXsDX0rypaq67C7avyTd\nLfUR8lcDe87b3r27b76rgB9U1Y3AjUn+AXgUsGjIz87O3nZ7ZmaGmZmZHsqUpDbMzc0xNzc3Vts+\nDrxuC1zM6MDrNcBXgedV1UXz2qwH3gwcDuwAfAV4blV9a5HX6/3AaxJW+5g8hL7/3pLuHu7UA69V\ndUuSo4EzGI3xn1RVFyU5avRwnVhVG5OcDlwA3AKcuFjAS5L6NXFPvm/25CVp6yzVk/eKV0lqmCGv\nrbJ297UkWfU/a3dfO/RbJa0KDtesGtMxXJMEZoeuYgyzTMX7KfXB4RpJupsy5CWpYYa8JDXMkJek\nhhnyktQwQ16SGmbIS1LDDHlJapghL0kNM+QlqWGGvCQ1zJCXpIYZ8pLUMENekhpmyEtSwwx5SWqY\nIS9JDTPkJalhhrwkNcyQl6SGGfKS1DBDXpIaZshLUsMMeUlqmCEvSQ0z5CWpYb2EfJLDk2xMckmS\nY5dod2CSm5L8fh/7lSQtbeKQT7IN8BbgMGA/4HlJ1m+h3RuB0yfdpyRpPH305A8CLq2qK6rqJuAU\n4IhF2r0C+CDw/R72KUkaQx8hvxtw5bztq7r7bpPkQcAzq+ptQHrYpyRpDNvdRfv5X8D8sfolg352\ndva22zMzM8zMzNwpRUnSNJqbm2Nubm6stqmqiXaW5GBgtqoO77aPA6qqTpjX5vLNN4FdgRuAl1XV\naYu8Xk1a0yKvCfT7mv0Lff+97wxJYHboKsYwy1S8n1IfklBVi3ae++jJnwvsk2QdcA1wJPC8+Q2q\n6tfnFfMe4GOLBbwkqV8Th3xV3ZLkaOAMRmP8J1XVRUmOGj1cJy58yqT7lCSNZ+Lhmr45XLO6OVwj\nrT5LDdd4xaskNcyQl6SGGfKS1DBDXpIaZshLUsMMeUlqmCEvSQ0z5CWpYYa8JDXMkJekhhnyktQw\nQ16SGmbIS1LDDHlJapghL0kNM+QlqWGGvCQ1zJCXpIYZ8pLUMENekhpmyEtSwwx5SWqYIS9JDTPk\nJalhhrwkNcyQl6SGGfKS1DBDXpIa1kvIJzk8ycYklyQ5dpHHn5/kG93PF5I8so/9SpKWNnHIJ9kG\neAtwGLAf8Lwk6xc0uxz4N1X1KOD1wDsn3a8kaXl99OQPAi6tqiuq6ibgFOCI+Q2q6stV9dNu88vA\nbj3sV5K0jD5CfjfgynnbV7F0iL8U+FQP+5UkLWO7u3JnSQ4BXgI8fql2s7Ozt92emZlhZmbmTq1L\nkqbJ3Nwcc3NzY7VNVU20syQHA7NVdXi3fRxQVXXCgnb7Ax8CDq+qby/xejVpTYu8JtDva/Yv9P33\nvjMkgdmhqxjDLFPxfkp9SEJVZbHH+hiuORfYJ8m6JNsDRwKnLShgT0YB/wdLBbwkqV8TD9dU1S1J\njgbOYPRL46SquijJUaOH60Tgz4H7AW/NqFt9U1UdNOm+JUlLm3i4pm8O16xuDtdIq8+dPVwjSVql\nDHlJapghL0kNM+QlqWGGvCQ1zJCXpIYZ8pLUMENekhpmyEtSwwx5SWqYIS9JDTPkJalhhrwkNcyQ\nl6SGGfKS1DBDXpIaZshLUsMMeUlqmCEvSQ0z5CWpYYa8JDXMkJekhhnyktQwQ16SGmbIS1LDDHlJ\napghL0kNM+QlqWG9hHySw5NsTHJJkmO30OZNSS5NsiHJo/vYryRpaROHfJJtgLcAhwH7Ac9Lsn5B\nm6cCe1fVQ4CjgLdPul9J0vL66MkfBFxaVVdU1U3AKcARC9ocAbwPoKq+AuySZE0P+5YkLaGPkN8N\nuHLe9lXdfUu1uXqRNpKknm03dAGLmZ2dve32zMwMMzMzE73emjXr2LQpkxV1J1uzZt3QJYxlzW5r\n2DS7aegylrVmt+n4orjX2rVcsWn1v5/r1qzhO9deO3QZy1q7555suvLK5RsOaM0ee3Dtd7870WvM\nzc0xNzc3VttU1UQ7S3IwMFtVh3fbxwFVVSfMa/N24Oyq+r/d9kbgCVV1h093kpq0JmlaJGEaPu0B\npuH/ZRI4++yhy1jaIYf0/l4moaoW7cn2MVxzLrBPknVJtgeOBE5b0OY04IVdMQcDP1ks4CVJ/Zp4\nuKaqbklyNHAGo18aJ1XVRUmOGj1cJ1bVJ5M8LcllwA3ASybdryRpeRMP1/TN4RrdnThc0y+Ha+7I\nK14lqWGGvCQ1zJCXpIYZ8pLUMENekhpmyEtSwwx5SWqYIS9JDTPkJalhhrwkNcyQl6SGGfKS1DBD\nXpIaZshLUsMMeUlqmCEvSQ0z5CWpYYa8JDXMkJekhhnyktQwQ16SGmbIS1LDDHlJapghL0kNM+Ql\nqWGGvCQ1zJCXpIYZ8pLUsIlCPsl9k5yR5OIkpyfZZZE2uyc5K8k3k1yY5JWT7FOSNL5Je/LHAZ+p\nqn2Bs4DjF2lzM/DqqtoP+C3g5UnWT7hfSdIYJg35I4CTu9snA89c2KCqrq2qDd3t64GLgN0m3K8k\naQyThvwDqmoTjMIceMBSjZPsBTwa+MqE+5UkjWG75RokORNYM/8uoIDXLNK8lnidnYAPAsd0Pfot\nmp2dve32zMwMMzMzy5UpSXcbc3NzzM3NjdU2VVvM5eWfnFwEzFTVpiRrgbOr6mGLtNsO+Djwqar6\n22VesyapSZomSbbcM1pFAkzD/8skcPbZQ5extEMO6f29TEJVZbHHJh2uOQ14cXf7RcBHt9Du3cC3\nlgt4SVK/Jg35E4AnJ7kYeCLwRoAkD0zy8e7244B/Bxya5Pwk5yU5fML9SpLGsOyY/FKq6kfAkxa5\n/xrg6d3tLwLbTrIfSdLKeMWrJDXMkJekhhnyktQwQ16SGmbIS1LDDHlJapghL0kNM+QlqWGGvCQ1\nzJCXpIYZ8pLUMENeGtC6NWsIrPqfdWvmLymhaTLRBGWSJvOda68dugQ1zp68JDXMkJekhhnyktQw\nQ16SGmbIS1LDDHlJapghL0kNM+QlqWGGvCQ1zJCXpIYZ8pLUMENekhpmyEtSwwx5SWqYIS9JDZso\n5JPcN8kZSS5OcnqSXZZou02S85KcNsk+JUnjm7QnfxzwmaraFzgLOH6JtscA35pwf6vC3Nzc0CU0\nxfezX76fPduwYegKJjJpyB8BnNzdPhl45mKNkuwOPA1414T7WxX8T9Qv389++X727G4e8g+oqk0A\nVXUt8IAttPufwJ8CNeH+JElbYdk1XpOcCcxfxTeMwvo1izS/Q4gn+R1gU1VtSDLTPV+Serdmjz3Y\ndMgh/b/wyScv32ZMa/bYo7fXGkeqVt65TnIRMFNVm5KsBc6uqoctaPMG4AXAzcCOwH2AD1fVC7fw\nmvb2JWkrVdWiHehJQ/4E4EdVdUKSY4H7VtVxS7R/AvAnVfWMFe9UkjS2ScfkTwCenORi4InAGwGS\nPDDJxyctTpI0mYl68pKk1c0rXiWpYYa8JDXMkB9Dkm2TnD10Ha3oprh47NB1tKL7fG4cuo5WZOSu\nPc/xTmTIj6GqbgFuXWpuHo2vqm4F/vfQdbSi+3xenGTPoWtpQY0OVH5y6Dr6suzFULrN9cCF3cVh\nN2y+s6peOVxJU+2zSZ7F6JoJj/5P7r7AN5N8lX/5+fR05ZU5L8mBVXXu0IVMyrNrxpTkRYvdX1X9\nXQp3N5LkOuDewC3AL+iupK6qnQctbEp116DcQVV97q6upQXd8Nc+wBWMfmlu/nzuP2hhK2DIb4Uk\nOwJ7VtXFQ9ciLZRkHfCQqvpMknsB21bVdUPXNY269/IOquqKu7qWSTkmP6YkvwtsAD7dbT/aufFX\nrju49YIkf95t75HkoKHrmlZJ/gj4IPCO7q7dgI8MV9F068J8D+DQ7vbPmdK8nMqiBzILHAT8BKCq\nNgC/PmRBU+6twG8Bz++2r8eDsZN4OfA44GcAVXUpW54VVstI8lrgWG5fI+MewPuHq2jlDPnx3VRV\nP11w362DVNKG36yqlwM3AlTVj4Hthy1pqv2yqn61eSPJdji19yR+D3gG3UHsqvoeo8kVp44hP75v\nJnk+sG2ShyR5M3DO0EVNsZuSbEsXREnuj780J/G5JH8G7JjkycCpwMcGrmma/ao762vz5/PeA9ez\nYob8+F4B7Af8Evh7Rl+L/9OgFU23NwH/D1iT5L8BXwDeMGxJU+044J+BC4GjGJ3nvdiaDxrPB5K8\nA/i17njHZ4B3DlzTinh2zVZKsjOjU6k8a2FCSdYzmr0U4KyqumjIeqZdku2B9Yx6nxfPH77R1uu+\nET2l2zyjqs4csp6V8mKoMSU5EHg33bhckp8Cf1hVXx+0sOl2L2DzkM2OA9cy1boV2N4OfJvROd0P\nTnJUVX1q2Mqm2oWMPpfV3Z5K9uTHlOQC4OVV9flu+/HAW6fx4ojVIMlfAM8BPsQolJ4JnFpVrx+0\nsCnVXbzz9Kq6rNveG/hEVa0ftrLplOSlwF8AZzH6fD4BeF1VvXvQwlbAkB9TkvOr6jEL7juvqg4Y\nqqZp1i0086iqurHb3hHYUFX7DlvZdEpyblUdOG87wFfn36fxdZ/Px1bVD7vtfwWcM42fT4drxve5\n7kDM3zP6+vZcYC7JAQBVdd6QxU2h7wH3pDuFEtgBuHq4cqbe15J8EvgAo8/nc4Bzk/w+QFV9eMji\nptAPgfnH3a7r7ps69uTHtMxUw1VVh95lxTQgyUeAA4EzGYXSk4GvAleBE79trSTvWeLhqqo/vMuK\naUCS9wGPBD7K6PN5BHBB90NV/Y/hqts6hnxPkrzIycrGt6UJ3zbzvexXkuOr6r8PXce06K543aKq\n+su7qpZJGfI9cXy+X0k+VFXPGrqOVvj57FeSN1fVK4auYxxeDNWfDF1AY5wXqF9+Pvv1uKELGJch\n3x+/EvXL97Nfvp93U4Z8f+wpaTXz83k3Zcj354tDF9AYQ2krJLnfIvc9eN7mqXdhOXcHU/P5NOTH\nlGRNkpOSfKrbfniSf7/58ao6erjqmnTs0AVMmY918yoBo88n82ahrConf+vX3w5dwLgM+fG9Fzgd\neFC3fQnOQrliSR6X5MwklyS5PMk/Jbl88+NVdcaQ9U2hNzAK+p2S/AajnvsLBq5panWfzV+bt33f\nJKdv3q6q9w5S2Ap4xev4dq2qDyQ5HqCqbk5yy9BFTbGTgFcBX2e0mLcmUFWfSHIP4AxGk+j9XlVd\nMnBZ02zXqvrJ5o2q+nGSqVxpy5Af3w3d/BWbFxE4GFi4UpTG91NnSJxct3jN/DNndmE0E+XRSbxy\neOVuTbJnVX0XblvYeyrPUDLkx/dq4DRg7yRfBO7PaH4QrczZSf4a+DCjhVgA5wBaga8t2Hbq6378\nV+ALST7H6CDrbwMvG7aklfGK1zEl2YHRsMK+jP7RLwa2qapfLvlELWoLcwE5B9AKdcvT3VhVt3Tb\n2wI7VNXPh61seiXZFTi42/xyVf1gyHpWypAf02KXhXupuFaLJF8GnlRV13fbOzFazeixw1Y2XZKs\nr6qNm2eXXWgav2k6XLOMJGuB3RgtkPwYbj8/dmdGKxtphbrVjPZjNOUwAFX1uuEqmmr33BzwAFV1\nfRI/n1vv1YyGZf5mkccKmLpvmob88g4DXgzsDsyfXvQ64M+GKKgFSd7O6JfkIcC7gGczmmpYK3ND\nkgM29zS70yh/MXBNU6eqXtb9ecjQtfTF4ZoxJXlWVX1o6DpakeSCqtp/3p87AZ+qqt8eurZp1K1B\nfAqjxVgCrAWe6xrEK5fkscBezOsMV9X7BitohezJLyPJC6rq/cBeSV698PFpWjxgldncy/x5kgcx\nWnXngQPWM9Wq6twk6xmdGABwcVXdNGRN0yzJ3wF7Axu4/TqOAgz5Bt27+3OnQatoz8e7Kwr/GjiP\n0X+gdw1b0tTbF3g4o2McB3TnyU9dKK0S/xp4eDUw1OFwjQbXnZ56z6ry4rIV6lYymmEU8p8Engp8\noaqePWRd0yrJqcArq+qaoWuZlD35MSW5P/BH3HGMzrUzt0KSQ6vqrM0LTC94zAWnV+7ZwKOA86vq\nJUnWAO8fuKZptivwrSRf5V9erPeM4UpaGUN+fB8FPg98BudamcQTgLOA313ksWJ0Bay23i+q6tYk\nN3ezUX4f2GPooqbY7NAF9MXhmjEl2VBVjx66DmkxSd7K6JTeI4E/Aa4HNlTVSwYtTIMz5MeU5PXA\nOVX1yaFraUGSY4D3MLre4J3AAcBxTjE8uSR7ATtX1QUDlzK1ugkI3ww8DNge2Ba4oap2XvKJq5Ah\nv4wk13H77HM7MRqfu7nbrmn8R18Nknyjqh6V5DDgj4HXAH/nNBFbZ0uX3282jZfhrwZJvsboW9Gp\njM60eSHw0Ko6ftDCVsAx+WVU1X0Akrwf+Afg81V10bBVNWHz9BBPA95XVd9MMjVLqq0i8y+/n99j\nC1N6Gf5qUVWXJdm2m/TtPUnOBwz5hp3EaLrRNyXZm9G53Z+vqqlZBmyV+XqSM4AHA8cnuQ9w68A1\nTZ3Nl98n2RH4j8DjGYX754G3DVjatPt5ku2BDUn+CriGKV1Jz+GardBN33ogo/lW/pjRGQ3rh61q\nOiXZBng0cA9gB0anrO1WVW8etLApleQDwM+A/9Pd9Xxgl6r6t8NVNb26RUI2MRqPfxWjxVjeWlWX\nDVrYChjyY0ryWUZXv36JUS/pC1X1/WGrml5JXgocw2jitw2M5u3+kvPJr0ySb1XVw5e7T+PrevLr\nGX0zuriqfjVwSSsylV8/BnIB8CvgEcD+wCO6r8hamWMYfSu6ohtyeAzwk6WfoiWc150RAkCS3+SO\nq0ZpTN002N8G3gS8BbgsyVOHrWplHJMfU1W9CqAbO34xo9P/1jIaatDWu7GqbkxCkh26hRr2Xf5p\nmi/JhYx6mvcAzkny3W57HbBxyNqm3N8Ah2wenumOw30CmLp1iQ35MSU5mtGB198AvgO8m9GwjVbm\nqm6Cso8AZyb5MXDFwDVNo6cPXUCjrlsw/n45o2s6po5j8mNK8p8ZhfrXq+rm5dprfEmewOjA1qen\nddxTbUnyNkbfhj7A6JvRc4DvMprWZKrmWDLkJWmBJO9Z4uGapokJDXlJaphn10jSAkn+KsnOSe6R\n5LNJ/jnJC4auayUMeUm6o6dU1c8YHdj+DrAP8KeDVrRChrwk3dHmMw9/Bzh1mlct8xRKSbqjjyfZ\nyGjB+f/QrQx348A1rYgHXiVpEUnuB/y0qm5Jci9Gc/RfO3RdW8uevCR1FluDeMEM2FNzfvxmhrwk\n3W7+GsSLzc8/dSHvcI0kLZDknsCzgL24vTNcVfW6wYpaIXvyknRHH2E0K+p53H7AdSp7xPbkJWmB\nJP9YVY8Yuo4+eJ68JN3ROUkeOXQRfbAnL0mdefPzbwc8hNEUw7+kO/BaVfsPWN6KGPKS1OnWdt2i\nqpq6NQ8MeUlqmGPyktQwQ16SGmbIS1LDDHlJatj/B6AhREJKny2uAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "race_fields = [\"white_per\", \"asian_per\", \"black_per\", \"hispanic_per\"]\n", "combined.corr()[\"sat_score\"][race_fields].plot.bar()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It looks like a higher percentage of white or asian students at a school correlates positively with sat score, whereas a higher percentage of black or hispanic students correlates negatively with sat score. This may be due to a lack of funding for schools in certain areas, which are more likely to have a higher percentage of black or hispanic students." ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEQCAYAAAB1OJkXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXuYHNV55/950Uxf5qaRnLGJucyAQEhchCRWgGO8Hu7Y\nSbDXiQ3yJoZYsbkYQ/BuYsl5HNgorBEsa6P8fiALy8j2ootjxwvOEobwMMpGifEoBiLiARvWHnGx\nYSbrDT/jFUbA+/ujTk1XV1f1tfr+fp6nn+murq46VdN9vue9nPeIqmIYhmEYtXBYsxtgGIZhtD8m\nJoZhGEbNmJgYhmEYNWNiYhiGYdSMiYlhGIZRMyYmhmEYRs3UVUxE5EgReVhEvi8iT4jIJ932W0Tk\nSRF5XES+KSJDgc9sEJGn3fsXBLavFpH9IvJDEflCPdttGIZhVEa9LZPXgU+p6knAO4BrRGQZ8CBw\nkqquBJ4GNgCIyInAh4DlwHuAO0RE3LHuBNap6lJgqYhcWOe2G4ZhGGVSVzFR1RdV9XH3/BXgSeAI\nVX1IVd90uz0CHOmeXwzsUtXXVXUGT2hOF5HDgUFV3ef2+yrw/nq23TAMwyifhsVMRGQMWAl8N/TW\nR4H73fMjgOcC773gth0BPB/Y/rzbZhiGYbQADRETERkAvgFc5ywUf/sfA4dUdWcj2mEYhmHUh556\nn0BEevCE5Guqem9g++XAe4FzAru/ABwVeH2k2xa3Pep8VmzMMAyjClRVSu8VTSMsky8D06p6u79B\nRC4C/hC4WFV/Gdj3PuBSEUmJyDHAccCUqr4IvCwip7uA/EeAe4lBVdv2ccMNNzS9Ddb+5rej29pu\n7W/+o1bqapmIyDuBfw88ISKPAQr8MbAZSAF/45K1HlHVq1V1WkS+DkwDh4CrNXeVnwC2AxngflV9\noJ5tNwzDMMqnrmKiqn8PLIh46/gin/kc8LmI7d8DTkmudYZhGEZS2Az4FmN8fLzZTagJa3/zaOe2\ng7W/3ZEkfGWthIhop12TYRhGvRERtMUD8IZhGEaHY2JiGIZh1IyJiWEYhlEzJiaGYRhGzZiYGIZh\nGDVjYmIYhmHUjImJYRiGUTMmJm3A3Nwc+/btY25urtlNMQzDiMTEpMXZuXM3o6PLOP/8KxkdXcbO\nnbub3STDMIwCbAZ8CzM3N8fo6DIOHpwEVgD7yWbP5sCBpxgZGWl28wzD6CBsBnwHMzMzQyo1hick\nACvo7R1lZmameY0yDMOIwMSkhRkbG+O112aA/W7Lfg4dOsDY2FjzGmUYhhGBiUkLMzIywrZtd5DN\nns3Q0Gqy2bPZtu0Oc3EZhtFyWMykDZibm2NmZoaxsTETEsMw6kKtMRMTE8MwDMMC8IZhGEbzMTEx\nDMMwasbExDAMw6gZExPDMAyjZkxMDMMwjJoxMTEMwzBqpq5iIiJHisjDIvJ9EXlCRK512xeJyIMi\n8gMRmRCRhYHPbBCRp0XkSRG5ILB9tYjsF5EfisgX6tluwzAMozLqbZm8DnxKVU8C3gF8QkSWAeuB\nh1T1BOBhYAOAiJwIfAhYDrwHuENE/LznO4F1qroUWCoiF9a57YZhGEaZ1FVMVPVFVX3cPX8FeBI4\nEngf8BW321eA97vnFwO7VPV1VZ0BngZOF5HDgUFV3ef2+2rgM4ZhGEaTaVjMRETGgJXAI8DbVPUl\n8AQHeKvb7QjgucDHXnDbjgCeD2x/3m0zDMMwWoCGiImIDADfAK5zFkq43onVPzEMw2hjeup9AhHp\nwROSr6nqvW7zSyLyNlV9ybmwZt32F4CjAh8/0m2L2x7JjTfeOP98fHyc8fHxGq/CMAyjs9izZw97\n9uxJ7Hh1L/QoIl8F/kVVPxXYtgn4mapuEpFPA4tUdb0LwN8DnIHnxvob4HhVVRF5BLgW2Af8D2Cz\nqj4QcT4r9GgYhlEhLV01WETeCfxP4Ak8V5YCnwGmgK/jWRsHgA+p6r+6z2wA1gGH8NxiD7rtpwHb\ngQxwv6peF3POrhYTK1dvGEY1tLSYNINuFpOdO3ezbt3VpFLeCo3btt3B2rWXNLtZhmG0ASYmIbpN\nTHxLZGBggNNOO4uDByfx1ozfTzZ7NgcOPGUWimEYJalVTOoegDfqR9ASefXVH3HYYYvwhARgBb29\no8zMzJiYGIZRd8wyaVPm5uYYHV2WZ4nAmcD9wDhmmRiGUQlmmXQpMzMzpFJjHDyYs0Sy2SW8+eb7\nSKeXcOjQAbZtu8OExDCMhmBi0qaMjXlBds8i8S2Tn/DYY4/wyiuvWDaXYRgNxcSkTRkZGWHbtjtY\nt+5sentH5y2R5cuXN+T8loJsGEYQi5m0Oc3o1C0F2TA6D0sNDtFtYpIU5YpSVODfAv2G0f7UKia2\n0qLBzp27GR1dxvnnX8no6DJ27twdu68f+I9KQTYMo3sxy6TLqdTSMMvEMDoTs0yMmqjU0vAD/9ns\n2QwNrSabPdtSkA3DMMuk26nW0rBsLsPoLGzSolETcSnGpQRiZGTERMQwjHnMMjEAszQMo9ux1OAQ\nJiYeJg6GYVSCBeCNAipJ9TUMw0gCs0w6jEal7prlYxidhVkmRh6NmFRYjuUzNzfHvn37mJubS+y8\nhmG0LiYmHUZ+NWGA/Rw6dICxsbFEjj83N8e6dVdz8OAkL7/8PQ4enGTduqvzRMPcbIbRfZiYdBjB\nSYX9/acmPqmwlOVTjtgYhtF5mJh0KKpvAr90f5OjlOVjtbsMozsxMekwfMvg1Vf/ll/84ileffVv\nE7UMSpVTqbebzTCM1sRmwHcYUcv5+pZBUq6utWsv4bzzzonM5qp2Rr1hGO1N3VODRWQb8BvAS6q6\nwm07FdgCZIBDwNWq+o/uvQ3AR4HXgetU9UG3fTWw3X3mflX9g5jzWWpwC1T1tdRhw2gv2iE1+G7g\nwtC2W4AbVHUVcANwK4CInAh8CFgOvAe4Q0T8i7sTWKeqS4GlIhI+pkHrVPUdGRlhzZo1JiSG0SXU\n3c2lqntFZDS0+U1goXs+DLzgnl8M7FLV14EZEXkaOF1EDgCDqrrP7fdV4P3ARH1b354Uc0MZhmHU\ng2bFTK4HJkTkNkCAX3PbjwC+E9jvBbftdeD5wPbn3XYjBqvqaxhGI2mWmFyFFw/57yLy28CXgfOT\nOviNN944/3x8fJzx8fGkDm0YhtER7Nmzhz179iR2vIbU5nJurm8HAvD/qqrDgff/VVWHRWQ9oKq6\nyW1/AC+mcgCYVNXlbvulwLtV9aqIc3V1AN4wDKMa2iEAD54rK9jIF0Tk3QAici7wtNt+H3CpiKRE\n5BjgOGBKVV8EXhaR011A/iPAvQ1qu2EYhlGCuru5RGQHMA68RUSexbM0PgZsFpEFwKvAxwFUdVpE\nvg5Mk0sZ9s2MT5CfGvxAvdtuGIZhlIeVoO9ibC6IYRg+7eLmMloMq+xrGEaSmGXShTR6lrxZQIbR\n+phlYlRMEpV9y138yiwgw+gOTEy6kFor+5YrELa2iWF0DyYmXUgt9bsqEQhb28QwugcrQd+lVFu/\nq5IS9/kWkBebsbVNDKMzMTHpYqqp31WJQNjaJobRPVg2l1E2flbWo48+zvXXr88TiLVrLyn5Ocvm\nMozWpdZsLhMToyx27tzNunVXk0p5lsnnP38zq1evNIEwjA7BxCSEiUnytMrqjYZh1A+bZ2LUHcvK\nMgyjFCYmRklqnZdiGEbnY2Ji5BE1s71V1pU3DKN1sZiJMU84yB7O0rKsLMPoXCwAH8LEpDqSDrKb\n8BhGe2EBeCMRkgyyW3FHw+g+zDIxgOQsE0sjNoz2xCwTIxGSCrJbGrFhdCdmmRh51BrrMMvEMNqT\nWi0TK/Ro5FFN8cfw50sVd7TgvGF0HmaZdCGN6MzjzlEq/dgwjOZgqcEhTEyKU05nXi+xMReYYbQu\ndQ/Ai0ifiHxWRO5yr48Xkd+o9oRG8yhnlcQk03rDs+ktOG8YnUs52Vx3A78E3uFevwD8WbknEJFt\nIvKSiOwPbf+kiDwpIk+IyM2B7RtE5Gn33gWB7atFZL+I/FBEvlDu+Y0cpTrzJNdsjxIlq/FlGJ1L\nOWKyRFVvAQ4BqOr/BSoxhe4GLgxuEJFx4DeBU1T1FOC/uO3LgQ8By4H3AHeIiH+uO4F1qroUWCoi\necc0SlOqM0/KcogTJcBqfBlGh1KOmLwmIllAAURkCZ6lUhaquhf4P6HNVwE3q+rrbp9/cdvfB+xS\n1ddVdQZ4GjhdRA4HBlV1n9vvq8D7y22D4VFqLklSlkMxUVq79hIOHHiKhx76IgcOPGXBd8PoEMpJ\nDb4BeAA4SkTuAd4JXF7jeZcC/1ZE/jNwEPiPqvo94AjgO4H9XnDbXgeeD2x/3m03KmTt2ks477xz\nIgPsSa3ZXmqd+FrTjw3DaD2KiolzMT0FfAA4E8+9dV3AkqjlvItU9UwRWQP8BXBsjcec58Ybb5x/\nPj4+zvj4eFKH7giKdebFxKaS4ychSoZh1I89e/awZ8+exI5XMjVYRJ5wcY3qTyIyCnxbVVe41/cD\nm1T1b93rp/HE6mMAqnqz2/4AnmV0AJhU1eVu+6XAu1X1qohzWWpwAiSRHmyTEw2jfWhEba5HnfVQ\nC0J+0P6/A+cAiMhSIKWq/xu4D7hERFIicgxwHDClqi8CL4vI6c5a+ghwb41tMmJIKj14ZGSENWvW\nmJAYRhdQjmXyFF6nfgD4BZ4oqG9llDyByA5gHHgL8BKepfE1vCyvlXjB/P8QsFI2AOvwsseuU9UH\n3fbTgO1ABrhfVa+LOZ9ZJjVgEwsNozup+wx456IqQFUPVHvSemJiUhv79u3j/POv5OWXvze/bWho\nNQ899EXWrKnVQDUMo1Wpu5vLicYw3ryQ3wSGW1VIjNqxiYWGYVRDOeVUrgPuAd7qHv9NRD5Z74YZ\nzSGpdU0Mw+guynFz7Qfeoaq/cK/7ge+UGzNpNObmSgY/E2tgYIBXXnnFMrIMo8NpRDaXAG8EXr9B\nZeVUjDZkZGSEZ575EaeddhbnnnsFRx21lC9+8a5mN8swjBalnBnwdwPfFZFvudfvB7bVr0lGKxCs\nr+VndV155ZkAXHHFx5raNsMwWo+y1jMRkdXAWe7l36nqY3VtVQ2YmysZ9u3bx7nnXsHPf/5oYOup\npNMzPPfcMzaR0TA6jEasZ3Im8LSqblbVzcD/EpEzqj2h0R54WV0/JpjVBc/T23t0Xsn64HolpUhy\nrRTDMFqLcmImdwKvBF6/4rYZHczIyAi3334LXpWbU4GzgU/zxhs/YWxsrGJhSHKtFMMwWo+yAvBB\nv5Gqvkl5sRajzbniio+xZcvtpNMzDAy8nWx2E9u23QFQsTDYKouG0dmUIyY/EpFrRaTXPa4DflTv\nhhmtwRVXfIznnnuGhx/+8vz6I9UIQ7mTISt1nRmG0RqUIyZXAr+Gt7bI88AZwMfr2SijtQgXbKxm\nlnw5kyEtpmIY7UtZ2VzthGVzNYadO3ezbt3VeeuVlLNqYlw2lxWYNIzmUms2V8nYh4jcAvwZ3oqI\nD+D90q9X1f9W7UmN9qfaRbT8/XyXWPB1KjXGwYOFrjMTE8Nofcpxc12gqv8f8BvADF45+j+sZ6OM\nxlBrfKKa9UriXFlJF5i02IthNBhVLfoA/tn9/RJwkXv+T6U+16yHd0lGKXbs2KXZ7GJduHC1ZrOL\ndceOXXU/5+zsrGazixX+SUEV/kmz2cU6Ozub16ahoVU1takZ12YY7Y7rO6vue8sp9HgzXgmVg8Dp\neOXo/0pVW3LiosVMStOs+EQ5a6XUOkPeYi+GUR2NWM9kPV42179R1UPA/wXeF2jA+dWe3GgOjZzz\nEXQ3lePKqnWpX5vPYhjNoZyYCar6M1V9wz3/hXprsvtsqkvLjLrRqAWwwvGRhx56uO5rpSR1bRZz\nMYwKqcVH5txJj9V6jCQfdGjMZHZ2VqempubjC7WSVHwiSLCNxeIjSV9LmFqvzWIuRjdCjTGTJDrv\nR2s9RpKPThSTenVu1XbqUZ8Lt3Hjxpt04cLVTki8x9DQKp2amkqk7dW0sdzPRYng9PR0XQWwkva1\nQjuMzsPEpMPFJK5zm5iYaHiHMjs7qxs33qSZzHCesEW1MZMZLpq51apMTU0ViGA2e7Km00NNt1TM\nYjLqSd3FBEgX2wb8ZS0NSPrRaWIS1bnBEu3vP6HiDqWWUa3fkcFxCosUduUJW5QVsnHjTYm70uqF\nf2+mp6cLRBCyCpNNFcVSadWGUSuNEJMCy6PVrJFQ22q9py1FVCfideazFXUotYxqo9uwWGFWh4ZW\n6cTERNPiI0mwZctWTaeHdHDwFM1mF+s111w7L4Lp9LBms8c0zV3nMzU1pdnsKQUWU6PbYXQudRMT\n4HDgNOBJYBWw2j3GgafKPoG3xO9LwP6I9/4D8CawOLBtA/C0O+8Fge2r8VJ0fgh8ocj56nGfm4ov\nBP39KxT6nFVQfsdW66g22jpapXDP/HHqEdCPuo6khWnLlq3O8jjVCeSmvBhJlKXSDItgenratTPf\nYpqenm5oO4zOpZ5ichkwCfzc/fUf9wEfKPsE3nK/K8NiAhyJV+vrx76YAMuBx/Bqho0Bz5ArRvld\nYI17fj9wYcz56nSrm8vs7KxOTExoJjNccccWJQaVjK6jLZM+zWSG80SjnlZIPeIFs7Ozmk4Pa9ji\nGhjIH/E3QihL4VkmxzjBW6WwWDOZMbNMjMRohJvrt2o5gTvGaISY/AVwSkhM1gOfDuzz13gl7w8H\npgPbLwXujDlXoje41aimY0vC3x4+78aNN1UtGpWKTr3iBVNTUzo4uCpkca3QdHqo4NjNdtfl7sGk\nwpTCZN0tpGZfs9FYGpLNBfw68EfAn/iPik4SEhPgYuC/uudBMflz4MOB/b4EfMC52x4MbD8LuC/m\nXInf5Fajkh+5v++WLVtrHl0n0bns2LFLM5lh7e8/ocCyiaNWyyqOaIsrq1u2bK3puPWikRaSZY51\nH7WKSTkl6LcAfXiLgH8J+G1gqtTnihwvC3wGqFsZlhtvvHH++fj4OOPj4/U6VVMYGRkpa9a4v+ZI\nKuXNCv/8529m9eqVVde9Kve8cczNzXHZZR/j0KEeoB8QLrvs9znvvHOKHjd/VrtXbyuJGfv+gl3r\n1p1NT8/RvPbaDLfffjtXXPGxmo5bL6ot+18pc3Nz88sye0sC7GfdurNL/p+M9mLPnj3s2bMnuQOW\nUhucRRH4OwD8XSWKRcAyAU4GXsRb+vfHwCG80vZvxXNzrQ987gFybq4nA9u71s1VLq2USupbNLt3\n73YJBPmxl4mJiZLHqOeovFyLq1vcPvWyBI3WhgbETKbc30eAtwMZ4JmKTuIF05+Iee/HwCL3/ES8\nAHwKOIb8APwjeFWLBS8Af1HM8ZK/y21IMzuEYKcbdJekUgPqzVPRwGNJWWISPm6j6Sa3T7kDkW4R\n126hEWLyWbyy87/lLIqfAn9a9glgB/AT4JfAs8Dvhd7/EYWpwc9QmBp8GvAEXtrw7UXOV4fb3H40\nyzIJd7q9vQOBNkxqOL01lVrY8p1Rs+5lK4hnnCXYTeLaLTRCTD4IDGpOWL4FrK7lpPV8mJjk8H/w\nAwNeOZB6B5bjUoi9CZbety2TGdN0elj7+1e0TSfUDCuvFTrrODFrJReqkRyNEBM/1nEW3jyTXwe+\nW8tJ6/kwMcnHm909rIOD8bGGqE6j1Kg46v240i9wT16nE1U0sZVdJo3uPFu9s7aYSmfSCDF5zP39\nHC5tlxYrOx9qb+13tUMop1OKGgGXGhXHvR91vlRqoWYyw0UD560wCg8TFrdyEgCSEsRW76xbXeyM\n6miEmPwV8EUX2xgG0tga8G1BqU4prlMoNsu+mnXci3WyrdgxFRPLuOtIUhBb8Z6EaYWqAEayNEJM\n+vAmDh7vXv9qMDDeag8TkxylOqUosenvX6H9/SfEClA5o+ZKRuj1HoU3YrZ9Ep1/NZZQNcdNklZ2\nTRqVU3cxabeHiUk+xTqlelgmlVLPUXg11kI14larIFZjCUUxPT2t27dvny/+2IruQ6N1MTExMSlJ\nOe6ZoNiUmxaalIujXksIVyNSjbZMCj87qen0UMXVgK+55jr10q6XKmR13brfb3lXmdFamJiYmORR\njeuh2myuiYmJsld8rCY7rBZqsRaqEbdKPhO81vx27lKvKvBSTafLq1umGleePq0DAytbNogfxNxl\nrYGJiYnJPI10a1RyrqTaVWmBy1pG5kmJcvg9v+Cmfy/8196Ezurau337dmeRaOBxjKZSC1veMjFX\nXOtgYmJioqqNzQCq5FxJtSuq0ynV4bdKxpHfjsHBUwosCF9Q0umhAkEo15KIWzjrwx/+Hbf9eIWs\nXnPNtQ242vJph6y1bsLExMREVRs7N6GScyXRrqhOp7d3sKwRbS0ulCTcL/ltn1JvRcfCezE9PV2w\nUFclHes111ybJxy5mMmkNmr9k0pp9fk03YaJiYmJqiY7yisnvtFIy6Sw05nVcPXhpDvKpNwvubbP\nKkwoxAtGrZZUMJsrqqMeGDhZt2/f3jKCYpZJa2FiYmIyTxJunXI70UrOVWu7CjudezRcfTjpuSlJ\nCnNv76DCIoXVCkMKKR0cXBl5L+KEvPb5MpsUskXL6jSDVnFFGiYmJiYhqul0/P1LdaLhY1caEK9l\nzZBgp5PJDNcUXC7VliTdL9PT09rT0+/cTepcdENlZ8GpFgp8uUsmBwt9RsVqWsUCsGyu1sDExMSk\naqI6qbhONLzvli1bE+8ASnWawU6n2hFtOZZXkkkDXhxkqXqZWrsqFqaotkBf3pLHxTrj6elp/ZM/\n+RPt7z+5anGsx6ChFWintjYCExMTk6qI6qQymeHITnR6ejqiQ8tqf/9yTaeH9NZbb0s4UB3daUZ9\npl6lUsKWULnWQPHrWVxxIDy6EvNKhT/VTGa4INU4eK9yWWSrnGWyqWJxbEYKeCNop7Y2ChMTE5Oq\niHPlbNx4U8GIP7pDG3XB5FMVsppKHZVQoDp4jlUK9yTmkqnUfTU7Ozt/PyrtdKKv53hNp4cKStoE\n3YxRk0ejhBxOUejTBQuyGpWxFfe5gYGTy76OcsXXn8DaLsF0C/xHY2JiYlL1BLu4H1RUbCR/38kC\nH7wnLNWnn8aP5GcTC65X2onU0ulEfTadHs4rkxIcHff2DmoqtbCoheGtDZNvYXivh9UL7i/WTGZM\np6amIsVscHBlRdlc5Yiv37a+viVaz6SIJLGU5GhMTLpcTGox16vJyBocXKmQVjgpwvUypYODK6v+\nUe7YsUt7e4dcp9mnMKCwKVbkqj1HsWsOnmPjxptq6iDLL7I5q162V7xozc7O6mWXXa4wFrrv+YuP\nQVanp6cTGX2Xk5Dhvb/JCVp907WTwiyTaExMulhMkuowKg2u3nrrbRGWiRcPSKeHK/5R5h834zrH\n2fnOccuWrYmvF1IsY8w/h5eFVbyTL3XMuO35o+MpZ1nEi9bs7Kxu3rw54r6Hl0U+ad76iBOzSv7n\nwUFEOj2ct/Tz1NSUm9Xvfwd3ufu1pKL/UTMC4ZaSXIiJSReLSTPN9ZygnOj+Hj3f8VdCfpC40OIZ\nGDi1LH98rR1SXAIAbHWd5SqFPt248abYa6hE6EpZJkGXWGEgvd+1Z1ghFWpzVgcHT5lvR/i+VNNW\nv9xL8Lj+NXhlYIKz+me1r2+pTkxMlHXfmxkIt2yufExMulhM4iyTqDXW/f2rnScShd/J9Pcvy8vq\n2rt3r27fvl337t07Xyokrj2lYjHp9LBOTEy4jjRaNMtZ5161cL2P4PXnz1Sfcn99F9Kswj2aShWW\nhq8k9hQmODru7R3QVGqhZrPenJBs9pj5FOyoQHo2e6xmMsP6wQ9eotnsYpf6m1b4bMF3wa/unMvK\nm1RvNv6dmskMz/+/osrel7J+o6zU8HewmNUWdeyoOTh+kN+/DhOB5DEx6WIxUS0016+55rrIkV54\nBHjNNddqJjOs/f0nFE2/LYXfUfidXm/v0a5zOU4hq4cd9iuu8zuloKOPzng62o24V8xbOlu2bI3s\nsGZnZ4u+FyS83sf5578n735s2bI1NFN9kS5Y0OfSpfM7+FLXEMyKq6R2mFefa0iDExw9i2BV6B4d\npyK9umBBny5cuFp7evp1wYJBDc9nyWZP1gUL+tx1H6k9PQPa2/s2hUFndR3n3utVOFajikEWs379\n71Q67f3PM5mT5r9b/rWnUgu1t3cg8j5E//+XaH//CQXfXW+S6nGu3anI/4VRGyYmXS4mqrkOKWo+\niD9KLBzdpjWXBbRIe3sHEnARTWq4jLrXWU1qVEcfl77qWzpbtmwNBXkX54lMtJtFC5IACqvqThYI\nUCYz7IL/uW2p1ELdu3dvQQdf6hqi5uukUkO6e/fuovc4qgZZX9+xBQUgvQ41q56L6zYNu8j8+FXO\nJeYL5EKFHvc3fLxh9UuuBC2UYtZv2KpMp4d07969Ef/TRerHwEr///P3jf7uLtJasweNQlpeTIBt\nwEvA/sC2W4AngceBbwJDgfc2AE+79y8IbF8N7Ad+CHyhyPmSvcNtRNwocvv27SULJUKfrl//mZLn\niHJZ5M5bGEj2qthO5bUnKrXUt6zCM+vzr8lzQQ0MnDyf/pofAPauJZwEULjex5RrV7CdR2gqdWIZ\n9670NRRWEtilviWQSi0saqXkOk4/mH2c9vYOaE/PoHput0XuPb9T9eMn+fe8t9e3Qgr/z57I7Ars\n783n8e7jMbp9+/a8dkUFq8v/rvnHnyp67/r7V7i27So4Xn//qRHHW6owZSm9CdIOYnIWsDIkJucB\nh7nnNwOfc89PBB4DeoAx4BlA3HvfBda45/cDF8acL+Fb3D4UG0V667rn/P9exxT8gS7RVKq4dVJs\nrfJqLJNgu4stKpU7dtzEvEKrJUg5lok3Wo/2/ZeTMRe8hkrTfsP32Ptf5YvAYYf1KRyhwcwtr1M9\nVj23lX+uexSymk4P6YIFGQ2nNueEI2cB+PN5vPuXjo2dFJ97VMqSyLdMwvdrYmLCXXe5xzPLJGla\nXky8NjIaFJPQe+8Hvuaerwc+HXjvr4EzgMOB6cD2S4E7Y46X3N1tQ+LWdA/6nD0f+0DoBzqkfX3H\n5mXhFO+brOnKAAAdZklEQVQg79FMJmcB+OddsOAI1yl7E+xEFitkNJU6VlOpoYqzvVQL4x1Bv36w\nmKHvGos+hr/exzEKaV29+t+4DnuV5uIMnu8/XNG30jTS2dlZXb9+g3ObHVXQoff3ryg6mp6YmIgY\njY+pZ4WEO9WMwq+o57b04yALFTa5GFBUCrefXHCE5ls63joo5RJ3X4Lb/ZhJ+PtYLK4XdTzv++vP\nP0ppJjNmMZOE6QQxuQ9Y657/OfDhwHtfAj4AnAY8GNh+FnBfzPGSu7ttSrwI5EZ8uSyck9Uri96v\ncFzBD35wcJWm08O6fv0G577w1ylfreFU2VwAefv8Y8GCPuei8YSst3egog6gnLk05Wal3XrrbZpK\nLdSBAU8svNF+cE7LYu3vXxY5S7ycc/gTHb35KX1OuFKasxyi21/ONedcWsFJnSmFD2vUhEFYrH19\nx+q1114X6IiDwjHsPpvR/v4Vmkot1FtvvS32miudRxP32VL/z2LHs2yu+tLWYgL8MfDNwOtExOSG\nG26Yf0xOTiZ2s9uN2dlZ3b59e0E2UH//Cp2YmNAtW7ZqKjVQMHpNpYY0kwkHdbMuMyjeZVOYXjsd\n0cktyrNoSpHUXJqoTsyzHDLquXc8d1m1bpNcyRM/Q+qz6rvlvE6/Tz1XYnzMJIg3+z5sOa1QP6W3\np6dP+/qWuffuUa8CgQYeSxSOnI9DrV//GXetxweON6vZ7LG6efPmgmuOKvXiDyyqsS59Kvl/2jyQ\n+jI5OZnXV7atmACXA38PpAPbwm6uBwJuricD27vOzVXuDyucqhu17niwGm+0S6XQNQMrIn3wwY5g\ndja8EJQfNA4eZ5X29y+tqQR7NR1+XCe2fv1nNJ0eqqgAYvheF/r1N7l77glBb+/Runnz5oL5E6Vi\nRflxLk/Q/Xbm1o0/Vb2JleH/cWGcwrNG007gcgH+8HWXivlAtupK0VFzi9Lpwvk7rVbVtxuErV3E\nZAx4IvD6IuD7wFtC+/kB+BRwTCgA/whwOiAuAH9RzLmSvcMtQKWrHxYKiN+5BV0dxVI5hzW8vKzv\nAiq2Tvns7Gxo0arJyE6uEsskeF21lL6oZXKh//m4meSp1ID29i53x53VqCSEajrLYplus7Ozeu21\n1zlxWKS5JISTNZwV5Vuiquqs0SEtVkersNRLOFtsVEut2ljsnvrXlckco1FzkJIaQCRFqwlbvWh5\nMQF2AD8Bfgk8C/weXurvAeBR97gjsP8GJyLh1ODTgCfcZ28vcr6k73FTKfeHlb/flIbnXvT1naiZ\nzNGus/PjHks1nR7Wa6651olE0AXiB6yPd38/PN+hxXXsUaP/TGYsr3hjT09/1WJQ7yKPpT4XnOCY\nn8I7EOicC+99NntyQZ2tcjvLqNiDf37Pokxrzvrz15mPt0RVVXfv3q3eRMxcG8MWZr5lUnyAkM3m\nz1ovp/P14mvRA5NWqurbasJWT1peTBr96DQxKfeHVTgfo/AH4LlNJgvey2SG9a677gpMzvNdG5Oa\n8/vnUm6LBUnjgv3p9JD29Z1U08iuEkGpNGBc7Djha/JKt5wSus9b1XPrHRXZ2UbPy8n/n05MTJQc\nzReWTSns3Bcs6A8E3YfVD7r7/4tSlknwfENDq1ysLK1eHbYhLawYnZu1HlX+JarzLfa9TqIDT8ot\n1UrCVm9MTDpcTKqzTFQ9t0dG0+kl86PSHTt2OcEITuDzJtT19586Xx+qv3+phmMjAwOn5o1cS3V6\nQddMEiO7Zq34F9WZ9PWd4hIX7lHPCvEtvVUKfSqyUNPp4djS81GFK1OphZrJDOe1uTAm47uyTnUC\nstV93p+c6KVje5MVM5orTeO5vLyyJ35V5q1aqsKvn53mDUS8kjKp1NsLxCsYn8kJbfHOt9T3uhbX\nZtIVps0yMTHpGMpdgyPogjrssKwG3VT+3Ix890JhcDVnpYRjJuWXgg+KTaUjuyihqtQtlOSPPzpN\nt097ewddCnC24B5CVu+6666CgHt+hpQn3P7/tLc3f95PUFxSqQFNpU7QwlhMbuJezrL8VsR+i932\nXic6q922rUUr/MZZZbfeepuzkgpnrcMSt/pj6ftfydoytfy/au38u6VcvYlJF4iJavlrcKxfv0Hv\nuuuuiNFjbtGkjRtvckUeCy2QbNab/OcX7wumzcatEV/pnIlSnUtYqCpxCyXhlogLtofnamSzi/Vd\n7/q3GlVNIFysMOo+ZDLD83MnogoeehbELvViFmn1LJJgVePcMsClStr09PRpVJp2KjUU+/+Lupd+\n3TPfwgrPWvfqvA1qJhNtmZW617VSL7eUZXOZmHQ0caNmL4W3sIP7yEcuKxCews8H1xQ/KdBxqfb3\nLy1IIy7nh1rOyK5UtlU5biHV+MBuuRPd4gTNS6E+QYPlTHxBK5yTU5iWW2mMwOv4pzU/JuNnbq1W\nr6pxf16Zf+8YkxpVq8wbYITTvZfoZZddHntPotuVX64mNx/Gn/y6tWT8p550k1sqaUxMulhMokt4\nr1L4ZMQotM8FXvN/ZEHXWDo9rNnsMe79wiB+NZaJT6mRXakRZW7NkpWRbqHgtXjXkNVs1puTESyJ\nXmykXErQwvM+/PeKFSv003IrjRF413eP5qyMWddZ5z7f0+NZAIODXgzn4ovfp5nMsGYyY3nX78df\n8tO2PWEIL3gVJlfiP3pi5+zsrHP3LXTfvdoqUCdBuYOXTrc0KsXEpIvFJHrkuNiNaP1RrPcDF0nH\nLjDluyx2794dclts0nCtqnr5j4t1tsH5M+n0kK5f/xkX5M1ZTd6yssHONn4eTZwAFnPrhOubhcvC\nxLt9+vISIErFCHy315YtW0MFHwtTjj3r8xrNrU+yRHt7h3TjxpsiLTH//H19/jykTRpVZy0c8wrf\n63AacVikUqmFTe+ky0kS6fR5I5ViYtLFYqIa78/v7R3QdHqhZjLHaSYzHJtVtXfvXr3iiqsCwd78\nwnzhkvDBDi/pDiOqs40SmVwZlFPnR8txWURR5ff7+3NB5/A8jkJxzui1115XcdwnKr4SnCtSTie3\nZcvW+WyqgYGTNd8FOekEZEjDE0yLWYuzs36JnVPUc50NKZyi3hIEG0rMqSk8fimLstUsAHODxWNi\n0uVioppL4QwHPcMdf7CzzmSG9Ywz3uE65fyOL5MZ1s2bNzelxEW484lbjc9zAfkdfnY+wygqVpLb\nnl9CxF+Vsr//1PnryXfrDLrO9kgtVkYmTFx8pVhsqZSLbWpqSj/60Y9rsHqySErhVwvaVqoq8ezs\nbGDuyEnzguylFRcWpfQFJaoyczkWZStZAKViV60kfI3GxMTEZJ7wj8Gv3xT0i09PT+sVV1zl4ifh\nSrKL3Wi1L6+D9Y9djxFdqR9wfHA611EHXVFRbqQdO6LWCJnUwgKXC91686eoN5M8vj5VqdF/pfeq\nsJPLWVBxc1M8Cy1d0LZMZlHRc+UEM2fZeX+XOeFUDS9ElotZFbroyrUo/ey1en1nyhGDuP+NL5it\nJHyNxsTExCSSXIn5Feq5QT7rUjYXuZFsWERm1cvIWVjwQyuWjVRt1o5vTZXzA87FTFZqOj0cGXwv\n5YYrLGgZtdriEldqxK/EG7xef3LnirI6m7gOtvQiYPkWVG/vkPb2DjhLp9ACSaWO1fCkyeCyAFHn\nKZxDtFhzs9v9WEpucmSc1Re8jvB9L/y+ePcvna6tCkKptVAqmdSa9MTadsfExMSkgNzIM9/3H7Xm\nhSciq1znmS7osIqlr8al55Yi2lIo/gMOWlnhCX9Ro+T41SB9S+POiHvUpxMTE7Htq3RkHRSPcgs7\nRp3XE5bbCtqbzS4OBPwLA+lReAH1/EQMf4VF+GxgImZ+anGpWe3FYy3lW3blC27uOOWuhhl3nm4q\nmVIMExMTkzy8keeQG2kGO4wlGlUO3hORPoWMXnzx+6pIX62sg8h1COGRf/F1LcpxmZSTfuvFBPwV\nCVPqjcbzU1r9Ufb69Z9JJHOtErdX9JIAK107P6uelellY916623z1p1vtRVbaySXcRaeF+OVSclm\nvfXrC8VmiROZeGsw6vq8qsZ96sV4SsecSgluXKcfte58JWJgQXkPExMTkzympqa0v395wejSs0wK\nR+Kp1JBeeeVV88H2cktcRM3aLqeD2LjxpsACWtWn7JYudlm4X1y2VjZ7bEH6bnCEXWtQtpKRb3Qb\nF6pX9n2xE5Ih7el5u6bTQ7pw4Wrt6enXnp7+vNhYeITvX1c67a/+2OdEYlCvvfa6eWGenZ11sZjg\n+Ye0p6c/9nsRd32bN29237k7S/6vy+nQk7RMwnRLyZRimJiYmOSRs0z86rX+nIJr1FtG1vetL9ZU\n6lcj6zJNT0/r9u3bC7K5wuep5sefyQwHOis/NhBfbLDcc5WzX1xm2BVXXBWbGpxUkkElxw3GiHp7\nh1ytq8LyOF69rUIXUm/vYIzLaVJzMTHPLQaZAhFasKBfg3OUYEAHBk6OjY8V6+Q963WRemvYZ2P/\n1+UKbrEki1rFwLK5TExMTELkYiafVW/d8GMDlsCk+vMUojq0WgKZ5XQQg4MrXefod1YLdcGCwsWj\nKj1XOftFj/pzi3WV06FV2+FU2tkFY0Sp1ID29CwLieBx7v8YrsU1q+GYSzo97ErXT2hUSRVve25d\nEs/NFVx6+ThNpQaKlqQplUnX379U02lvQmUl8ZBK4irdLga1YmJiYhKJn8rprRPuj2qLWwLVjMxL\nBUzDJUjy1wLxZlWX698ut7Motl/U2ur+4lXlxFzKFdpa25/fjskYy2QywjK5p0AwPAtnQD13U2GZ\nHU9Mctl5hVllS1Qkq729Q5HX7l9XnNiEY2aVClI70AlCZmJiYhKL/wUP1t/KZIZjR4dJZ7VElSCp\nRxpmJT/k6elpza3pkVtbvVTMqJFB2qj/QyYzlrdGil9vbGhoVV52WyYzXFDeJJtd7FLFMxous+NZ\nroW1xvKzyuKzsXIuuVUlEwDKEeN27JRbcXJmNZiYmJiURakfaS7Tp/zSHKXOF9f5JjkCrfSHPDU1\npV4hyFzsKJMZK+nKamT6aLEYRLi0TdSIP+7+btmyNRB/OUIXLOjPK50TvHcTExPa17fCnX9Kvdhb\n7tqz2ZMjJ1KGqwqXuqZ2Eo0oOum6TExMTGom2CGHa3NV29E3omZTtW65XDA6PnaUxLlqoVbBjXM9\n+YOGYPZWnGvKq5Jwj8LeSDfb7t27I+espNOFa6Q0Sowbbdl00hwVExMTk5qI6yRrLXvRiM632h9y\ntR11o336tXaMtbhfduzYpT09g+oF6PvUm9+Sb81NTExEzqb3S7CEr6Xe1YWb4W4yy8TEpKso1inV\nY2QVFatJas5G+DzV/pCr7ajbxadf672JWvvES0XOt+ZKrXcSPGYuTTh/kmizr7dW2jlxIIiJiYlJ\nUUqN1pL+EcZN+qtXIb1O+SEnTS2DhImJuBTilHr12/Lrf/lpzAMDJ8f+D3LtqTyLr97XmwTtMsgo\nhomJiUks5QpFUh1yscBxPUeNnfBDTppaBgmemESlEN+lcfW/yknwqPd3oJnupk74Dra8mADbgJeA\n/YFti4AHgR8AE8DCwHsbgKeBJ4ELAttXA/uBHwJfKHK+ZO9wG1NpGY96lQ2ptXaSUR3VDhKiXFKQ\nKmp51LM9rXL8Uue11OD6i8lZwMqQmGwC/sg9/zRws3t+IvAY0AOMAc8A4t77LrDGPb8fuDDmfAnf\n4val0aO1ZlkmRjzVDhKCM9f9lTqTGHnXewTfaAuh2RZRkrS8mHhtZDQkJk8Bb3PPDweecs/XA58O\n7PfXwBlun+nA9kuBO2POleT9bXsaPVqrZ+0ko7F0guum3jQ7VpMktYqJP+qvKyIyCnxbVVe41z9T\n1cWB93+mqotF5M+B76jqDrf9S3hWyAHgc6p6gdt+Fp5lc3HEubQR19ROzM3NMTMzw9jYGCMjI007\nX6PbYRj1Zm5ujtHRZRw8OAmsAPaTzZ7NgQNPtd13XERQVan28z1JNqYGEu39b7zxxvnn4+PjjI+P\nJ3n4tmNkZKShX+y481XaDhMfo9UZGRlh27Y7WLfubHp7Rzl06ADbtt3RFt/XPXv2sGfPnsSO1yzL\n5ElgXFVfEpHDgUlVXS4i6/FMrU1uvweAG/Ask0lVXe62Xwq8W1WvijiXWSYdwM6du1m37mpSqTFe\ne22GbdvuYO3aS5rdLMOIpBMGPrVaJocl2ZgiiHv43Adc7p5fBtwb2H6piKRE5BjgOGBKVV8EXhaR\n00VEgI8EPmN0GHNzc6xbdzUHD07y8svf4+DBSdatu5q5ublmN80wjBjqLiYisgP4B2CpiDwrIr8H\n3AycLyI/AM51r1HVaeDrwDRerOTqgJnxCbw04x8CT6vqA/VueyszNzfHvn37OrKDnZmZIZUaw/NB\nA6ygt3eUmZmZ5jXKiKQZ38NW++7v3Lmb0dFlnH/+lYyOLmPnzt3NblJzqCV634oPuiCbq1Py2uPo\npHTLTqYZ38NW++530neVdkgNbuSj08Wkk768xbBU4tamGd/DVvzuT01NhVamTLZMTCOpVUxaJZvL\nKBPfBXTwYKELqF0Df1GsXXsJ5513TtsHNTuVmZkZenpGiXJF1ut/1Yrf/UcffZyf/3waOAE4Bvgx\nBw8eYmxsrCntaSYmJm3G2JiX3eRVlvHy2g8dOtCRX95GpzQb5eN1ok/RyO9h7ru/B+gHftHU7/7c\n3Bx/8Ad/BKRdm7z7AO9qSnuaTaOyuYyE8PPas9mzGRpaTTZ7dtvktRudwdzcHNdfvx64ETgbOBU4\nk89//ua6fg9HRkZYt+53gfcCvwO8l3Xrfqdp3/2ZmRkWLHgbXtJpzlpKpca6MlmkIfNMGkm3zDPp\nhLx2oz3Zt28f559/JS+//D1gDphhYOCjPPzwl1mzZk3dzttqs83n5uY4+uilvPrqm8Dfzbept/dd\nvPDCM233u2yXeSZGwoyMjLBmzZq2+8Ia7U++q3UESPPGGz+pu7up1VLGR0ZG+MIXbgFeBcbxCpuP\nA282pT3NxsTEaElabS6BkaNZrtZ8EYNWiBeuXr2SwcGT8FbT+CLwA7LZ47vSzWViYrQcNgms9Vm7\n9hIOHHiKhx76IgcOPNWQUjetGC8cGxvj9dcPAD8F1gA/bbrANQuLmRgtRav5xY3Wo9XihX4duWCh\nx3asI1drzMTExGgp8oO7HkNDq3nooS/WNbhrGLXQagJXDRaANzqKVvSLG4ZRGhMTo6VoRb+4YRTD\nYnwe5uYyWpJOcBsYnU8nxfg6ZaVFw8jDSqkY7UAr1gtrFubmMgzDqBKL8eUwMTEMw6gSi/HlsJiJ\nYRhGjXRCjM/mmYQwMTEMw6gcm2diGIZhNB0TE8MwDKNmTEwMwzCMmjExMQzDMGqmqWIiIteLyD+L\nyH4RuUdEUiKySEQeFJEfiMiEiCwM7L9BRJ4WkSdF5IJmtt0wDMPI0TQxEZG3A58EVqvqCrzZ+GuB\n9cBDqnoC8DCwwe1/IvAhYDnwHuAOEak686BV2bNnT7ObUBPW/ubRzm0Ha3+702w31wKgX0R6gCzw\nAvA+4Cvu/a8A73fPLwZ2qerrqjoDPA2c3tjm1p92/0Ja+5tHO7cdrP3tTtPERFV/AtwGPIsnIi+r\n6kPA21T1JbfPi8Bb3UeOAJ4LHOIFt80wDMNoMs10cw3jWSGjwNvxLJR/D4RnHNoMRMMwjBanaTPg\nReS3gQtV9WPu9e8CZwLnAOOq+pKIHA5MqupyEVkPqKpucvs/ANygqt8NHdfExzAMowratQT9s8CZ\nIpIBfgmcC+wDXgEuBzYBlwH3uv3vA+4Rkc/jubeOA6bCB63lZhiGYRjV0TQxUdUpEfkG8BhwyP3d\nCgwCXxeRjwIH8DK4UNVpEfk6MO32v9qKcBmGYbQGHVfo0TAMw2g8zU4NTgwRucVNZnxcRL4pIkOB\n91p+sqOIXCQiT4nID0Xk081uTylE5EgReVhEvi8iT4jItW577KTTVkREDhORR0XkPve6bdovIgtF\n5C/c9/r7InJGu7S/0gnLrYCIbBORl0Rkf2BbW0yyjml7on1mx4gJ8CBwkqquxJuD0jaTHUXkMOD/\nAS4ETgLWisiy5raqJK8Dn1LVk4B3AJ9wbY6cdNrCXIfnOvVpp/bfDtyvqsuBU4GnaIP2VzphuYW4\nG+83GqRdJllHtT3RPrNjxERVH1LVN93LR4Aj3fN2mOx4OvC0qh5Q1UPALry06ZZFVV9U1cfd81eA\nJ/Huedyk05ZDRI4E3gt8KbC5LdrvRpHvUtW7Adz3+2XapP1UNmG5JVDVvcD/CW1ui0nWUW1Pus/s\nGDEJ8VHgfve8HSY7htv4PK3XxlhEZAxYifeFjJt02op8HvhD8ucytUv7jwH+RUTudm66rSLSRxu0\nv4oJy63MWztkknXNfWZbiYmI/I3zsfqPJ9zf3wzs88fAIVXd2cSmdg0iMgB8A7jOWShtMelURH4d\neMlZV8VM+JZsP55raDXw/6rqauAXeC6Xlr//HT5hue3anFSf2cx5JhWjqucXe19ELsdzW5wT2PwC\ncFTg9ZFuWyvxAnB04HUrtrEA56L4BvA1VfXnA70kIm8LTDqdbV4Li/JO4GIReS+em2VQRL4GvNgm\n7X8eeE5V/9G9/iaemLTD/T8P+JGq/gxARL4F/Brt0fYwcW1uh34n0T6zrSyTYojIRXgui4tV9ZeB\nt+4DLnXZIscQM9mxyewDjhORURFJAZfitbvV+TIwraq3B7bdhzfpFPInnbYUqvoZVT1aVY/Fu98P\nq+rvAt+mPdr/EvCciCx1m84Fvk973P/5CcsusHsuXhJEO7RdyLdk49rciv1OXtsT7zNVtSMeeEGi\nA8Cj7nFH4L0NwDN4QeILmt3WmPZfBPzAXcf6ZrenjPa+E3gDeBxvwumj7hoWAw+5a3kQGG52W8u4\nlncD97nnbdN+vAyufe5/8JfAwnZpP3CD+z3uxwtc97Z624EdwE/wKnY8C/wesCiuza3U78S0PdE+\n0yYtGoZhGDXTMW4uwzAMo3mYmBiGYRg1Y2JiGIZh1IyJiWEYhlEzJiaGYRhGzZiYGIZhGDVjYmIY\nhmHUjImJ0XW4SgNPRGz/TyJyTtRn6tCGrW2wzIBhlI1NWjS6DhEZBb6t3loaXYOIiNoP3qgTZpkY\n3UqPsw7+WUQecHWi7haRDwCIyM3uvcdF5Ba37W4RuVNE9om3Kuavu+2jIvI/ReQf3eNMt/3dIjIp\nudUQv+af3G1f7Z5fJCLfE5HHRORv4hosIjeIyFdF5B/cyn6/H3jvP4rIlGvvDYF2PSUiX3GW2JFx\nxzaMWmmrqsGGkSDHA5eo6sdFZBfwW7jy4SKyGHi/qi5zr4cCnxtV1TUichwwKSJLgJeA81T1Nbd9\nJ7DG7b8SOBF4Efh7Efk1Vf0H/2Ai8ivAVuAsVX3WlWcvxinAGcAg8JiI/JXbdryqnu4KJ94nImfh\nrUlxHPC7qrqvuttkGOVhlonRrfxIVf24yaPAWOC9l4GDIvIlEfl3wMHAe18HUNVngP8FLANSwJfE\nW1/7L/CWO/WZUtWfOvfS46HzAJwJ/K2qPuuO+68l2n2vqr6mqv8bb5nY04ELgPNFxC/YdwKeWAIc\nMCExGoFZJka3Eiy5/QbemiYAqOobInI6Xmn0DwLXuOeQv/iRuNfXAy+q6goRWUC++ITPE/Wbq2Rt\n8KjzA3xOVe/KO6gXG/pFBcc2jKoxy8ToVqI6cAFwy98Oq+oDwKeAYKD+g+KxBG/p3B/glX7/qXv/\nI3jrm5fLI8C7XMePiCwqsf/73DoTb8Ernb8Pr/T5R0Wk3x3j7SIyUuQ6DSNxzDIxuhUNPdfAtiHg\nXhHJuNfXB/Z9Fm+hoEHgChcnuQP4poh8BHiAeGsgfE5U9V9E5OPAt1y8Yxa4sEi79wN7gLcAf6re\nuuMvujTj73iH4OfA7wBv0obLyBrtiaUGG0aZiMjdeCnFf9mk898A/FxV/2szzm8YxTA3l2GUj428\nDCMGs0wMo8UQkcuB68gXr79X1U82p0WGURoTE8MwDKNmzM1lGIZh1IyJiWEYhlEzJiaGYRhGzZiY\nGIZhGDVjYmIYhmHUzP8PmV6dO5dlGx8AAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "combined.plot.scatter(\"hispanic_per\", \"sat_score\")" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "44 MANHATTAN BRIDGES HIGH SCHOOL\n", "82 WASHINGTON HEIGHTS EXPEDITIONARY LEARNING SCHOOL\n", "89 GREGORIO LUPERON HIGH SCHOOL FOR SCIENCE AND M...\n", "125 ACADEMY FOR LANGUAGE AND TECHNOLOGY\n", "141 INTERNATIONAL SCHOOL FOR LIBERAL ARTS\n", "176 PAN AMERICAN INTERNATIONAL HIGH SCHOOL AT MONROE\n", "253 MULTICULTURAL HIGH SCHOOL\n", "286 PAN AMERICAN INTERNATIONAL HIGH SCHOOL\n", "Name: SCHOOL NAME, dtype: object\n" ] } ], "source": [ "print(combined[combined[\"hispanic_per\"] > 95][\"SCHOOL NAME\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The schools listed above appear to primarily be geared towards recent immigrants to the US. These schools have a lot of students who are learning English, which would explain the lower SAT scores." ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "37 STUYVESANT HIGH SCHOOL\n", "151 BRONX HIGH SCHOOL OF SCIENCE\n", "187 BROOKLYN TECHNICAL HIGH SCHOOL\n", "327 QUEENS HIGH SCHOOL FOR THE SCIENCES AT YORK CO...\n", "356 STATEN ISLAND TECHNICAL HIGH SCHOOL\n", "Name: SCHOOL NAME, dtype: object\n" ] } ], "source": [ "print(combined[(combined[\"hispanic_per\"] < 10) & (combined[\"sat_score\"] > 1800)][\"SCHOOL NAME\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Many of the schools above appear to be specialized science and technology schools that receive extra funding, and only admit students who pass an entrance exam. This doesn't explain the low `hispanic_per`, but it does explain why their students tend to do better on the SAT -- they are students from all over New York City who did well on a standardized test." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Gender differences in SAT scores" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEuCAYAAABmlhI1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAE1FJREFUeJzt3X+M5Hd93/Hn63wl2IQ4JsJ76DDHDzu+QOO6tBxu+cNT\nueBLQmJEUmrTCEIRsqo6pEWqbLcQT5uorRvVUiMXHIPl2gmJAwk/zi0xZ8CDhKzgI3AhkLvzkcYn\nn7G3IcEJdgsc9rt/zOxpWO/u7e7M7Xd3Ps+HtLr5fr6fz8xbutnXfPbz/TGpKiRJbdnWdQGSpI1n\n+EtSgwx/SWqQ4S9JDTL8JalBhr8kNWgq4Z9kb5LDSR5Mcu0S+y9Mcn+Sbyd516J9DyX54yRfSvLA\nNOqRJK1s+6RPkGQbcDNwGfB14ECSj1fV4bFufwn8IvCGJZ7iaaBXVd+ctBZJ0upMY+a/BzhaVceq\n6gRwF3DFeIeq+kZV/RHwvSXGZ0p1SJJWaRqhuxN4eGz7+KhttQq4N8mBJO+YQj2SpFOYeNlnCl5T\nVY8meT7DD4FDVfW5rouSpFk2jfB/BHjR2PYLR22rUlWPjv79iyQfZbiM9IzwT+JNiCRpHaoqi9um\nEf4HgPOT7AIeBa4Erlqh/8kikpwFbKuqJ5I8B3gd8O+XG+hN6Kan3+/T7/e7LkN6Bt+b05U8I/eB\nKYR/VT2V5BpgP8NjCLdV1aEkVw93161J5oAvAM8Fnk7yS8DLgecDHx3N6rcDH6yq/ZPWJEla2VTW\n/KvqHuDCRW2/MfZ4HjhviaFPABdPowZJ0up5imWjer1e1yVIS/K9uTGyVdbRk9RWqVWSNoskSx7w\ndeYvSQ0y/CWpQYa/JDXI8JekBhn+ktQgw1+SGmT4S1KDDH9JapDhL0kNMvwlqUGGvyQ1yPCXpAYZ\n/pLUIMNfkhpk+EtSgwx/SWqQ4S9JDTL8JalBhr8kNcjwl6QGGf6S1CDDX5IatL3rAiRtjB0v3MH8\nI/NdlzEz5nbO8djxx7ouY91SVV3XsCpJaqvUKm1GSaDfdRUzpA9bIZOSUFVZ3O6yjyQ1yPCXpAZN\nJfyT7E1yOMmDSa5dYv+FSe5P8u0k71rLWEnS9E0c/km2ATcDlwOvAK5KsntRt78EfhH4tXWMlSRN\n2TRm/nuAo1V1rKpOAHcBV4x3qKpvVNUfAd9b61hJ0vRNI/x3Ag+PbR8ftZ3usZKkdfKAryQ1aBoX\neT0CvGhs+4WjtqmP7ff7Jx/3ej16vd5qa5SkJgwGAwaDwSn7TXyRV5IzgCPAZcCjwAPAVVV1aIm+\nNwBPVNV/XcdYL/KSJuBFXlPW39oXeU0886+qp5JcA+xnuIx0W1UdSnL1cHfdmmQO+ALwXODpJL8E\nvLyqnlhq7KQ1SZJW5u0dpEY485+y/tae+XvAV5IaZPhLUoMMf0lqkOEvSQ0y/CWpQYa/JDXI8Jek\nBhn+ktQgw1+SGmT4S1KDDH9JapDhL0kNMvwlqUGGvyQ1yPCXpAYZ/pLUIMNfkhpk+EtSgwx/SWqQ\n4S9JDTL8JalBhr8kNcjwl6QGGf6S1CDDX5IaZPhLUoMMf0lqkOEvSQ0y/CWpQVMJ/yR7kxxO8mCS\na5fp8+tJjiY5mOTvjrU/lOSPk3wpyQPTqEeStLLtkz5Bkm3AzcBlwNeBA0k+XlWHx/r8BPCyqrog\nyauB9wGXjHY/DfSq6puT1iJJWp1pzPz3AEer6lhVnQDuAq5Y1OcK4E6Aqvo8cHaSudG+TKkOSdIq\nTSN0dwIPj20fH7Wt1OeRsT4F3JvkQJJ3TKEeSdIpTLzsMwWvqapHkzyf4YfAoar63FId+/3+yce9\nXo9er7cxFUrSFjEYDBgMBqfsl6qa6IWSXAL0q2rvaPs6oKrqxrE+twD3VdXvjrYPA5dW1fyi57oB\n+FZV3bTE69SktUotSwL9rquYIX3YCpmUhKrK4vZpLPscAM5PsivJs4ArgX2L+uwD3jIq5BLg8aqa\nT3JWkh8ctT8HeB3wlSnUJElawcTLPlX1VJJrgP0MP0xuq6pDSa4e7q5bq+oTSX4yydeAJ4G3jYbP\nAR9NUqNaPlhV+yetSZK0somXfTaKyz7SZFz2mbK+yz6SpC3G8JekBhn+ktQgw1+SGmT4S1KDDH9J\napDhL0kNMvwlqUGGvyQ1yPCXpAYZ/pLUIMNfkhpk+EtSgwx/SWqQ4S9JDTL8JalBhr8kNcjwl6QG\nGf6S1CDDX5IaZPhLUoMMf0lqkOEvSQ0y/CWpQYa/JDXI8JekBhn+ktQgw1+SGjSV8E+yN8nhJA8m\nuXaZPr+e5GiSg0kuXstYSdJ0TRz+SbYBNwOXA68Arkqye1GfnwBeVlUXAFcDt6x2rCRp+qYx898D\nHK2qY1V1ArgLuGJRnyuAOwGq6vPA2UnmVjlWkjRl0wj/ncDDY9vHR22r6bOasZKkKdve0etmPYP6\n/f7Jx71ej16vN6VypmfHjhczP3+s6zJmxtzcLh577KGuy5gJczvnmO/Pd13GzJjbOdd1CUsaDAYM\nBoNT9ktVTfRCSS4B+lW1d7R9HVBVdeNYn1uA+6rqd0fbh4FLgZecauzYc9SktW6EJMDmr3PrCFvh\n/13arJJQVc+YcE9j2ecAcH6SXUmeBVwJ7FvUZx/wllEhlwCPV9X8KsdKkqZs4mWfqnoqyTXAfoYf\nJrdV1aEkVw93161V9YkkP5nka8CTwNtWGjtpTZKklU287LNRXPZplcs+0iRO57KPJGmLMfwlqUGG\nvyQ1yPCXpAYZ/pLUIMNfkhpk+EtSgwx/SWqQ4S9JDTL8JalBhr8kNcjwl6QGGf6S1CDDX5IaZPhL\nUoMMf0lqkOEvSQ0y/CWpQYa/JDXI8JekBhn+ktQgw1+SGmT4S1KDDH9JapDhL0kNMvwlqUGGvyQ1\nyPCXpAZNFP5JzkmyP8mRJJ9McvYy/fYmOZzkwSTXjrXfkOR4ki+OfvZOUo8kaXUmnflfB3yqqi4E\nPgNcv7hDkm3AzcDlwCuAq5LsHutyU1W9cvRzz4T1SJJWYdLwvwK4Y/T4DuANS/TZAxytqmNVdQK4\nazRuQSasQZK0RpOG/7lVNQ9QVY8B5y7RZyfw8Nj28VHbgmuSHEzygeWWjSRJ07X9VB2S3AvMjTcB\nBbx7ie61xtd/L/AfqqqS/CpwE/D25Tr3+/2Tj3u9Hr1eb40vJ0mzbTAYMBgMTtkvVWvN67HBySGg\nV1XzSXYA91XVjy3qcwnQr6q9o+3rgKqqGxf12wXcXVUXLfNaNUmtGyVZ+GzUdISt8P8ubVZJqKpn\nLK9PuuyzD/iF0eO3Ah9fos8B4Pwku5I8C7hyNI7RB8aCNwJfmbAeSdIqTDrzfx7wIeA84Bjwpqp6\nPMkLgPdX1etH/fYC/43hh81tVfWfR+13AhcDTwMPAVcvHENY4rWc+TfJmb80ieVm/hOF/0Yy/Ftl\n+EuTOF3LPpKkLcjwl6QGGf6S1CDDX5IaZPhLUoMMf0lqkOEvSQ0y/CWpQYa/JDXI8JekBhn+ktQg\nw1+SGmT4S1KDDH9JapDhL0kNMvwlqUGGvyQ1yPCXpAYZ/pLUIMNfkhpk+EtSgwx/SWqQ4S9JDTL8\nJalBhr8kNcjwl6QGGf6S1CDDX5IaNFH4Jzknyf4kR5J8MsnZy/S7Lcl8ki+vZ7wkabomnflfB3yq\nqi4EPgNcv0y/24HLJxgvSZqiVNX6ByeHgUuraj7JDmBQVbuX6bsLuLuqLlrn+Jqk1o2SBNj8dW4d\nYSv8v0ubVRKqKovbJ535n1tV8wBV9Rhw7gaPlyStw/ZTdUhyLzA33sRwavvuJbpPOkVziidJG+CU\n4V9Vr11u3+gg7tzYss3/WePrr2l8v98/+bjX69Hr9db4cpI02waDAYPB4JT9Jl3zvxH4q6q6Mcm1\nwDlVdd0yfV/McM3/x9c53jX/JrnmL01iuTX/ScP/ecCHgPOAY8CbqurxJC8A3l9Vrx/1+22gB/wI\nMA/cUFW3Lzd+mdcy/Jtk+EuTOC3hv5EM/1YZ/tIkTtfZPpKkLcjwl6QGGf6S1CDDX5IaZPhLUoNO\neZGX1mZubhfz8884sK51mpvb1XUJ0kzyVE9JmmGe6ilJOsnwl6QGGf6S1CDDX5IaZPhLUoMMf0lq\nkOEvSQ0y/CWpQYa/JDXI8JekBhn+ktQgw1+SGmT4S1KDDH9JapDhL0kNMvwlqUGGvyQ1yPCXpAYZ\n/pLUIMNfkhpk+EtSgyYK/yTnJNmf5EiSTyY5e5l+tyWZT/LlRe03JDme5Iujn72T1CNJWp1JZ/7X\nAZ+qqguBzwDXL9PvduDyZfbdVFWvHP3cM2E9WqXBYNB1CdKSfG9ujEnD/wrgjtHjO4A3LNWpqj4H\nfHOZ58iENWgd/AXTZuV7c2NMGv7nVtU8QFU9Bpy7jue4JsnBJB9YbtlIkjRdpwz/JPcm+fLYz5+M\n/v2ZJbrXGl//vcBLq+pi4DHgpjWOlyStQ6rWmtdjg5NDQK+q5pPsAO6rqh9bpu8u4O6qumid+9df\nqCQ1rKqesby+fcLn3Af8AnAj8Fbg4yv0DYvW95PsGC0XAbwR+Mpyg5cqXpK0PpPO/J8HfAg4DzgG\nvKmqHk/yAuD9VfX6Ub/fBnrAjwDzwA1VdXuSO4GLgaeBh4CrF44hSJJOn4nCX5K0NXmFryQ1yPCX\npAYZ/o1Isi3JP+y6DmmxJGckOdx1Ha0x/BtRVU8D/73rOqTFquop4EiSF3VdS0smPdVTW8unk/ws\n8JHySL82l3OAryZ5AHhyobGqlrqYVFPg2T4NSfIt4DnAU8D/Y3jdRVXVD3VamJqX5NKl2qvqsxtd\nSysMf0mbwugq/wuq6lNJzgLOqKpvdV3XrHLNvyEZ+vkk7xltn5dkT9d1SUneAfwe8Bujpp3Ax7qr\naPYZ/m15L/APgDePtp/Ag8DaHP4l8BrgbwCq6ijru0uwVskDvm15dVW9MsmXAKrqm0me1XVREvCd\nqvpuMryFV5LtrP0uwVoDZ/5tOZHkDEa/VEmez/C+SlLXPpvk3wJnJnkt8GHg7o5rmmke8G1Ikn8G\n/FPg7wH/A/g54N1V9eEu65KSbAPeDryO4VlonwQ+4CnJp4/h35gku4HLRpufqapDXdYjLRgtQe5m\n+Jfpkar6bsclzTTX/NtzFrCw9HNmx7VIACT5KeAW4M8YzvxfkuTqqvqDbiubXc78G5Lkl4F/Avw+\nw1+wNwAfrqpf7bQwNW90b5/XV9XXRtsvA/5XVe3utrLZZfg3JMkR4O9U1bdH22cCB6vqwm4rU+uS\nHKiqV41tB3hgvE3T5bJPW74OPBv49mj7B4BHuitHOukLST7B8JsBi+FfqAeSvBGgqj7SZXGzyJl/\nQ5J8DHgVcC/DX7DXAg8AxwGq6p3dVaeWJbl9hd1VVf98w4pphOHfkCRvXWl/Vd2xUbVIa5Hk+qr6\nT13XMUsMf52U5Per6me7rkNaLMkXq+qVXdcxS7zCV+Ne2nUB0jLSdQGzxvDXOP8M1Gble3PKDH9J\nW4Ez/ykz/DXOXzBtVt5/asoM/8YkOTPJchd1XbuhxUgjSX40yaeTfGW0fVGSdy/sr6r/2F11s8nw\nb0iSnwYOAveMti9Osm9hf1Xt76o2Ne/9wPXACYCq+jJwZacVzTjDvy19YA/wOEBVHQRe0mVB0shZ\nVfXAorbvdVJJIwz/tpyoqr9e1OZZFNoMvjG6mdvCFw39HPBotyXNNu/t05avJnkzcEaSC4B3Avd3\nXJMEw+/wvRXYneQR4M+Bn++2pNnmFb4NSXIW8O/4/m9L+pWFu3xKXUvyHGBbVX2r61pmneEvqTNJ\n3rXS/qq6aaNqaY3LPg1IcjcrrO1X1c9sYDnSuOd2XUCrnPk3IMmlK+2vqs9uVC2SNgfDX1Lnkjwb\neDvwCoZfOASA9/E/fTzVsyFJLkjye0n+NMn/Xvjpui4J+E1gB3A58FnghYAHfU8jw78ttwPvY3jx\nzD8C7gR+q9OKpKHzq+o9wJOjLxX6KeDVHdc00wz/tpxZVZ9muNx3rKr6DH/JpK6dGP37eJK/DZwN\nnNthPTPPs33a8p0k24CjSa5h+OXtP9hxTRLArUnOAd4D7GP4vvzlbkuabR7wbUiSVwGHgB8GfgX4\nIeC/VNXnOy1M0oYz/BuS5O8zvMJ3F/C3Rs1VVRd1V5UESX4YeAvwYsZWJKrqnV3VNOtc9mnLB4F/\nA/wJ8HTHtUjjPgH8Ib43N4zh35a/qKp9p+4mbbhnV9WKt3rQdLns05AklwFXAZ8GvrPQXlUf6awo\nCUjyr4EngP/J9783/6qzomacM/+2vA3YzXC9f+FP6wIMf3Xtu8CvMTwmtTAjLeClnVU045z5NyTJ\nkapa7vt7pc6MrjTfU1Xf6LqWVniRV1vuT/LyrouQlvA14P92XURLXPZpyyXAwSR/znBdNXiqpzaH\nJxm+N+/j+9f8PdXzNDH827K36wKkZXxs9KMN4pq/pE0hyZnAi6rqSNe1tMA1f0mdS/LTwEHgntH2\nxUm8JuU0MvwlbQZ9YA/wOEBVHcTTPE8rw1/SZnCiqv56UZu3eTiNPOAraTP4apI3A2ckuQB4J3B/\nxzXNNGf+kjqT5DdHD/+M4ff3fgf4HeBvgH/VVV0t8GwfSZ1J8qfAPwb+gOFXi34f7+1z+rjsI6lL\ntzC80eBLgS+MtQfv7XNaOfOX1Lkk76uqf9F1HS0x/CWpQR7wlaQGGf6S1CDDX5IaZPhLUoMMf0lq\n0P8H0zUKgiI4dK0AAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gender_fields = [\"male_per\", \"female_per\"]\n", "combined.corr()[\"sat_score\"][gender_fields].plot.bar()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the plot above, we can see that a high percentage of females at a school positively correlates with SAT score, whereas a high percentage of males at a school negatively correlates with SAT score. Neither correlation is extremely strong." ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEQCAYAAAB1OJkXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXucnFWZ579Puru6Kn1JJ05zEbAbEmISJCThkwjKLB0l\nwdsAK6MQVEB6GAEhqLOOCa7AGIOgy6DMLgSwJeiQi8owwizSmKUzM9kVOwPBoB0gjHYQHNLtoFE0\nhASe/eOct+utW3fdb/18P5/6VNWp93Lqre7ze5/zXI6oKoZhGIZRCFMq3QHDMAyj9jExMQzDMArG\nxMQwDMMoGBMTwzAMo2BMTAzDMIyCMTExDMMwCqakYiIiR4vIoyLyMxF5SkSu8u1fEZFdIvKkiNwn\nIu2hfVaLyG7/+fJQ+yIR2Skiz4rI10rZb8MwDCM3Sm2ZHAI+o6onAKcCV4rIHOAR4ARVXQDsBlYD\niMg84MPAXOC9wG0iIv5YtwO9qjobmC0iZ5a474ZhGEaWlFRMVPUlVX3Sv34F2AUcpapbVPUNv9lj\nwNH+9VnAJlU9pKrDOKFZIiJHAG2qut1v9y3gnFL23TAMw8iesvlMRKQbWAD8OOmjS4CH/OujgF+G\nPnvRtx0FvBBqf8G3GYZhGFVAWcRERFqB7wFXewslaP88cFBVN5ajH4ZhGEZpaCz1CUSkESck31bV\n74faLwbeB7wrtPmLwDGh90f7tkzt6c5nxcYMwzDyQFVl4q3SUw7L5JvAkKp+PWgQkfcAnwXOUtUD\noW0fAM4XkYiIHAvMAgZV9SVgn4gs8Q75C4HvkwFVrdnHddddV/E+WP8r34/J1nfrf+UfhVJSy0RE\n3gl8BHhKRHYACnweuBWIAD/0wVqPqeoVqjokIt8BhoCDwBUa/5afBNYDUeAhVX24lH03DMMwsqek\nYqKq/xdoSPPR8ePs82Xgy2naHwdOLF7vDMMwjGJhGfBVRk9PT6W7UBDW/8pRy30H63+tI8WYK6sm\nRETr7TsZhmGUGhFBq9wBbxiGYdQ5JiaGYRhGwZiYGIZhGAVjYmIYhmEUjImJYRiGUTAmJoZhGEbB\nmJgYhmEYBWNiYhghRkdH2b59O6Ojo5XuimHUFCYmhuHZuHEzXV1zWLbsMrq65rBx4+ZKd8kwagbL\ngDcMnEXS1TWH/fsHgPnATmKxpezZ8zSdnZ2V7p5hlBzLgDeMIjA8PEwk0o0TEoD5NDV1MTw8XLlO\nGUYNYWJiGEB3dzevvTYM7PQtOzl4cA/d3d2V65Rh1BAmJoYBdHZ20td3G7HYUtrbFxGLLaWv7zab\n4jKMLDGfiWGEGB0dZXh4mO7ubhMSY1JRqM/ExMQwDMMwB7xhGIZReUxMDMMwjIIxMTEMwzAKxsTE\nMAzDKBgTE8MwDKNgTEwMwzCMgimpmIjI0SLyqIj8TESeEpGVvn26iDwiIs+ISL+ITAvts1pEdovI\nLhFZHmpfJCI7ReRZEflaKfttGIZh5EapLZNDwGdU9QTgVOCTIjIHWAVsUdW3Ao8CqwFEZB7wYWAu\n8F7gNhEJ4p5vB3pVdTYwW0TOLHHfDcMwjCwpqZio6kuq+qR//QqwCzgaOBu4x292D3COf30WsElV\nD6nqMLAbWCIiRwBtqrrdb/et0D6GYRhGhSmbz0REuoEFwGPA4aq6F5zgAIf5zY4Cfhna7UXfdhTw\nQqj9Bd9mGIZhVAFlERMRaQW+B1ztLZTkeidW/8QwDKOGaSz1CUSkESck31bV7/vmvSJyuKru9VNY\nI779ReCY0O5H+7ZM7Wm5/vrrx1739PTQ09NT4LcwDMOoL7Zu3crWrVuLdrySF3oUkW8Bv1bVz4Ta\nbgJeVtWbRORzwHRVXeUd8PcCb8dNY/0QOF5VVUQeA1YC24H/Ddyqqg+nOZ8VejQMw8iRqq4aLCLv\nBP4FeAo3laXANcAg8B2ctbEH+LCq/tbvsxroBQ7ipsUe8e0nA+uBKPCQql6d4ZwmJkbRsJL0xmSh\nqsWkEpiYGMVi48bN9PZeQSTiVmHs67uNFSvOq3S3DKMkmJgkYWJiFIPR0VG6uuawf/8Abl34rTQ3\nn82OHY8xd+7cSnfPMIqOrWdiGCVgeHiYSKQbJySbgXM5cOAIFi58Bxs3bq5s5wyjCjHLxDDSELdM\n7gPOBQILZSex2FL27HnafChGXWGWiWGUgM7OTvr6bqO5+WzgT3BCAjCfpqYuhoeHK9c5w6hCTEwM\nIwMrVpzHjh2P0dw8Auz0rTs5eHAP3d3dFeyZYVQfJiaGMQ5z587l7rvXEYstpb19EbHYUvr6bkuY\n4hodHWX79u2Mjo5WsKeGUVnMZ2IYWZAp38TCh416wUKDkzAxMcpFavjw5HDOWyJnfWIOeMOoEInh\nwzAZnPMbN26mq2sOy5ZdRlfXHAuTNsYwy8Qw8mSyWSaT7ftONswyMYwKEYQPj+ecrycmoyVmZI9Z\nJoZRIJPFh2CWSX1TqGVS8vVMDKPe6ezsnBSDaWCJ9fYupampi4MH99S1JWbkhlkmhmHkxGSxxCYb\nFhqchImJUSpsEDXqGXPAG0YZsJBYwxgfs0wMYwImq+PZLLHJhVkmhpFEsWtlTcaQWLPEjFwxMTHq\nilIMgt3dru7WZKkcPDo6Sm/vFezfP8C+fY+zf/8Avb1XWCFLY1xMTIy6odiDYGDhAJacWOeWmFE4\nJiZG3VDMQTDZwgHYs+dptmy5gz17nq7rysCTzRIzioM54I26oViO8snqcA8TlNYPJyfWs4AalgFv\nGGMUK0M7sHD270+1cCaLmKxYcR5nnPEui+YysqbklomI9AEfAPaq6nzfdhKwDogCB4ErVPXf/Ger\ngUuAQ8DVqvqIb18ErPf7PKSqn8pwPrNMJjmFhrSaZWJMRmohNPhu4Myktq8A16nqQuA64KsAIjIP\n+DAwF3gvcJuIBF/udqBXVWcDs0Uk+ZiGATgLZfHixXkP/JOtGrBhFIOST3Op6jYR6UpqfgOY5l93\nAC/612cBm1T1EDAsIruBJSKyB2hT1e1+u28B5wD9pe29MVmxaR7DyI1K+Uw+DfSLyM2AAO/w7UcB\nPwpt96JvOwS8EGp/wbcbRsmYLNWADaMYVEpMLsf5Q/5RRP4c+CawrFgHv/7668de9/T00NPTU6xD\nG4Zh1AVbt25l69atRTteWUKD/TTXgyEH/G9VtSP0+W9VtUNEVgGqqjf59odxPpU9wICqzvXt5wOn\nq+rlac5lDnjDMIwcqQUHPLiprHAnXxSR0wFE5N3Abt/+AHC+iERE5FhgFjCoqi8B+0RkiXfIXwh8\nv0x9NwzDMCag5NNcIrIB6AHeJCLP4yyNS4FbRaQBeBX4SwBVHRKR7wBDxEOGAzPjkySGBj9c6r4b\nhmEY2WEZ8IZhjGFl5ycvtTLNZRhGlWNl541CMMvEMOqMfKwLy/o3zDIxjApR7EW4ikG+1oWVnTcK\nxcTEMPKgGqeEClnPxcrOG4ViYmIYOVKtKxEWYl1YPTKjUKwEvWHkSLWWqE+0LpzfIxfrwuqRGYVg\nYmIYOVLooF0qirGei9UjM/LForkMIw+qeSXCSuWKWI5KbVNoNJeJiWHkiQ2ecQJxjUSc1VZN4mpk\nh4lJEiYmhlFeLEelPrA8E8MwKorlqBhgYmIYRoFYjooBJiaGURVUYzZ9tliOigHmMzGMilMvzmsL\nSKhtzAGfhImJUUsU23ltA7qRL+aAN4wappjO62qsF2ZMHswyMYwKUizLxMJzjUIxy8QwaphiOa8t\nPNeoNGaZGEYVUKivwywTo1AKtUys0KNhVAHpCizmIjDFKPJoGIVglolhVCHZhgsnC45Fcxn5YqHB\nSZiYGNVMNoN9tlNW9ZKfYlQHJXfAi8hUEfmCiNzl3x8vIh/I94SGMVnJNnQ3G2d6Nqs91nJWvVF7\nZBPNdTdwADjVv38R+FK2JxCRPhHZKyI7k9qvEpFdIvKUiNwYal8tIrv9Z8tD7YtEZKeIPCsiX8v2\n/IZRDeSy1G82ta4mEhzLOTHKjqqO+wD+zT/vCLX9ZKL9QtueBiwAdobaeoBHgEb//k/881xgBy4w\noBt4jvhU3I+Bxf71Q8CZGc6nhlFtDA4O6rRpixR07NHevlAHBwfTbr9hwyaNxWZoe/tCjcVm6IYN\nmxI+HxkZ0VhshsJP/PF+orHYDB0ZGRn3M8PIhB87sxrX0z2ysUxeE5EYoAAiMhNnqWQrVtuA3yQ1\nXw7cqKqH/Da/9u1nA5tU9ZCqDgO7gSUicgTQpqrb/XbfAs7Jtg+GUWlyray7YsV57NnzNFu23MGe\nPU+n+ELGy0+xnBOjEmQTGnwd8DBwjIjcC7wTuLjA884G/ouI3ADsB/6bqj4OHAX8KLTdi77tEPBC\nqP0F324YNUE+obsTrce+YsV5nHHGu1Ic+tW6Rr1R34wrJiIiwNPAB4FTAAGuDlkShZx3uqqeIiKL\nge8CxxV4zDGuv/76sdc9PT309PQU69CGkTeZBv9CSCc4lnNiZMPWrVvZunVr0Y43YWiwiDylqicW\ndBKRLuBBVZ3v3z8E3KSq/+zf78aJ1aUAqnqjb38YZxntAQZUda5vPx84XVUvT3Muneg7GUYtkW/u\niOWcGLlQjtpcT3jroRDEPwL+EXgXgIjMBiKq+p/AA8B5IhIRkWOBWcCgqr4E7BORJd5auhD4foF9\nMoyqp5CorM7OThYvXmxCYpSFbCyTp3GD+h7gDzhR0MDKmPAEIhtw0VtvAvbiLI1v40KOF+Cc+X8V\nslJWA73AQdyU2iO+/WRgPRAFHlLVqzOczywToy6weltGOSl5BryfokpBVffke9JSYmJi1Avbt29n\n2bLL2Lfv8bG29vZFbNlyB4sXFzpZYBiJlHyay4tGB/Bn/tFRrUJiGPVEruHEhlFJsimncjVwL3CY\nf/y9iFxV6o4ZxmSnWGudGEY5yGaaaydwqqr+wb9vAX6Urc+k3Ng0l1FvWDSXUQ7KEc0lwOuh96+T\nGJllGEaVYbW5jHKTjWXyGeAi4H7fdA6wXlWrstiiWSZGPZFPmXmLAjPyoRwO+L8FPg687B8fr1Yh\nMYx6IpdKw2GqoTaXlb+ffGTjgD8F2K2qt6rqrcC/i8jbS981w5gcZBp48xWFSkeB2RTbJGWissK4\nkvASej8FeKKQUsWlfGAl6I0aIig1P23aopRS84WUkp+ohH2psPL3tQsFlqDPxmfypKouSGrbqRbN\nZRgFkY1vI/CZhAs2Zrs0byWiuSzRsnYp1GeSTQn6n4vISuB2//4K4Of5ntAwDEcwjbV/f+o0VjD4\nF1JpeKIS9rmQrTBZ+fvJSzahwZcB78CtLfIC8HbgL0vZKcOYDGTr26h0wcZcfCCWaDl5mXCaq9aw\naS6jlihkGqsc5BtmbAmTtUc5Cj1+BfgSbkXEh3F/UZ9W1b/P96SlxMTEqGbSDbLVPPCaD2TyUI4M\n+OWq+jvgA8Awrhz9Z/M9oWFMVjJNF6Wbxtq1axf33HMPu3btqlR3gcqHGRu1QzZiEjjp3w98V1X3\nlbA/hlGX5JKAeNVVn2LevJO5+OIbmDfvZK66Ku3SPWXBfCBGtmQzzXUjroTKfmAJrhz9P6lqVSYu\n2jSXUY1kO120a9cu5s07GXiMwEcBpzA09Dhz584td7fHqOapOKM4lDw0WFVXeb/JPlV9XUT+CJwd\n6sAyVf1hvh0wjMlAfLpoK9AC/CHtdNHg4CBwDOGsdziawcHBiopJMcOMjfokm2kuVPVlVX3dv/6D\nujXZA24qSc8Mo47o7Oykt/djwPuAjwLvo7f3oykD9JIlS4BfEvZRwAu+PRWrgWVUC1mJyQRYOXrD\nmIDR0VH6+r6Nm756BniMvr6/TxGBuXPncuWVlwKnALOBU7jyyksTrJLR0VEeeeQRVq/+PG95y2yr\ngWVUBQXnmYjIE6q6qEj9KRjzmRjVSDqfSUvLSfzDP3yV5cuXA4l+iV//+tcMDg6yZMmSBCHZuHEz\nF130lxw8eBjwK9y9XB8w18rMGwVR8jyTLDpgYmIYaQiLA+CT/+4j8JnA+4lGI3zzm+sAJly3ZHR0\nlKOOmsXBg/9K3Dn/p7gJhmdpbz/T8j+MvCm5A15EmlX1wDhtw/me3DDqleRFrW655UaWLfsvPPDA\ne4A3Ay8Bl/Lqq71ccsnpiExh//4BX6drJ729SznjjHclWBk7duzwFknYOd8JKPBDy/8wKko2hR5/\nBCRbHmNtqvrBYnfKMGqZcE5JIA6XXbYYaADm4Bzs1+NiV/47DQ2HATHSrVuSOmX1K8JFFOE/gENE\no5+kr29dTU1xWbhxfZHRAS8iR4jIyUBMRBaKyCL/6AGmZnsCEekTkb0isjPNZ38lIm+IyIxQ22oR\n2S0iu0Rkeah9kYjsFJFnRcRWejSqltRFrY7E3bc9BjwJDOCE5M3AOg4deok33kiM4EpnZRxzzDHA\nIaAHdy/XAxxi5crLef75Z6uqptdE2AJadUimhU5w674PAL/3z8HjAeCD2S6YApwGLAB2JrUfjav1\n9Qtghm+bi1uMqxHoBp4j7tf5MbDYv34IODPD+XJaEMYwik3qAlH3Kszyr4PHfIVmhWM1EpmmV165\ncsLFrAYHBzUWO1ahQ2G2Qrs2Nx+jg4ODFfiW+WMLaFUnFLg4VsZpLlW9B7hHRM5V1fsKEKttItKV\n5qNbcDW+Hgi1nQ1sUtVDwLCI7AaWiMgeoE1Vt/vtvoXLyu/Pt1+GUSqCEiS9vUtpbHwLv//900CE\nxOmp3cBfA1/ktdd20te3lPXr3ZJBHR0dLFy4MOW4zlLZB9xP4MSfMuXcmvOTZLOOi1F7ZJMBf5+I\nvB84AYiG2r+Y70lF5Czgl6r6lEhC8MBROH9MwIu+7RBuLZWAF3y7YVQl4UWt/vmf/5VVq/47r79+\nCvBmGhpGaGzs5MCB4F9oPvv3T+fCC6/hwIFfEYlMZ8qUP/LNb65LmLqKi9S5CSXra20AtgW06pNs\nornW4XwkS4FvAH8ODOZ7QhGJAdcAy/I9xkRcf/31Y697enro6ekp1akMIyOdnZ1s2fIo1167lqlT\n5/Daa7/g05/+MBde+DFOPvk0Ei2Vlzlw4BngP3jttVOBJi666C9SIroKWXmxWghbbrUsirXO1q1b\n2bp1a9GOl02hx52qOj/03Ar8QFX/NOuTuGmuB/3+bwO2AH/EZVwdjbNAlgCXAKjqjX6/h4HrgD3A\ngKrO9e3nA6er6uVpzqUTfSfDKBbjrU/S2trKySeflnZhqS1bHqW39wqmTDmaP/zhOeCbQGCFLAL+\nG3Ap/f33jyU11hsWzVVdlGMN+Ff98x9F5M3Ay7jwlFwQ/0BVfwocMfaByC+ARar6GxF5ALhXRP4W\nN401CxhUVRWRfSKyBNgOXAjcmmMfjElEOQaq5FySvr7bgHjy4auvPseUKV2kC/kNLIwdO3Zw9tnn\n8eqrQZb7Tty90zJy/zeLUwsDtRWPrDMm8tADX8CVnT8Xl2n1H8AXs/XwAxtwwfEHgOeBjyd9/nN8\nNJd/vxoXxbULtzBX0H4y8BTOc/n1cc6XfziDMcbIyIgODg7WZITNhg2bNBabodOmLcoYGVUo6SKS\notGOpLYBhdiEUUtBf2GmwnSFTQo/0UhkWl7Xvxzf36g/KDCaKxsx+BAukioQlvtxlkTeJy3lw8Sk\ncGp5MCpX2Ong4KBOm7YoIdx36tTjNBo9XmFkrC0a7dbm5o5xQ36Dfq9Zs1aj0Q5taZmf93W3sFsj\nX8ohJjv982m4PJP3Az8u5KSlfJiYFEahg1GlLZp0g3x7+8Ki52LEr9OAwqDCF7wVMivBuojFZujQ\n0FDW1ySX65du2/G+f6V/G6O6KYeY7PDPXwYuCLdV48PEpDAKGYwrZdGEB8lS3ZmnG4ivvPJqLyDH\n++ebxs4JUzUa7SjZNch0rTN9/3Xr7qxZa9MoD+UQk38C7vC+jQ6gGfhJISct5cPEpDDyHYwrNb2S\nblAN2iaaWirkHOm+L8wYm+JqaZmv/f39RfqWiUx0rZO/fyAkNvVljEc5xGQq8EHgeP/+yLBjvNoe\nJiaFk89gXK7ppTDjDarFmtLJdI7+/v7Q9x3xU13z/HN8m1zOn22fs7nW4WNV4rcxao+Si0mtPUxM\nikOug3ElLJNyDJKZztHf3++/703eIjlJIabNzcdoJDJNm5pac5pSymWKMNdrbU750jM0NKTr16/X\noaGhSnclb0xMTEyqhmJPL01EOQbJ8c6xbt2dmhz6G4lM0+bm9pz6lM/3yPVal/u3mUzEfWezFWJ6\n5ZUrK92lvDAxMTGpKsodMVSOQTLTOQYHB7WtbWGC1QIzNRI53E93jSRYMuEggfA1SnecbCysfKxH\ni+YqLkNDQ15IBvxvPqAQq0kLpVAxKXjZ3mrDyqlMPsqR7Z2pbIpbineAeI2tdwBvAMfj6pF+jqam\nL9HY2ERjYxevvvrvwBtMnTp7LGv+d7/7HZdddjVuvZPEsivVliFeC5n15eSee+7h4ouvwRUK6cYt\nPNvM+vVf5qKLLqpk13Km0HIqFbckiv3ALBOjjKxZs1Zhqrrs9VjKtBfEtKmpLalturda3HRWNNrh\nfS8d6vJUorpu3Z2V/mop1HIya6nYtm1b2t9827Ztle5azlCgZZJxpUXDMCbm3HP/K84S+SLwj8Bs\nwrW4pk6dRVPTkSSu296Nu4Odz5QpR9PQcDjQhVv4tAWYwujoaMJ5RkdH2b59e0p7uQgvRbxv3+Ps\n3z9Ab+8VFetPtRCJRJJW1ZxPJNJNJBKpYK8qg4mJYRTAK6+8Qix2PHABsBC3vnt8+V3VFzl06KWE\nNick3cBODh16ntdeewH4BK7AxJPAj7jhhpvHBupqWOI2dSnieNHKyUx3dzcNDXsJ/74NDXsn5dos\nJiaGUQBu0HgRN5h0Ap8DTqGtbSGx2FL6+m7j1lv/B3AKbn25twOv4FZcOIU33mjm4MFDwGGkG6ir\nxSJIXNAKbEErR7A2Syy2lPb2RWO/+WT0J2VTgt4wqpZKOoSDc99yy4186lOn09BwGK+/PsKaNV+i\ns/NNLFmyhLlzXWn53//+93z2s6tw01jdwDPA5Rw8uB54GFeUO75Y1oEDv6C1tbVqlrjNZ0GryeKs\nr4cFy4pCIQ6XanxgDviaodBQ1WI6hIO+hIsyjte/8Lmbmtq1oaFFp06dr01NbRqJTEvpU39/v3fU\nhx217QpBSPAmn/zo6nzFYsdmXQolXd9LRba/mTnraw8sz8TEpBYpdLApZsJi0JdY7MSxgXy8LPb0\ndbmmKwz553h7c3OHDg0NeTE5NiH/xCW5TQttP6DQrHB/wncKBCVdLk26vld68LaM+9rExMTEpOYo\nxmBTrFIqmQs2DqSE8IaTDJPP7SyM9QrJ7cdrU1OrXnDBx3wI6Un++Bf490f655necjkiYf+2tgUJ\nNbaSLadMfa/ksgG1VgvMkjkdhYqJOeCNslOMyKBiOYTT9cWF6Qa+jeGU/qU7t9tuCfCLpPb/5ODB\na9mw4Xu4pMQncVFb9wMP4RYhfQgYAR7BLUga3//3v3+GJ554ks7OTp577uecfPJpY1Fdd9xxV8a+\nZ3s9SxEplnp9tnLgwL/T2tqasF2lw52hOiLl6oZClKgaH5hlUvUUaxqkGKVUMt/d36/Q5qeuUvuX\nuNRum0JEYb5Cq/eFzPTPrQpv9e8TLRY35RW2bAa972Sqwtt8P24aW2DLJTfeO2YtpS4TnJtlUsrp\nqOD6RKPH+um3ExN+o2rwqdh0XCLYNJeJSS0ykRBkO/VQ6BRFsFyu8zu8TSGmjY2HaXzVxKna1NSa\ndrAL9o1EWhWO07g/ZEThKIUWP1CNaLIvJV7PKXgfn1Jzn/WPHaulZbZedNHHvcgs8oKxSdvbF471\nvbl5nkJMo9Huqlk2YGhoSJubO1IG66GhoaoYxGttOq7UmJiYmNQsmYQgn7vWfEQlfJ5otEPXrFmr\n27ZtSzsAjnfcr371Zk0uqTFlSqtCd2igSrY4LvCD/wljzv729oUajU7XhoZAhDZ5kZmlqSs5Ttdo\ntEPXrbvTrxv/Vm1ubtc1a9ZWzbIBmQbr9evXV8UgbpZJIiYmJiZ1RSHl2HMVn0yLXiVW8HWWwV13\n3aW33nqrbt68ecz53d/fr5s3b05a12S+QkxFIuqmuAY0Xk02qnCruqkzVXirNjREddu2bbpt2zZ9\n//s/oA0NMW1qOlxdVFdyKHF8JUeYqatWXePPHT9HroNhKasuZ7rG1WKZqBbv+2/btk2vvfbamqzJ\nFWBiYmJSV7jCibOyvmvN9+4y9TxuaurMM98TsjKSLYNmhZkqEtPGxjYNpsHiEVjBiovdCm9SaPT7\nHOufw9FcN/l9YwpNGp9Wi/njBcUjNfQ4UYOVHJubO7yQHeeP56a/otHuvCLawlZdMaObMg3W1bS+\nSqHfd9my9/rfzeUILV/+3iL3sDyYmJiY1A0jIyPeyZzoXxhPHNJNpbS1LdD169ePu/Jg4nmSReNc\ndRV8ky2DIJekI6k92f8R7BsWj5Y0+9yp8AVNrTo7Q12YcWo1WujUIJ/EfYfUbQpZS6MUjvFMg3U9\nhORa1eAyignQB+wFdobavgLswsVJ3ge0hz5bDez2ny8PtS/CxRo+C3xtnPMV9wobZSMuDEE2+EKF\nqbpmzdqM+6SPxoppW5uLHkrnQ4ifZ6W6qadk0ehQ2OyFQEOPhQqXa7Ll5CyIRo1bKtekOeZUjU9R\nqcICdU729jTnOUnhWoU/8QPVfI1bMzGNJzXeq8nWVXPzcdrf35/X9TcfQu5ce+216iyS8O83S6+9\n9tpKdy1nakFMTgMWJInJGcAU//pG4Mv+9TxgB65mWDfwHIwt4PVjYLF//RBwZobzFfkSG+UicTAb\nUbhXo9GOrEt3tLUt0FRH9VSNRjtSMtjjlsntaQbzE/1APz3Ul9u9ILRramRWhxelJnUZ7bdnEJx7\nQ/tM9+c4wQtFsgUyT93U2GxNzJqfpfGQ4pGQaMWtq2h0el4WhUU35Y5ZJmUUE9dHusJikvTZOcC3\n/etVwOdCn/0AV2b1CGAo1H4+cHuG4xXv6hqqWt7piHzn0kdGRnT9+vXa1nZi0iC+UOHelDvsuM9k\nJO1g3tpxg3OsAAAZwklEQVT6Nm1qavWRVYEzPMhSX6lhy8lZK/MUzlZnoUT9I54T4gacqAZTaSIx\ndb6VQPxmeBGLKlzp90s3BZY4pdbU1OqFMdESikSm5ZwBX02O8Vpi+fLAZ+J+W/OZVE5MHgBW+Nd/\nB1wQ+uwbwAeBk4FHQu2nAQ9kOF7xrq5RsuSy8QQqX/HKnIA4knKHnbhtcFc/c6wWVjC4pvPhxH0n\nV/rBf74XnHZ101fNOmVKi8anvWIKqxXu16amVt22bdtYNNiqVat9KPKxXojCuSStmhwlBh9N6OuG\nDZt05cqrNdVZPzOr6a7w7xuJTNMpU4Jpv5kaiUwbuxYmKONj0VwVFhPg88B9ofdFEZPrrrtu7DEw\nMFC0iz3ZKMYcejphKKVArVmz1gvATD/obsrY77AVFOSZhKsF9/f3a0vLWzW13tZMjdfUSk5KzJSg\neIQ2NbXphg2bUq7Jtm3bdMqUZk21QgI/y5A6h/xb/POITp06W/v7+3VkZEQjkXRTb1MnFJPxC1be\nq42NLRXPUjdKx8DAQMJYWbNiAlwM/F+gOdSWPM31cGiaa1eo3aa5ykCuYbrJpBONUjl5k8/1oQ+d\np9Fox4TTZckDe3Iio1u/PVUczjhjmba0BL6WQS84I36wX6ip4nOcQkwvuOCjCf288sqrNRaboU1N\nXWmtC2f9zFDn14kqXK1umis2ZjW4vJjEoIWGhtiE1zRzwcrAR5M4dTbR71QP0VmTmVoRk27gqdD7\n9wA/A96UtF3ggI8AxyY54B/DVdIT74B/T4ZzFfcKT1LyCdNN3j9TUmCxnbzjJcflMrilO07cbxL4\nTKZpPKoqbJm0+mt1YhoLI7lUyhf8ZwOhbdOtdxL4WRKn4lz7mRqNdiT5OVzQAkT1q1+9ecLvntky\nCY6T/Y1ENdTaqhT1IqJVLybABlxp1APA88DHcaG/e4An/OO20ParvYgkhwafDDzl9/36OOcr9jWu\nO7L54x8vTDe3/RMHo/7+/qJbJsWKQkp/pz7TZ7MfpfF6WcEdfJDgeGySgARiEzjsN4WON1+dbyVI\ncAzCSsOCtNA/x9SVX0kXJOB8MWvWrE2IZmtu7tBLLrk064E9PNWXWNalQyORaZrN7zSZQ4rrSUSr\nXkzK/ZjsYjLRQJ/tH3+mMN1goabc9k8cYIqd/VyswSzznXqrpiYqdmi8uvC16iySQDBG1E1rHeH3\nTQ4ImKfxEivJIhT1IhTVKVOCPJN7NdVvkxillj4iy4U0RyKt4yYyhv9mwq+z/Z3yFfNc7+irzQKo\nNxE1MTExGWMiocj1jz95MMlmCdnx9k/O9SjmwFCscvSXXXa5v+tfqEF13qBMRry0/HSFtepCe4OQ\n3kwlWP6rxpfj7QhZLfP886X+fMf77e70x45pLObCkxsbWzU+BRZMQXVouii1RIuyTYPpuaam9rwK\nZmbzO5Wjnlo1WgD1lpdjYmJioqrZ/UPn88cfHkzycciX824yn3MF+wRC6ZzZ4VyPwJoYUJimDQ1R\njUY7tLk5EItggG9R509Jl/nepi7s9y3+WDerc9TPUbhXm5vbtbm53Z8jXTRYVOMW0lT/GzjfTbJv\nKO7rmpZynFIUzEzeNxsxz1V8qtUCqNZ+5YuJiYmJqmYnFIX88RfqkK8W0k3jOAFJzpwPfCGBdaIK\nM3XNmrU6NDSkTU0t6ha9Uo1Hc/Vr+hIs92pjY5tf9+QLGo/OimljY4tu2LBprC8tLbNTBNv5TVo0\nXU2w3t6/SBEAJ/pHa/LUWEvL/KIXzMx0bccj15uaarYAqqlgZaGYmNSRmBRyF5/tYJDvH38+dbOq\njeQ776amdP6MeIl3aNDEAo6uiKILIgiy18O5JQOa6ih3x2xpme+TCxMjvaLRjrF8kSCRMV2tMThc\nk0OHW1tP8hZNahTbRMKf/Lc2ODiosVhi9YBY7G0lGbDrxTIJqDZfTr6YmNSJmBRjTjhboch3Oiid\nQ75W/oHSrfqXWnxxvgYl3uPRVB0a+E+i0e6xlQ3hzX6AD4S1Rd10VJDM+DZ//NXeMmn1lsns0Pnc\nglktLScl/F7B79jaepLGLaaRFMukubkjpXxMcMe+YcMmL5bxbPbxlswdGhpKEbpCKxCPR643NdVu\nAdSDoJiY1IGYFPPOq5R/1IX8Q1fyn23Dhk1+IE+u7ppcfDEQgWBqa6a6oo3xhafcHf9NGi8zP+A/\n/yu//4n+s6DUShAiHPPbhAV5fMth/fr1Go3OTRGfIOS4sbFl3PDdwNIJLB/VQFQD/0x8H2cRBdN6\ncfEs5VRSrUdzBVRjcEA+mJjUgZhUek44l3/SfP6hc/lnK/aAMTIy4rPY0znHg8RDF+3U2Nii4eKM\nkci0hCz6NWvWakvLXHWO8NsV/kbjlX3TFWRMd76/8AP2MZopmCF9mG9wjKg/t+tjU1Nr1gK/YcMm\nb53N1rAvKDH/JxDH3FdtnIxU+xRcLpiY1IGYVPIPstR3Vbl8t1L0pb8/nFl+pxeVwFJo8ZZEmzY2\ntoxFdIVrdYUjpdatuzNkaUS8kBzvn9OVnD8mqS1IWPyM3z+1XElyHs+VV64c61Nzc4e3HoKEx5Ex\nIUgW4GRRTmeRBFFq4fwfZ+k4y6epqbVm77LLRaVvBIuJiUkdiIlqZeaEyyFi2f6zlaovTkxmaTxw\n4EQ/+EeS7vinjk0HuWKR0xN8GfH+Dahb/Cqq8VUU05WK79DU1RU71PlZUkukjJfHEwjagw8+6AtC\ntquL1JquTU2tGYMswvW/0lkkcLw2N8fzT+IRe3HrbDynvWGWSfhR8cG/2I9aFRPV7P9Zi/VPXY67\nqmz/2SbqS77feWhoyJdVT/QtOKtgSONFDWeGqvAmbhuJTNP+/n6NRIIkxVkarkjs2jo17s+IKZyn\nLp8k8KO0eREIytIHA/qItrTMHrMuXJhy4jXo7+/XD33ofI1bRfFzJ69bknq9B9IInRPF5uaOBAf7\neL9BskBZafo41R4ckC0mJnUkJtlQzKmgct1VZfPPNl5f8v3OwX7pa2TN9AO8u8NvaJg65rBON2V1\n1113ZRiUR9RNX7VpULo9vhRwu7qSKk1p9u1Ql5dyvzY3t+vmzZv1q1+9OWW7pqY2bW5O5+9Jv05L\nqiAMamIEmWqyRTLRb5DedxNfGrlWB89iUg9Wm4nJJBKTUgz+5bqryuafLV1f8v3O6fZLrd47MPZZ\ncIef6GMJ9puqa9euTcnDCBIS3bHuDLXPUTeVNk1dYmOLpi8vf4zf9zC/fZMmLoYV1cbGNk1fm2uB\npltBMhvLJNkimeg3SF8AMx5GXavTOkYiJiaTSExKNS1VTXdV6ZLp8vnOmSoABzWzmpu70x7TRX8F\n1XvfpsHCVumq6Matj2TxCZb6ne5FYFrKgJ4qbCeERMk52BsaOn2f0y8tHGTPJ5MsCIETv6VlflY3\nDMm/QXphjid4pqu0UC1/T0b2mJhMIjGpJ2dfthTXMpmqkUirXnfd36QkMIaP6UJo270gDIxtE4Th\nTp16oheQtX5ATcz/gClpBCZYSTFIZkwuSx8kS07zxxzQeE2uRGe9G8hvmjBrPFw2Jhrt0JaWt2o0\n2lFQQmxb2wJNLj2TfO3qIediMmJiMonERLV+nH25kO93Tt5vzZq1YxFTLsTWVeZNd0y3ZG9ina3A\nGX7rrbeGLI34glSnnnqquiixr2j6UOHD1flJ2jLe5UO3Nje/xee8HK/xKLRgDfi1Y9u2tS3Iqsx7\nrmKcybII2sMh1OFrNxlvduoJE5NJJiaqk3MaId/vHN4vnT+hubk9rf9gvIExPhUWruIb04985GPq\nCiwOaXL0mPN9BH6aYBot+S7flaefOnW+t5yC8GW3Lkk8pNgds7l54nI2uU4T5rLeTfLvUU85F5MR\nE5NJKCZGfuQ7sLa2vk2bm9t13bo7xz6LJzD+JEEI4qG7K9VFbLlQ4TPPfK8PUY56iyNIPLxT3fRb\nahZ9Q0Or3z5YL+WCBCsl3J9M5GItFGpZmGVS25iYmJgYWZLPYLdu3Z2+oGLilE5iCHGmZXVb/bTU\nFzTuMzkyxcKAmF5++eVpc0xWrrxam5paNRJxkV/R6JwUYZuIUq+YmM+5jOrDxMTExAgx0XRYsRZx\nSgwhHtTUdUxmaXzN+I7Q1NYidRFgTeryP6YpNOvmzZvHnVYLanUlF24s1nWZ6PsW+1zFYDJO95YS\nExMTE8NTyHx/Osa7U08fQpxc1PELXmiO1cTormBKzPlapkyJJiRnZhK6ckRK1YplYVFjxcfExMSk\nolTL3WEpopbSZX4nh8E2NLQoHKXOWR7z/owZIcE4xn+WeUosXBJlvD6Vyx9RLb9pJsw3UxpMTExM\nKkY13R0WK2optUjiyox36omFEfvVJR4Gtb5c6O4nPnG5NjRMDVkuqVNi+SZhTtZIKbsWpcHExMSk\nIlTb3WExopYyWSLhMvRhEge1VIsj7PNYtWq1RiLTNBabmzIllm8S5mS9G7drURqqXkyAPmAvsDPU\nNh14BHgG6AemhT5bDewGdgHLQ+2LgJ3As8DXxjlfca+wkZZqvDssNGpp/fr1OX2n1EHNTW21tS1I\ne/6REVfe3iUkpi6nW6zvNxmwa1F8akFMTgMWJInJTcBf+9efA270r+cBO4BGoBt4DhD/2Y+Bxf71\nQ8CZGc5X5EtspKNa7w4LiVqayEeSjuRBbbzS7InndZnz0ejEiYe5fr/Jgl2L4lL1YuL6SFeSmDwN\nHO5fHwE87V+vAj4X2u4HwNv9NkOh9vOB2zOcq5jX1xiHWr47zNT3fL5TMaLDDKPSFComwV1/SRGR\nLuBBVZ3v37+sqjNCn7+sqjNE5O+AH6nqBt/+DZwVsgf4sqou9+2n4Sybs9KcS8vxnQzH6Ogow8PD\ndHd309nZWenu5ESmvpfqO42OjtLVNYf9+weA+cBOYrGl7NnzdM1dO6P+EBFUVfLdv7GYnSmAoo7+\n119//djrnp4eenp6inl4I0RnZ2fNDoSZ+l6q79TZ2Ulf32309i6lqamL1177Bddc89min8cwsmHr\n1q1s3bq1aMerlGWyC+hR1b0icgQwoKpzRWQVztS6yW/3MHAdzjIZUNW5vv184HRVvTzNucwyMaqa\n0dFR7rjjLm644WYikW5ee22Yvr7bWLHivEp3zZjEFGqZTClmZ8ZB/CPgAeBi//oi4Puh9vNFJCIi\nxwKzgEFVfQnYJyJLRESAC0P7GEZVMjo6yvbt2xkdHU357IYbbmb//gH27Xuc/fsH6O29Iu12hlEr\nlFxMRGQD8P+A2SLyvIh8HLgRWCYizwDv9u9R1SHgO8AQzldyRcjM+CQuzPhZYLeqPlzqvhtGPoyO\njvKlL91AV9ccli27jK6uOWzcuHns8x07djBlSidwpG+ZT1NTF8PDw2P7ZxIhw6hWyjLNVU5smsuo\nJBs3buaSSy7j1VdfA35EsqN9y5ZH6e29gv37ZwD/CdwOzE353Ka/jHJT6DSXiYlhFIl4tNbfATcD\nj4991t6+iO9+90bOOWdFQjQXnEIk0sCtt/4tH/zgORbtZVSMeonmMoyaZ3h4mEikm/37lwFX4cTC\nicLBg3v8Vkf5NnBFHoTGxuP49KdXMTo66vcPPo9Pf5mYGNWOiYlhFInubjc1Bf+BcwOeBryJWOx3\n9PXdxjHHHMP+/c/hROZI4HLgR/zxj05wbrhhKapvkCxC3d3dlfg6hpET5YrmMoy6J8gjaWo6DfgU\ncDhNTS9zyy03smLFebzyyis0Nx8OLAXeAbyJuJXirJDPf/6zxGJLaW9fRCy2lL6+28wqMWoC85kY\nRhEZL8sd4Mgjj+X11xuBPwF+BTyWdrtarSpg1C7mMzGMKiLuN0n1e3R3dzNlSgOvv/4vOAH5CnAK\n8GZisd8kWCEmIkatYdNchpFEIXkecb/JTt8S93sMDw8zdeos4lNbfw0czic+sZw9e562EGCjpjEx\nMYwQGzduzphsmA2B3ySd3yOd0MRiv2PNmr8xS8SoecxnYhieYlb1zVR5eOPGzfT2XkFTUxcHD+6x\npESjarCkxSRMTIx82b59O8uWXca+fYnJhlu23MHixYuLdp5aLttv1C+1UujRMKqe8fwdxSDwxQAs\nXrzYhMSoK0xMDMMznr+jUAr1xRhGtWPTXIaRRLGnoWyFRaMWsDwTwygyxV5pcbzcExMTo16waS7D\nKDGl9sUYRjVgYmIYJaaUvhjDqBbMZ2IYZcJCgo1qxvJMkjAxMQzDyB3LMzEMwzAqjomJYRiGUTAm\nJoZhGEbBmJgYhmEYBVNRMRGRT4vIT0Vkp4jcKyIREZkuIo+IyDMi0i8i00LbrxaR3SKyS0SWV7Lv\nhmEYRpyKiYmIvBm4ClikqvNx2fgrgFXAFlV9K/AosNpvPw/4MDAXeC9wm4jkHXlQrWzdurXSXSgI\n63/lqOW+g/W/1qn0NFcD0CIijUAMeBE4G7jHf34PcI5/fRawSVUPqeowsBtYUt7ulp5a/4O0/leO\nWu47WP9rnYqJiar+CrgZeB4nIvtUdQtwuKru9du8BBzmdzkK+GXoEC/6NsMwDKPCVHKaqwNnhXQB\nb8ZZKB8BkjMOLQPRMAyjyqlYBryI/Dlwpqpe6t9/DDgFeBfQo6p7ReQIYEBV54rIKkBV9Sa//cPA\ndar646TjmvgYhmHkQa2WoH8eOEVEosAB4N3AduAV4GLgJuAi4Pt++weAe0XkFtz01ixgMPmghVwM\nwzAMIz8qJiaqOigi3wN2AAf9851AG/AdEbkE2IOL4EJVh0TkO8CQ3/4KK8JlGIZRHdRdoUfDMAyj\n/FQ6NLhoiMhXfDLjkyJyn4i0hz6r+mRHEXmPiDwtIs+KyOcq3Z+JEJGjReRREfmZiDwlIit9e8ak\n02pERKaIyBMi8oB/XzP9F5FpIvJd/3f9MxF5e630P9eE5WpARPpEZK+I7Ay11USSdYa+F3XMrBsx\nAR4BTlDVBbgclJpJdhSRKcD/BM4ETgBWiMicyvZqQg4Bn1HVE4BTgU/6PqdNOq1irsZNnQbUUv+/\nDjykqnOBk4CnqYH+55qwXEXcjfsfDVMrSdbp+l7UMbNuxERVt6jqG/7tY8DR/nUtJDsuAXar6h5V\nPQhswoVNVy2q+pKqPulfvwLswl3zTEmnVYeIHA28D/hGqLkm+u/vIv9UVe8G8H/f+6iR/pNbwnJV\noKrbgN8kNddEknW6vhd7zKwbMUniEuAh/7oWkh2T+/gC1dfHjIhIN7AA9weZKem0GrkF+CyJuUy1\n0v9jgV+LyN1+mu5OEZlKDfQ/j4TlauawOkmyLnjMrCkxEZEf+jnW4PGUf/6z0DafBw6q6sYKdnXS\nICKtwPeAq72FUhNJpyLyfmCvt67GM+Grsv+4qaFFwP9S1UXAH3BTLlV//es8Ybnm+lysMbOSeSY5\no6rLxvtcRC7GTVu8K9T8InBM6P3Rvq2aeBF4S+h9NfYxBT9F8T3g26oa5APtFZHDQ0mnI5Xr4bi8\nEzhLRN6Hm2ZpE5FvAy/VSP9fAH6pqv/m39+HE5NauP5nAD9X1ZcBROR+4B3URt+TydTnWhh3ijpm\n1pRlMh4i8h7clMVZqnog9NEDwPk+WuRYMiQ7VpjtwCwR6RKRCHA+rt/VzjeBIVX9eqjtAVzSKSQm\nnVYVqnqNqr5FVY/DXe9HVfVjwIPURv/3Ar8Ukdm+6d3Az6iN6z+WsOwdu+/GBUHUQt+FREs2U5+r\ncdxJ6HvRx0xVrYsHzkm0B3jCP24LfbYaeA7nJF5e6b5m6P97gGf891hV6f5k0d93Aq8DT+ISTp/w\n32EGsMV/l0eAjkr3NYvvcjrwgH9dM/3HRXBt97/BPwDTaqX/wHX+/3EnznHdVO19BzYAv8JV7Hge\n+DgwPVOfq2ncydD3oo6ZlrRoGIZhFEzdTHMZhmEYlcPExDAMwygYExPDMAyjYExMDMMwjIIxMTEM\nwzAKxsTEMAzDKBgTE8MwDKNgTEyMSY+IrBSRIV9OpRTHv05EPlOKYxtGtVBTtbkMo0RcDrxbXTXb\nukBEGlT19Ur3w5g8mGViTGpE5HbgOOAHInKNX5HuMRF5PKhGLSIXicj9fkW9n4vIJ/1KgU+IyP/z\nVXARkb8QkUER2SFuBcRomvMdJyI/EJHtIvLPodpa6fp2t4jc7rd92lc6DlaH/IqI/Nivknepbz9d\nRP5FRL6Pq9NlGGXDxMSY1Kjq5biKqEuBFuD/qOopuCqq/0NEYn7TE3ALHy0B1gKvqCv9/hhwod/m\nPlVdoqoLcase9qY55Z3Alaq6GFdk7/YJutjlt/0AsM4XAu0Ffquqb/f9+UsR6fLbLwSuUtVqX6nT\nqDNsmssw4iwH/kxEPuvfR4gvDTCgqn8E/igivwX+ybc/BZzoX88XkTVAB06Y+sMHF5EWXKn174aW\nQW2aoE/fAVDV50Tk34E5vp8nisiH/DbtwPHAQWBQVZ/P4TsbRlEwMTGMOAKcq6q7ExpFTsFVWw3Q\n0Ps3iP8f3Y0r5/1TEbkIV404zBTgN96iyZZwJVbx7wVnffwwqZ+n4xbJMoyyY9NchhFf46EfWDnW\nKLIgx+O04hbXagI+kvyhqv4e+IWI/HnoHPMnOOaHxDETt1TvM76fV/jFyRCR4/2SvYZRMUxMDCN+\n978GaPJLQf8U+OIE2ydzLW4RoX/FrQORjo8Cvd5x/lPgrAn69rw/5v8GPqGqrwHfwC0m9YSIPAWs\nAxomOI5hlBRbz8QwqhQRuRt4UFX/odJ9MYyJMMvEMKoXu9MzagZzwBtGhRGRa4APEXeuK/BdVb2k\noh0zjBywaS7DMAyjYGyayzAMwygYExPDMAyjYExMDMMwjIIxMTEMwzAKxsTEMAzDKJj/D6HJ94fI\n0CQrAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "combined.plot.scatter(\"female_per\", \"sat_score\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Based on the scatterplot, there doesn't seem to be any real correlation between `sat_score` and `female_per`. However, there is a cluster of schools with a high percentage of females (`60` to `80`), and high SAT scores." ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "5 BARD HIGH SCHOOL EARLY COLLEGE\n", "26 ELEANOR ROOSEVELT HIGH SCHOOL\n", "60 BEACON HIGH SCHOOL\n", "61 FIORELLO H. LAGUARDIA HIGH SCHOOL OF MUSIC & A...\n", "302 TOWNSEND HARRIS HIGH SCHOOL\n", "Name: SCHOOL NAME, dtype: object\n" ] } ], "source": [ "print(combined[(combined[\"female_per\"] > 60) & (combined[\"sat_score\"] > 1700)][\"SCHOOL NAME\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "These schools appears to be very selective liberal arts schools that have high academic standards." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# AP Exam Scores vs SAT Scores" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEPCAYAAABoekJnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXucXFWZ7/190t116Vs6rS0oSDpcMkkMIYknEZVz7DAQ\n1OOFV8UQnVEkchCEMMool3klcTKMRI8OxPlAGyZMdIYk7WUY0IM0Mna/Y+YInYFgeO1EwjhpBAe6\nZ5zhHXwDJvicP/baXbuqdlXtunVVVz3fz6c+vWvVrr3X3t29fvu5rGeJqmIYhmEYpTKn1h0wDMMw\nZjcmJIZhGEZZmJAYhmEYZWFCYhiGYZSFCYlhGIZRFiYkhmEYRllUVUhE5GQR+aGI/FREnhCRq137\nF0XkoIg8LiLfEZHuwHduEJHD7vO1gfaVInJARJ4UkVur2W/DMAwjOtW2SI4Dn1bVNwBvBq4SkUXA\ng8AbVHU5cBi4AUBElgAfBBYD7wBuFxFxx7oD2KCqC4GFInJBlftuGIZhRKCqQqKqz6nq4277ReAg\ncJKqPqSqv3W7PQyc7LbfA+xR1eOqegRPZFaLyIlAl6ruc/t9A7iwmn03DMMwojFjMRIR6QeWA49k\nfHQpcL/bPgn4ReCzZ13bScAzgfZnXJthGIZRY2ZESESkE/g2cI2zTPz2PwKOqerumeiHYRiGUXla\nq30CEWnFE5G/UtV7A+2XAO8Ezg3s/izw+sD7k11brvaw81nxMMMwjBJQVSm8VzYzYZHcBYyr6m1+\ng4i8HfgM8B5VfTmw733AxSISE5EFwOnAmKo+B7wgIqtd8P0jwL3kQFUb9rVp06aa98Guz66v2a6t\nGa6vHKpqkYjIW4EPA0+IyH5AgT8CtgEx4AcuKethVb1SVcdF5JvAOHAMuFJTV/hJYCeQAO5X1Qeq\n2XfDMAwjGlUVElX9B6Al5KMz8nznC8AXQtofBc6sXO8MwzCMSmAz22cZAwMDte5CVbHrm7008rVB\n419fOUi5vrF6Q0S00a7JMAyj2ogIWsfBdsMwDKOBMSExDMMwysKExDAMwygLExLDMAyjLExIDMMw\njLIwITEMwzDKwoTEMAzDKAsTEsOYJUxNTbFv3z6mpqZq3RXDSMOExDBmAbt3DzF//iLOP/8TzJ+/\niN27h2rdJcOYxma2G0adMzU1xfz5izh6dARYBhwgmVzDxMQh+vr6at09o0Gwme2G0cAcOXKEWKwf\nT0QAltHWNp8jR47UrlOGEcCExDDqnP7+fn7zmyPAAddygGPHJujv769dpwwjgAmJYdQ5fX197Nhx\nO8nkGrq7V5JMrmHHjtvNrWXUDRYjMYxZwtTUFEeOHKG/v99ExKg45cRITEgMwzAMC7YbhmEYtcOE\nxDAMwygLExLDMAyjLExIDMMwjLIwITEMwzDKwoTEMAzDKIuqComInCwiPxSRn4rIEyKy0bXPE5EH\nReRnIjIsInMD37lBRA6LyEERWRtoXykiB0TkSRG5tZr9NgzDMKJTbYvkOPBpVX0D8GbgkyKyCLge\neEhVfwf4IXADgIgsAT4ILAbeAdwuIn5e8x3ABlVdCCwUkQuq3HfDMAwjAlUVElV9TlUfd9svAgeB\nk4H3Al93u30duNBtvwfYo6rHVfUIcBhYLSInAl2qus/t943AdwzDMIwaMmMxEhHpB5YDDwMnqOrz\n4IkN8Bq320nALwJfe9a1nQQ8E2h/xrUZhmEYNaZ1Jk4iIp3At4FrVPVFEcmsYVLRmiabN2+e3h4Y\nGGBgYKCShzcMw5j1jI6OMjo6WpFjVb3Wloi0At8Dvq+qt7m2g8CAqj7v3FYjqrpYRK4HVFW3uv0e\nADYBE/4+rv1i4G2qekXI+azWlmEYRpHUe62tu4BxX0Qc9wGXuO2PAvcG2i8WkZiILABOB8ac++sF\nEVntgu8fCXzHMOoaW2vdaHSqnf77VuDDwLkisl9EHhORtwNbgfNF5GfA7wK3AKjqOPBNYBy4H7gy\nYF58EtgBPAkcVtUHqtl3w6gEtta60QxYGXnDqBK21roxm6h315ZhNCUzsda6uc2MesCExDCqRLXX\nWje3mVEvmGvLMKrI7t1DbNhwJW1t8zl2bIIdO25n/fp1ZR/X3GZGpSnHtTUj80gMo1lZv34d5513\nbsXXWvfdZkePZrvNTEiMmcaExDCqTF9fX8UH93S3mWeRVNJtZhjFYDESw5iF9PX1sWPH7SSTa+ju\nXkkyuYYdO27PKVgWlDeqicVIDGMWMzU1VdBt5sdpYjHPiqlUnMZoLMqJkZiQGEYDEyUoH0WMjMbH\n5pEYhhFKobkslkJsVAKzSAyjgclnkQCWQmxMYxaJYRih5AvKz8TMe6M5MIvEMJqAsDiITWo0gtiE\nRMMw8hI2l8W3VjZsWJM2895ExCgWs0gMo8mxrC0DLP03DRMSw8jGxMIohAXbjYbCZmFXFkvxNaqN\nWSRGXWGzsCuLBdSNqJhFYjQEU1NTbNhwJUePjvDCC49y9OgIGzZcWbZl0swWjqX4GjOBCYlRN1Rj\n0Gt2t061F9cyDDAhMeqISg961bJwSu1LLayiYqsEG0YpmJAYdUOlB716cevU2ipav34dExOHeOih\nrzExcchiTkbFsWC7UXdUKlW1HgLN9dAHw4iCBduNhqKvr49Vq1aVPdDWg1unXqwiw6gmVbdIRGQH\n8C7geVVd5trOAgaBBHAMuFJV/9F9dgNwKXAcuEZVH3TtK4Gd7jv3q+of5DifWSRGGrWcjGcWiTFb\nqHeL5C+BCzLavghsUtUVwCbgSwAisgT4ILAYeAdwu4j4F3YHsEFVFwILRSTzmIYRSqUsnFLPXWur\nyDCqTdWLNqrqXhGZn9H8W2Cu2+4BnnXb7wH2qOpx4IiIHAZWi8gE0KWq+9x+3wAuBIar23vDKJ/1\n69dx3nnnWokSo2GpVfXfTwHDIvJlQIC3uPaTgB8H9nvWtR0Hngm0P+PaDWNWEFZ91zAahVoJyRV4\n8Y+/FZEPAHcB51fq4Js3b57eHhgYYGBgoFKHNgzDaAhGR0cZHR2tyLFmJP3Xuba+Gwi2/4eq9gQ+\n/w9V7RGR6wFV1a2u/QG8GMoEMKKqi137xcDbVPWKkHNZsN0wDKNI6j3YDp77KtjBZ0XkbQAi8rvA\nYdd+H3CxiMREZAFwOjCmqs8BL4jIahd8/whw7wz13TAMw8hD1V1bIrILGABeJSJP41kYlwHbRKQF\neAn4HwCqOi4i3wTGSaUF++bFJ0lP/32g2n03DMMwCmMz242mxhZ8MgyP2eDaMoy6o9Y1sAyjUTCL\nxKgYs+np3macG0Y6ZpEYNaden+5zlW+3GliGUTlMSIyyqad1P4LkEzdb8MkwKocJiVE29fh0X0jc\nrAaWYVSOWs1sNxqI9Kd7L95Q66d7X9yOHs0WN18srAaWYVQGExKjbPyn+w0b1tDWNp9jxyZq/nQf\nVdysBpZhlI9lbRkVo16ytvx+PPbY43zqU9eniZstM2sY4ZSTtWVCYjQUu3cPsWHDlcRinkXyZ392\nCytXLq+5uBlGvWNCEsCEpHmxuSGGUTo2j8QwqM/sMcNoBkxIjIbB5oYYRm0wITHqglwz0IvB5oYY\nRm2wGIlRczID5OVmV9VL9phhzCYs2B7AhGR2kR0gHyUefy/79z/M4sWLa909w2gaLNhuzFrSA+RD\nwPt5+eUTWbHiLXVT+NEwjPyYRWLUlJRF8h3g/YCl7hpGLTCLxJi1+AHyePy9wKux1F3DmH2YkBg1\nZ/36dezf/zDx+CSWumsYsw8TEqMuWLx4MX/5l4MzkrpbiVRjwzBSWIzEqCuqnbpbyVRjSzM2GglL\n/w1gQlI/1NtAW8laXJWe+2IYtaaqwXYRaReRz4nIne79GSLyrlJOZjQmYa6ielzDvVK1uOp1aWHD\nqBVRYiR/CbwMvNm9fxb4k6gnEJEdIvK8iBzIaL9aRA6KyBMickug/QYROew+WxtoXykiB0TkSRG5\nNer5jeoSJhj1OtBWqhaXFYc0jAxUNe8L+Ef3c3+g7SeFvhfY9xxgOXAg0DYAPAi0uvevdj8XA/vx\nVm7sB54i5X57BFjltu8HLshxPjVmhsnJSU0mexV+oqAKP9FksleHh4d17tyVrs17dXev0LGxsVp3\nWXft2qPJZK92d6/QZLJXd+3aU/Qxcl335ORkFXpsGDODGzsjjeuZrygWyW9EJAkogIichmehRBWq\nvcC/ZzRfAdyiqsfdPv/q2t8L7FHV46p6BDgMrBaRE4EuVd3n9vsGcGHUPhjVIdeTOVC3VXjXr1/H\nxMQhHnroa0xMHCoprmHFIQ0jnShrtm8CHgBeLyJ3A28FLinzvAuB/yYifwocBf5QVR8FTgJ+HNjv\nWdd2HHgm0P6MazdqSK510VesWFF3a7gHqcQ67evXr+O8886tq2QCw6gVeYVERAQ4BLwPOBsQ4JqA\nBVHOeeep6tkisgr4FnBqmcecZvPmzdPbAwMDDAwMVOrQRgD/yTxMMJphoK2EIBlGrRgdHWV0dLQi\nxyqY/isiT6jqmWWdRGQ+8F1VXebe3w9sVdX/x70/jCdUlwGo6i2u/QE8i2gCGFHVxa79YuBtqnpF\nyLm00DUZlaXYNN96Sws2DKP6tbYec1ZDOYh7+fwtcC6AiCwEYqr6b8B9wDoRiYnIAuB0YExVnwNe\nEJHVzkr6CHBvmX0yKkRfXx+rVq2KJAr1mBZsGEZ5RLFIDuEN6BPAr/EEQX3rouAJRHbhZWm9Cnge\nz8L4K7y04uV4gftrA9bJDcAG4BieG+1B1/5GYCeQAO5X1WtynM8skjqlkhMCDcOoLFWd2e7cUlmo\n6kQpJ6w2JiT1y759+zj//E/wwguPTrd1d6/koYe+xqpV5Rq9hmGUQ1VdW04weoB3u1dPvYqIUd9U\nakKgYRj1RZQSKdcAdwOvca+/FpGrq90xo/Gw+ReG0ZhEcW0dAN6sqr927zuAH0eNkcw05tqqHpXK\ntrKsLcOoP6qdtSXAK4H3r5CegWXUOZVYf6OS2VbFZHkZhlH/RLFIPg18FLjHNV0I7FTVuiycaBZJ\nOpUod27ZVobR+FQ72P4V4GPAr9zrY/UqIkaKqakpHnzwwYpU4bVqt4Zh5KNgrS0RORv4qao+5t53\ni8ibVPWRqvfOKAnfCpkzp4+jR3sJE4BiLIlcNbWKzbay2IhhNCZRYiR3AC8G3r/o2ow6JLgWyK9/\n/SPg3yg33bYS2VY2o90wGpcoMZLHVXV5RtsBy9qqT7In/Q0Bl9LRcTq//e0zNVmj3GIshlH/lBMj\niVJG/ucispGUFXIl8PNSTmZUn2w31GISiRh/8zdfYsWKFWUN3IWq3eYSGj/GcvRoeS42wzDqkyiu\nrU8Ab8FbG+QZ4E3A/6hmp4zSCXND3XXXIGvXrq3qoJ3PdWUz2g2jsSno2pptNLtry2cmA9tRXFd+\nAkBw3ZJSXWyGYVSeqrq2ROSLwJ/grWT4AN5I8SlV/etSTmjMDDO56FIU19V5553L3/7tboCyXWyG\nYdQXUVxba1X1/wPeBRzBKyn/mWp2yphdpFxXo8A+YDTNdeW7vT74wRu48ML1PPTQD9O+X4mZ94Zh\n1I4oQuJbLf8d+JaqvlDF/hizkL6+PjZs+H3gncDvAe9kw4bfo6+vLy0dOWxSpKUFG8bsJ0r67y14\nZVGOAqvxSsp/T1XfVP3uFY/FSGaefDGSI0eO5FyDpL+/39KCDaNOqHaJlOvxsrb+i6oeA/5/4L2B\nk59fyomNxiFfCZV8GVtWesUwGoMori1U9Veq+orb/rVbQ91na1V6Zswa+vv7OXr0nwiKxUsv/Xw6\nYyzXrPiZTAu2OIxhVI9IQlIAKynf4EQZhL3njAFgJTDg3nusX7+OiYlDPPTQ15iYODSd9luJ0itR\n+mZxGMOoMqpa1gt4rNxjVPLlXZJRLpOTkzo2NqaDg9s1mezVuXNXajLZq7t27cnad2xsTOfOXakw\nqTCmMKnd3St0bGws8rmGh4d1eHhYJycnI/dx1649Bfs2OTmpyWSvwk8UVOEnmkz26vj4uI6NjRV1\nPsNoZNzYWdq4W+oXNTVwm5A0GP4A3dV1pkKy4CCca7DOHKR9ccpsjyIImUQ9Z0rkdPqVTC7VeLy7\nqPMZRqNTVSEB4vnagL8p9eTVeJmQlEf6AD2scIazNLy/lkRigcbjPVmDsC8G3d0rNJns1cHB7Wmi\nkUssogpCJmECEWYFhR3fE8c73HVFO59hNDrVFpIsi6PerJCMvpV9QxuZXFaBT2qA3qPQq3C6wjz3\nfiTUQglaJmHuMP992PeiCkLYdUQVoKDItbV1K8QVVrrr21OUG84wGpWqCAlwIvBG4CCwAi+K6kVS\n4VDkE8AO4HngQMhn1wK/BXoDbTcAh9151wbaV+Kl9zwJ3JrnfFW5yY1A1JhCItHjxCP4FN+usVin\nJpNn5h30wwb4eLxbu7pWhH5vfHxc4/FuJ1LRLZLg9fhWUD4XlR+H8a4teF3zNJHoMYvEaHqqJSQf\nBUaA/3Q//dd9wPsinwDOAZZnCglwMl7trn/2hQRYDOzHm03fDzxFatLkI8Aqt30/cEGO81XrPs9q\ninmC37LlZmeJpAb+jo5lOjQ0VPAYYRZGZ+dSjcd7sr7nWyqeOCU1kegvOmZRyMIKEtY3OE23bLk5\n8vkMo1Gptmvr/aUePHCM+SFC8i3gzAwhuR64LrDP9/HK1p8IjAfaLwbuyHGuyt7dBqEYF1I+0cll\nBfgD+vj4eOh3fdEIxlCyLZceHR8fz+pLpbKrSo3HGEYzUPWsLbw6W58FbvJfRZ0kQ0iA9wBfcdtB\nIfkq8KHAfn8BvM+52B4MtJ8D3JfjXJW/ww1AlEE0OGjncxtlDu5Bl1ki0aMXXbROE4menGITNTZS\nSjZXIYpxhxlGM1GOkEQpIz8ItANr3MD+AWCs0PfyHC8J3AhUrbTK5s2bp7cHBgYYGBio1qlmDf7k\nvw0b1qStCZK5Xkgs5s0237Hj9ulaWZlrmgRL1AeLMh49ehC4gm9961ESCeEzn/kAl19+2fS+maXt\n01dyTJ/Vnn5c7/MNG9Zw3nnnllWHa/36dZx33rkztlaLYdQro6OjjI6OVuZghZQGZ0kEfnYCPypG\nrQhYJMBS4Dm85Xr/GTiGV57+NXiuresD33uAlGvrYKDdXFslEuYqymet5HIt+e3Dw8OByYjFuY3y\nWQelZnMZhlEaVDlGMuZ+Pgy8DkgATxV1Ei9w/kSOz/4ZmOe2l+AF22PAAtKD7Q/jVR8WvGD723Mc\nrwq3uLEZGxvLyqrq6lqul19+RahrKdOVFYvNVbhbvZTa4gb+fEJl8QzDmDmqLSSfwysd/35nSfwL\n8MeRTwC7gF8CLwNPAx/L+PznZKf/PkV2+u8bgSfwUoNvy3O+atzjhiDXoD04uF0z54d478NntWcO\n8G1tnS6ttr2iA7/FMwxj5qi2kFwEdGlKVO4BVpZ6wmq/TEjCKTyzfKtzTS1zArIh1MLYuXNnqMtp\neHhYt2y5ueIDf6GsrUpmdRlGM1NtIfFjG+fgzSP578AjpZ6w2i8TkmzyuYnSYxF+0cUF6pVH6VVv\nouCYwkhOiyQYTyml+GJmX6MKw+DgdjfZ8cy6s1hM4IzZRrWFZL/7+QVcaq7fVo8vE5Js8gWuc9ei\nukdhnUJCvXpbSb3qqo2qGu5yqkSqbjHHSLnjznKCt7VuYijVSFs2jGpTbSH5HvA1F8voAeLAT0o9\nYbVfJiTZFApcZwrD2rXvcIP0aZqqsxVeV8u3RMoNjBdzjMnJyayZ8tCrnZ1La57VZUkCxmylHCGJ\nsrDVB4FhvJIk/wH0Ap+J8D2jTii0gFRw4alHH93Lj370CF6S3FPAKHAl8BwtLa+bXga3r6+PVatW\n0dfXV5Elc8OO0dLyOu6///6sRau8fRek7Qsnc+zY01VZXbEYbPlgoykpVYHq9YVZJDmJ4rcfHh7W\njo6z0txgnmXiubcGB7eHHrfcp3CveGPQytiqkNSurvCZ9WHuuLC+FXv95WIWiTFbodolUmbTy4Sk\ndHbt2hOaxuu5t/Kv3VFOqq7/3WRygXrFGxdpvnL1we90dS3XeLynoIjMZNzC0paN2YgJSRMKSebT\nda4Z61Ha/PbUk/TNTkyWuZ97pq2Trq7lunPnzpyxi2Kf+LOf4Ee0ra1DOzuXhyYHlHK+WlgJlrVl\nzDZMSJpMSDKfrq+66pqsp+2wJ/B8T+WeS+t3nOUxqdCj3iqCmUHtpHZ0LA1dBbEUiik7X+p5rNyK\nYRTGhKSJhCTsCT7MDZS5gFOutmCl3/TVED+nENdY7PUKSW1r891NW9NEpdw5HLmshcyy8+W4hyxu\nYRiFMSFpIiHJfroeU1iY9rTd0bHMWReptmRyqba3p+/nz0jPDlzHXazCsww2bfq8trV1KLwh7fue\n62us7IG50BonlRjwLW5hGPkpR0gKlpE36ov+/v6M8uu/Bn5BsBz7K6/8AtC0tqNHf463qnF62XaA\nWKzflWoHeC3QAvyYl17y9rvllrcRi53CsWP/kvZ9eAavHmffdIprKWXZc5V2zyw7Xw5WPt4wqocJ\nySwjbF2R//pfB3jwwbPxijP/C8eOwRVXfJwdO9Zw9Og84FfAXcAEcDZdXb/D8eNPs2PH7axYsSJD\nmL6DJybp8yBefvkp4NN4y9KchDfHZDPQR+ZaIqVeV77BfWpqqmwRqKQwGYYRoFRTpl5fNLhryye4\ntK0X+/BLuU8qjGg83q133nlnIIDuu70W6U033ZS2pG0q7fdV6pVEyUz/TWoisVghqfH46zUe79YN\nGz4+Y66iKKm7liVlGOWBxUiaT0h8hoeHNZE4RcFfT2SPerWnFmo83qNtbZ1ODMYVLlKIT0/y87Ou\nBge3ayzWHRCQPS7oflpWgD24rnq1Bu/gcbMnKuaeU2K1rQyjdExImlRIUtlWC9yAP6KZqxTGYnNV\nJOE+P8P93Kj+zPGOjqWuLXNhqkmFkzSZPDUrQF+JtNlcIhQUhVhsrra0JBVOdUF937I6TbdsuXm6\n2nCubDTDMKJjQtKEQpKd0rrVZVudkZWt5bVnVvftdttj6lXQzV4qt62tW9vaurLayikTr5q9wqIv\nCuGlTzo0s8ovzNPW1g5NJntdOZf0SZPFip25xeoP+53MPCYkTSgkYZPsksmF2tbWnTEQtzuLRQOv\nMxRe50RkPCAgKZdWW1u3Dg5ud66xec51Nk8hVtbckXSx8M93uiaTvbply80Z1zSpYfEa+HJIe+Ey\nLmH4otbRcZa5xUqk0oO+uSprgwlJEwpJoYl8qRLwn3cWyUhg0I27AXmZejPX36Qp11dC4QJNJHp0\neHjYDez+gleTCmcq7FR/oatiB4+UAGZbQIlET8Y13a3eJMmgCJ6l8Mch7adpR8fCyAOP7xbLFN5Y\nbK49BRdBpQd9mzxaO0xImlBIVHNPskuVO9nuBuvFTiBepRDXOXM6Nfsp/9Pqr4Tor+0RPlkx6cSk\nVxOJ/qLjJamBwo/JpESqu3tF2nK9nlstcy35do3HuzUWm5s12BRyuflPzr7YehM0T8sSpOHh4bJ+\nL81CNQZ9K2dTO0xImlRIVHMXZvQC0PM002XluYROyBo8vQHbD2Yv03i8e7p8ijdoZ2dwQTItjTgq\nqXTjuOvXSoV52tbWOR0r8a/JW063R7u6lk+7v4JlXaKmH6eqBa8IXMdk4B6lhMqEJBrVGPTNIqkd\nJiRNLCRhTE5O6uWXX+HcP9kupFSGl/9+nmsbnv7cL8ueEqU/dpZNatBIJBblrARciPHx8Sy3Ultb\nd1FVhcMqIA8NDenNN9+sQ0NDunfvXt22bZveeeedIZZVr7s3ezRV6TglZrnua6GKy1H6Xcp+lY5D\njI+P686dOyM/CATnLaWnZnen/S0VM+gXytwrdY5SZl+Dfa4EUf8eyzlWLTAhMSGZJvXkfaaGp/Wq\nsy7i6gXQe91gepomEqdmre0xPDzsXEB+UP4e9WIkn9ZcC09FIexp1k/rLfW658xJamqJ4HaFmLO+\n4iEurFSdMEhoMnmqJhI9Oa8ju+Lyxryxgaixgyj7VToOcdVV17j7tFAhqVddtTHv/qn1Yk5VSGoy\neabGYnO1ra1Tk0nv7yyR6C+qb4WuqdQBNtVXr19tbae4Pi+oyL3L1e9Sfkf1llRgQtKkQhL8Z8ue\nU+FnPIXNVO90g6s/E96zQq6//sbpf9zx8XH9yEcucVaDXxXYdwv581E+VLL7ITzVd54mEj1FDx6T\nk5PuyTgznjJPvWSCe0I+SyosVT8TbWhoKK9lER4rGgm9/qjumSj7VdrVMz4+HnovclkmqfOPaLZl\nm8qUC05ULUS13Ffhv6dg30tLECnU7/Hx8aKvpx5deOUISZQ128tCRHaIyPMiciDQ9kUROSgij4vI\nd0SkO/DZDSJy2H2+NtC+UkQOiMiTInJrtftd7+zePcT8+Ys4//xPcNJJp3HyyWfwvvd9lpdeehn4\nHrAfeD2wABBgAFjpfh4DFPg4Xu2sNcBmbrttEICrr/4DlixZyTe+8U2OHfsRcBj4G+AQ3lruT7qf\n9wAHKWVd8r6+Pm688Vrgza5fa4A7iMUWFL2++ZEjRxDpAU4mfR33fuA1eLXBTnDneoP7eRte/bGf\nAfM5evRozjpcYeuwe+fqmH4fvP6o67ZH2a/Sa8CPjY3h/V2kX4vXnk3q/B149zPz/h4BlhGPL+DF\nF1+M1IdqrWsf/nua7/ru/SznPLn6PTY2VvT1VOse1IxSFSjqCzgHWA4cCLSdB8xx27cAX3DbS/BG\nwFa8v9KnAHGfPQKsctv3AxfkOF+lhbruSH+aCQaMU/MyvJ/tCl2amnDop/AuV2/Rqrh6E/62qx8o\nHRoa0nCX2JhmTnb03u8s+WkqFX9JWUalHie/RTLitrsV7tTsdOj8SQNmkRS2SIqNjZhF0lgWyUy5\nm+YHhSTjswuBv3Lb1wPXBT77PvAm4ERgPNB+MXBHjuNV8NbWJ+nxhTFNpdEGxeUO9WIE/pyR4D9X\ntxtgF6pX7LFD4Q5NJHp027ZtTiAyg/QjoQNQR8eisvy7pQRWw/znXozELwUTjJGc6NriCtdoeg0x\n7zM/RpBS6xF0AAAauUlEQVTPL58qR+PPz9k4fazMfu/atcdN5GxXOE1jsbkFYyT5rr/Sa6lcddVG\nDbooo8ZIEol+9eINS6djJKX2qVrrw6RiJF7pn7Y2b2G2YmM4xfa7lOuptzVyZruQ3Aesd9tfBT4U\n+OwvgPcBbwQeDLSfA9yX43gVvLX1SbhFcoeCP3fEj2u065w5Sb3ggndoS0tnxgAbLK2SVDhdY7G5\numnT5wOCkVm8cen0vpDUSy+9rCIZJ8UEVvMFKP2srRtvvNEtxHWPpubGhFc1bmvryLkMcWa/0pcj\nVoVJ7ehYmJYunP27ubtg3Ge2Zm2V26dqZSxZ1lZpzFohAf4I+E7gfUWEZNOmTdOvkZGRyt3pOiL4\nNJPKVuoPsRrmuUHUD64Pq+fq0hCrwwuatra+OvBkP1fhZk25B3YqtOl3v/vd6b6U+s9Q7PeiugPG\nxsa0vX2ZprvhFmr2bPgzFP44ZEa9N8M9kejJEpZC5881t2J4eDh0vk+9DCKNjt3rbEZGRtLGylkp\nJMAlwD8A8UBbpmvrgYBr62CgvaldWz5+plZqcBvW7OVwV6jnwnm9E46gePgFG1P7d3Utd/GGL2pq\nHkpw4O1Om9FeagpjKWuMpA/SXsyns3PpdF/8+7Fxo5/eGhTUuSFtSYVx7ehY6Io/Bu/baerNnUmP\nARRyR4SJTVtbV9a11lvqZyNj9zoas0FI+oEnAu/fDvwUeFXGfn6wPYaXbhQMtj8MrMZLQbofeHuO\nc1X49tY3qcF1j3pxj7BUX98dNc/t57uzsi2YZLLXFWvsCjmWl0rrD6qlBgyjfC+Xq8n73lYnhmcp\nJPVLX/qybtlycyBV2U9N7lVvvkhSW1s7dO3ad2jQNefFOe7R1tb2rDVPgqVgYE/ajO1CT7dBsUkk\nerLKuYRZQH7Q1p6aK0s9BrXrlboWEmAX8EvgZeBp4GN4+aQTwGPudXtg/xucgBwE1gba3wg84b57\nW57zVfwG1zOpzKdg5la3puIa2bWqvKfzmEJM58x5lfoB1OCA7R3zKjeQLlFvdcT0gGWpJTIKfS/f\nP//g4PYclkVmW696kyjHtL19yXQcY3x8XC+//AqNx7u1tfUE971TFdq0paVTu7qWa3YpmOLnt/hi\nkyp8mbrWMAsokVig8XiPPTVXGKvdFZ26FpKZfjWTkPiD1bvffaGmz9yeVK9MfItmz+g+Uz0X2Ar1\nYiZe3KOlJaF79+5V1XAXUkdHdjmUalkk+f75x8bGXL2s4DUtVS/RINiWmrnuVzIO9mvv3r0BwfCt\nm4SuW7fOVQUIHiv6jPtMayXsWlMWiV8lYGeWENpTc2UwiyQ6JiRNKCTppVAS6rmdMp/S23I8vX9O\nU7WmFrjvnqGx2FwdHNxe1KqDpaYw5vtevn/+3HMFMq8/ofBabW3t0FhsrnZ1nanxePf07P2dO3c6\nSyT9WK2tHSXXjypUPiN4reef77vZvBTcOXNebU/NVaLe0mzrFROSJhOS9MF0zD19+2u1r1DPfXWz\nprt9lmlqhcGkemnCI6FC09WVqqXU2blU4/HutPpbYf2pdNZWvn/+zHkQXjwkmKrszZ2JxZZoerzE\nszpaWhIuzTmu6ckGXgHHePwNmm/uQVi/801WGxsb0717906n2+aaFOhZKMWJlxENy9oqjAlJkwlJ\ntuspWF/rbvfez7Y6yVkd6Wuee+1xzU6JTbmE2tq6NRbrni7MODi4fUb/GfMP2COamiOS1M7OpZpI\n9OjGjddkBbdTs9CDM/+T+pa3nBMY0LNLyofVj8pldYS54/y4R7DYYTLZ6yozL8y472doa2vSnpqN\nmmFC0mRCkv30+zlNZRllBorDFofqVc+tc6dmZ2b5Li9fcO7OslZqOdCFDdhdXcun4zdbttwcIo5n\nqBcXyp4zs2nT57WtrVvj8VOzvpeZAJDP5Zf9OxkJCFjmecPKuSQ1Hu+eXm/FMGYaE5ImExLVbNfP\n+vW/5yyM1zhxWOFEZK7Ca93AtURT7i3/qT7m9gnLVmrX9HkkKWullHTVSrgXCsVP0jPYUoO0N/M/\nW4Cuv/5GjcW6p62GsOOml91oV8+ySZ/H4otYItGj3d0rNB7vVq+U+VjWebu7V+hFF63T7FTk6rm0\nzLVj96AQJiRNKCSq2f8Yg4PbNRbrDAycmU/I8cDAdYImk966GolEj3Z0LNSWlnZta+vWzs6zNB7v\ncfWiwq2VYtNVKzkpLFf8ZGxszKXVZsZQwsvpe/NOEoE2L37kr8bop0J7c2qCJfc7NTiP5dJLL0u7\nti1bbg4U8hvJskh8sRgaGtJE4hT10pRTIlPpILtNyLN7EAUTkiYVkjAmJyfdzO42za7We5rCJQpD\n2t5+6vTcCv9p2ivMt1ghronEKdrW1ukynjKtlZGcT++5+lSpFMxgHaXh4eG0tN50i2REgzGU9vYz\nFG5QL360XL06ZH6wPVUZuaNjaVqa83XX3eAEaKUThO1ZguSJ0R2aaxZ8sNhhcBAr575Efbq29Fe7\nB1ExIWliIckcUPzBKx5flDXYe1V+Y+pPMAwupxueUjsyPQdjcHD7tBUQj3drIrFUM901uZ6kKzUp\nLPhUGYvN1dbWDm1vX6ixWCqrLCxGkki8wcUlUgkJsVi3dnQs1lSp/TMV5umcOclpN9nw8LDGYt0Z\n92WuehUB/OP7S/WepflmwedyA5ZTNTbK07VNyLN7EBUTkiYVksHB7RqP96RlVaXW99jrRGOepuIl\nscCAt3V6jfRUVdtxTWV3rVAYCx0Uv/SlL2eJVCw2tyIWSa4n7exj+GnMK9Rf5XBwcHvOcwWF0H/f\n0tLujpG6J37JlWSy17nJ/JiIPwj56cUj6gXwMzPESp8FH9USKebp2p7G7R5ExYSkCYUkrFRIS0uH\nptwwfpB90g14mU/WvQr9+u53/1/un8wPyJ/pBuZO9RcCGhoamnYhTU4GF5HqmR7I29o68/5jZtaf\nCstOyveknZ3ynJkC3K6xWGfeworBAXtyclJbWrpC7slJ2tqa2T5Pg0sSv/a1p2gqUJ4tNKWuO++T\nT1hKebq2CXl2D6JgQtJkQpIazIOT6fw12sPmT/iTFjXwWqaehRKeogrt2traqSJ+kNpbr8TLNmpX\nbx5Ej3oTHye1o2NZQVdBMBaTKRaFnhqzJ2H2uz77sYsTNJk8NXJhxbGxMe3sXJ5xT+Y7ayNzjsdp\nmkyeofF4j/7hH342S8CDQuNbeaVSyG1VTlmaZs9YsnuQHxOSJhMSr96UX5nWH1Du1uz5E74bZkHI\n4JfU1Ezw7BTVWGyxQqtmu27Sl5gtZgnTfINglCdtf5Dt6AiL/3jzMKIOEuPj4xkVf0fyimos1qmD\ng9v1pptu0vAkhoUaxTKLfn9yL4pVi6drG4QbHxOSJhOS1IDjzwdZpl7mUPrg6rlo2tRbV+PLmr7a\n4ec0NZs7bPBMqmexZM/A9oTHf3+6trZ2RBrM8olF1Cdtv05WZrC/GJdSal7IAidAS7S1tUMTCX8t\nF7/czOlOSPdM9+crX/lKiIj1quc+nCzoZormtvLPv1KhPfS6ZnJgt9TZ5sCEpMmERNXPTmpXr/Jt\nt3ppqa93A19wTfJu9eIdfnHHmKYvfuVnHflrW7/BPan7AeUwgRmZfh9WRiQXhcQi6pN2uWmzqYSE\nSYURjce7de/evSEz0+ManOMBp7mkBL8Ypj8nZ2ukfkRxW4VNqJypwHAxNcTMMmk8TEiaUEi8wn8J\nTZ8o561B3traodnup23q1dfKdIn5ZVSGpkvFDw0NacpNlno6b23t0quu2liWWyVTLDLrd0V90o4S\nUA8jJcB+bCWVrhs8piemMc0W0b3qZal16rXXXqubNn2+ouIXlr48E6mqxdQQs9TZxsSEpAmFZGxs\nzLlm/Iq/vdrWdpJee+21blKhBl4r1Jswl3BPu75LbKF76n6dBv37k5OTGYUPR7SlpWPa8hgfH5+u\nZFsK/mDvp+SW6jLJNYemmEB1Zrquf8xt27apl8mWur/e+51Zg2kU8Ys6IHtWycxaJPlEziyS5sGE\npAmFJPUPPqJezMIr3OjVgwqrmZXUOXMSbu5Eu3our/RS7P5cED+7KpGYpx0dy9IG5Ur5yys9QEU5\nXthgDv16+eVXZJ03Verdv78j6q/xnjnQVnKG+a5de1xpmnaF0zQWm1v1mEQhkbPU2ebAhKQJhUQ1\n9Q/e2emLR6YbZqmzVF6r27Ztmx747rzzztD9OzoWpaXnZs73qOTgX2mXSZTj5ZrU6E/ozBwgM9c9\nmTMnkTaYFiuqu3btma5rlkj0FLCYcmdtVZoov1fL2mp8TEiaVEhUvX9wzw0Tlvq7TcNSc73VAbOz\nsdraOvKujFjJwX+mLJLM0iTpKcR+QkHu8wfdeJkTGoudYZ6y8s4KFZ5axiNKtTpMYBoHE5ImFhJV\n1eHhYc2ejNiu7e2nhg4KuVbo27jxmrwDWaUH/0q7TDKPd9FF60ItBq9K8lwnpl7AvdhBu5iguG+J\nZP6Owp76axmPKFYULC24sTAhaXIhmZycdH51v66WFzjPrIwbHCQy3TaXXnpZpIGs0oN/pZ9o/Sd/\nb+Z/9sCdKu+eXaAy16Cd2cd8abqZFlDqnt6tYeuSZArPbIlH1Fr0jMpjQtLkQqKa3/+e68kxLPsq\nykBWz+6MQgP3zp07QwLuZ2g83h16rWH3Lnvi4AqFdr3ooovz7OvXByu9cGU9YWnBjYcJiQmJqlZu\nQtlMDWTVOE+hgTvMIsk1qTJf3CUzKO6tiFhoX3/N+NPq2tqIglkkjUddCwmwA3geOBBomwc8CPwM\nGAbmBj67ATgMHATWBtpXAgeAJ4Fb85yvwrd3dlOvT47V8q+nD3DhA3dU91G+e5d5jC1bbo60b67K\nx7OR2eKGM6JR70JyDrA8Q0i2Ap9129cBt7jtJcB+oBXoB54CxH32CLDKbd8PXJDjfJW+v7Oaenxy\nrHafogzcUayhQv0sJotrNrirSqFRr6sZqWsh8frH/AwhOQSc4LZPBA657euB6wL7fR94k9tnPNB+\nMXBHjnNV9OY2AvX25DgTVlKlBrhi7l293WfDKIZyhMR/2q8qIjIf+K6qLnPvf6WqvYHPf6WqvSLy\nVeDHqrrLtf8FnvUxAXxBVde69nPwLJr3hJxLZ+KaZhtTU1McOXKE/v5++vr6at6X+fMXcfToCLAM\nOEAyuYaJiUM171sYxdy7errPhlEMIoKqSinfba10Z0qkoiP/5s2bp7cHBgYYGBio5OFnJX19fXUz\nsPX19bFjx+1s2LCGtrb5HDs2wY4dt9dN/zLJvHf5xKKe7rNh5GN0dJTR0dGKHKtWFslBYEBVnxeR\nE4ERVV0sItfjmVdb3X4PAJvwLJIRVV3s2i8G3qaqV4ScyyySWcJsfHrfvXuIDRuuJBbr5ze/OcKO\nHbezfv26WnfLMMqmHItkpoSkH09IznTvtwK/UtWtInIdME9VrxeRJcDdeHGRk4AfAGeoqorIw8BG\nYB/wv4BtqvpAyLlMSIySOXjwIGNjY6xevZrFixenfTbbXHKGUQzlCMmcSncmExHZBfxvYKGIPC0i\nHwNuAc4XkZ8Bv+veo6rjwDeBcbzYyJUBVfgkXirxk8DhMBExojE1NcW+ffuYmpqqdVfqiquv/gOW\nLHkjl1zypyxZ8kauvvoaIHW/9u/fTyzWjyciAMtoa5vPkSNHatRjw6gPZsQimUnMIsmPuWbCOXjw\nIEuWvBF4GN/agLP50pf+hJtuunn6fh0//huOHfsHzCIxGo26d23NJCYkuTHXTG6+/vWvc8klf4o3\nR9bnVGKxX/Gb3/w9/v2Kxf4bIkpr64m88sokd901aEJsNAR17doy6oevfe1Ojh7txVwz2axevRr4\nBZ4lgvv5S1paTiF4v+bM6cX7t0kiYv8+hgFmkTQNU1NTnHLKQl56SYBRclkkszGTqlJcffU1/Pmf\n3wmcDDyDyG9RbQF+jHe/RoF3EnR/mUVnNApmkRgFOXLkCPH4qcAdwBq80mVv5sYbr50eBHfvHmL+\n/EWcf/4nmD9/Ebt3D9WwxzPPV796G+Pjj7Jt29XE422ojgF3AQPA6bS0vAsvmdAsOsMIYhZJk5Ae\nH3kt8AMSiU/y9NNP0tfXZ/GTAPv27eP88z/BCy886lqmSCbP5vjxSY4dayOfRWcYsxWzSIyC+LPJ\nk8k1dHdfQDJ5NXfdNTg9AB45csRSWx39/V6GVipe8i/89rf/SiJxBvksOsNoVkxImoj169cxMXGI\nhx76GhMTh9KyjbIHzwMcOzZBf39/DXpae2688VoSibfR3b2SZHINt932Pzl+fAJYjFdz9A9JJGJc\nfvllNe6pYdSeeqm1ZcwQuWpBzbb6V9UiOM9GZA6f+cwHuPzyy+jr66O7uzvj/gw23f0xjDAsRmKk\n0cxZW1HiRM18f4zGphGq/xp1QjNXr/XjREePZseJ/HvSzPfHMHJhMRKjIM1Sm8viRIZRGiYkRl6a\naW5JemabF2RvxjiRYRSLxUiMnDTr3BKLgxjNiMVIjKoQJWbQiFgcxDCKw1xbRk4sZmAYRhRMSIyc\nWMzAMIwoWIzEKIjFDAyj8bGFrQKYkBiGYRSPFW00DMMwaoYJiWEYhlEWJiSGYRhGWZiQGIZhGGVR\nUyERkU+JyP8rIgdE5G4RiYnIPBF5UER+JiLDIjI3sP8NInJYRA6KyNpa9t0wDMPwqJmQiMjrgKuB\nlaq6DG+W/XrgeuAhVf0d4IfADW7/JcAH8VYWegdwu4iUlGEwmxkdHa11F6qKXd/spZGvDRr/+sqh\n1q6tFqBDRFqBJPAs8F7g6+7zrwMXuu33AHtU9biqHgEOA6tntru1p9H/mO36Zi+NfG3Q+NdXDjUT\nElX9JfBl4Gk8AXlBVR8CTlDV590+zwGvcV85CfhF4BDPujbDMAyjhtTStdWDZ33MB16HZ5l8GMic\nTWizCw3DMOqYms1sF5EPABeo6mXu/e8DZwPnAgOq+ryInAiMqOpiEbkeUFXd6vZ/ANikqo9kHNeE\nxzAMowRmYxn5p4GzRSQBvAz8LrAPeBG4BNgKfBS41+1/H3C3iPwZnkvrdGAs86Cl3gjDMAyjNGom\nJKo6JiLfBvYDx9zP7UAX8E0RuRSYwMvUQlXHReSbwLjb/0orqmUYhlF7Gq5oo2EYhjGz1Dr9t2zy\nTWAM7HOyiPxQRH4qIk+IyMZa9LUYROTtInJIRJ4Ukety7LPNTdB8XESWz3QfS6XQtYnIh0TkJ+61\nV0TOrEU/SyXK787tt0pEjonI+2ayf+US8W9zQET2uwnHIzPdx3KI8PfZLSL3uf+7J0Tkkhp0syRE\nZIeIPC8iB/LsU/y4oqqz+oUXS/ms274OuCVknxOB5W67E/gZsKjWfc9zTXOAp/Ay2tqAxzP7izcp\n83+57TcBD9e63xW8trOBuW777bPl2qJeX2C/vwO+B7yv1v2u8O9vLvBT4CT3/tW17neFr+8G4Av+\ntQH/BrTWuu8Rr+8cYDlwIMfnJY0rs94iIfcExmlU9TlVfdxtvwgcpL7noKwGDqvqhKoeA/bgXWeQ\n9wLfAFAvc22uiJwws90siYLXpqoPq+oL7u3D1PfvKpMovzvwqjp8G5icyc5VgCjX9yHgO6r6LICq\n/usM97Ecolyf4sVycT//TVWPz2AfS0ZV9wL/nmeXksaVRhCS12j4BMZQRKQfT5EfybdfjcmcfPkM\n2YPpbJ2gGeXagnwc+H5Ve1RZCl6fKw90oareAcy2LMMov7+FQK+IjIjIPpfaP1uIcn1/DiwRkV8C\nPwGumaG+zQQljSu1TP+NjIj8AAiqouA9FfzfIbvnzB4QkU68p8BrnGVi1DEisgb4GJ453kjciueG\n9ZltYlKIVmAl3pywDuDHIvJjVX2qtt2qGBcA+1X1XBE5DfiBiCxr5jFlVgiJqp6f6zMXODpBUxMY\nQ10Frp7Xt4G/UtV7w/apI54FTgm8P9m1Ze7z+gL71CNRrg0RWYaXDv52Vc1nitcbUa7vvwB7XNHR\nVwPvEJFjqnrfDPWxHKJc3zPAv6rqS8BLIvL3wFl4sYd6J8r1fQz4AoCq/pOI/DOwCPjHGelhdSlp\nXGkE19Z9eBMYIX0CYyZ3AeOqettMdKpM9gGni8h8EYkBF+NdZ5D7gI8AiMjZwH/4Lr46p+C1icgp\nwHeA31fVf6pBH8uh4PWp6qnutQDv4ebKWSIiEO1v817gHBFpEZF2vKDtwRnuZ6lEub4J4DwAFz9Y\nCPx8RntZHkJuK7ikcWVWWCQF2ErIBEYReS1wp6q+S0TeCnwYeEJE9uO5v25U1Qdq1el8qOorInIV\n8CCe2O9Q1YMicrn3sW5X1ftF5J0i8hTwa7ynpLonyrUBnwN6SS0VcExVZ0Wl54jXl/aVGe9kGUT8\n2zwkIsPAAeAVYLuqjtew25GJ+Pv7E2BnIIX2s6r6qxp1uShEZBcwALxKRJ4GNgExyhxXbEKiYRiG\nURaN4NoyDMMwaogJiWEYhlEWJiSGYRhGWZiQGIZhGGVhQmIYhmGUhQmJYRiGURYmJIYxSxCRllr3\nwTDCMCExjCIQkXtcIcInROTjru0/ReQrbu2NH4jIq/J8f0REbnVrdRwQkVWuvd2tFfGwiDwqIu92\n7R8VkXtF5O+Ah2bkIg2jSExIDKM4Pqaqq4BVwDUi0otXmHBMVZcCfw9sLnCMpKquAD6JV7oH4I+A\nv1PVs/GKHf5PEUm6z1bgrVmyprKXYhiVoRFKpBjGTPIHIuKveXMycAZeGZBvura/xqsTlo/dAKr6\nIxHpEpFuYC3wbhH5jNsnRqp44A8C67MYRt1hQmIYERGRt+FZC29S1ZfdErKJkF0L1R3K/Fzxiui9\nX1UPZ5zzbLyaR4ZRt5hryzCiMxf4dycii/CWBAZoAT7gtj8M7C1wnHUAInIO8IKq/icwDGz0d4i8\nVrZh1AFmkRhGdB4APiEiPwV+Bvxv1/5rYLWIfA54HicUeXhJRB7D+//zq6tuAW51FWXn4JUlf0+F\n+28YVcGq/xpGmYjIf6pqV+E9vawt4FpVfazK3TKMGcNcW4ZRPsU8jdmTm9FwmGvLMMpEVbsz20Tk\nz4G3kgqkK3Cbqp47w90zjKpjri3DMAyjLMy1ZRiGYZSFCYlhGIZRFiYkhmEYRlmYkBiGYRhlYUJi\nGIZhlIUJiWEYhlEW/wdu8ayjgCEudgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "combined[\"ap_per\"] = combined[\"AP Test Takers \"] / combined[\"total_enrollment\"]\n", "\n", "combined.plot.scatter(x='ap_per', y='sat_score')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It looks like there is a relationship between the percentage of students in a school who take the AP exam, and their average SAT scores. It's not an extremely strong correlation, though." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 1 }