{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Analyzing Used Car Listings on eBay Kleinanzeigen" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will be working on a dataset of used cars from *eBay Kleinanzeigen*, a [classifieds](https://en.wikipedia.org/wiki/Classified_advertising) section of the German eBay website.\n", "\n", "The dataset was originally scraped and uploaded to [Kaggle](https://www.kaggle.com/orgesleka/used-cars-database/data). The version of the dataset we are working with is a sample of 50,000 data points that was prepared by [Dataquest](https://www.dataquest.io) including simulating a less-cleaned version of the data.\n", "\n", "The data dictionary provided with data is as follows:\n", "\n", "- `dateCrawled` - When this ad was first crawled. All field-values are taken from this date.\n", "- `name` - Name of the car.\n", "- `seller` - Whether the seller is private or a dealer.\n", "- `offerType` - The type of listing\n", "- `price` - The price on the ad to sell the car.\n", "- `abtest` - Whether the listing is included in an A/B test.\n", "- `vehicleType` - The vehicle Type.\n", "- `yearOfRegistration` - The year in which which year the car was first registered.\n", "- `gearbox` - The transmission type.\n", "- `powerPS` - The power of the car in PS.\n", "- `model` - The car model name.\n", "- `kilometer` - How many kilometers the car has driven.\n", "- `monthOfRegistration` - The month in which which year the car was first registered.\n", "- `fuelType` - What type of fuel the car uses.\n", "- `brand` - The brand of the car.\n", "- `notRepairedDamage` - If the car has a damage which is not yet repaired.\n", "- `dateCreated` - The date on which the eBay listing was created.\n", "- `nrOfPictures` - The number of pictures in the ad.\n", "- `postalCode` - The postal code for the location of the vehicle.\n", "- `lastSeenOnline` - When the crawler saw this ad last online.\n", "\n", "\n", "The aim of this project is to clean the data and analyze the included used car listings." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 50000 entries, 0 to 49999\n", "Data columns (total 20 columns):\n", "dateCrawled 50000 non-null object\n", "name 50000 non-null object\n", "seller 50000 non-null object\n", "offerType 50000 non-null object\n", "price 50000 non-null object\n", "abtest 50000 non-null object\n", "vehicleType 44905 non-null object\n", "yearOfRegistration 50000 non-null int64\n", "gearbox 47320 non-null object\n", "powerPS 50000 non-null int64\n", "model 47242 non-null object\n", "odometer 50000 non-null object\n", "monthOfRegistration 50000 non-null int64\n", "fuelType 45518 non-null object\n", "brand 50000 non-null object\n", "notRepairedDamage 40171 non-null object\n", "dateCreated 50000 non-null object\n", "nrOfPictures 50000 non-null int64\n", "postalCode 50000 non-null int64\n", "lastSeen 50000 non-null object\n", "dtypes: int64(5), object(15)\n", "memory usage: 7.6+ MB\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
dateCrawlednamesellerofferTypepriceabtestvehicleTypeyearOfRegistrationgearboxpowerPSmodelodometermonthOfRegistrationfuelTypebrandnotRepairedDamagedateCreatednrOfPicturespostalCodelastSeen
02016-03-26 17:47:46Peugeot_807_160_NAVTECH_ON_BOARDprivatAngebot$5,000controlbus2004manuell158andere150,000km3lpgpeugeotnein2016-03-26 00:00:000795882016-04-06 06:45:54
12016-04-04 13:38:56BMW_740i_4_4_Liter_HAMANN_UMBAU_Mega_OptikprivatAngebot$8,500controllimousine1997automatik2867er150,000km6benzinbmwnein2016-04-04 00:00:000710342016-04-06 14:45:08
22016-03-26 18:57:24Volkswagen_Golf_1.6_UnitedprivatAngebot$8,990testlimousine2009manuell102golf70,000km7benzinvolkswagennein2016-03-26 00:00:000353942016-04-06 20:15:37
32016-03-12 16:58:10Smart_smart_fortwo_coupe_softouch/F1/Klima/Pan...privatAngebot$4,350controlkleinwagen2007automatik71fortwo70,000km6benzinsmartnein2016-03-12 00:00:000337292016-03-15 03:16:28
42016-04-01 14:38:50Ford_Focus_1_6_Benzin_TÜV_neu_ist_sehr_gepfleg...privatAngebot$1,350testkombi2003manuell0focus150,000km7benzinfordnein2016-04-01 00:00:000392182016-04-01 14:38:50
\n", "
" ], "text/plain": [ " dateCrawled name \\\n", "0 2016-03-26 17:47:46 Peugeot_807_160_NAVTECH_ON_BOARD \n", "1 2016-04-04 13:38:56 BMW_740i_4_4_Liter_HAMANN_UMBAU_Mega_Optik \n", "2 2016-03-26 18:57:24 Volkswagen_Golf_1.6_United \n", "3 2016-03-12 16:58:10 Smart_smart_fortwo_coupe_softouch/F1/Klima/Pan... \n", "4 2016-04-01 14:38:50 Ford_Focus_1_6_Benzin_TÜV_neu_ist_sehr_gepfleg... \n", "\n", " seller offerType price abtest vehicleType yearOfRegistration \\\n", "0 privat Angebot $5,000 control bus 2004 \n", "1 privat Angebot $8,500 control limousine 1997 \n", "2 privat Angebot $8,990 test limousine 2009 \n", "3 privat Angebot $4,350 control kleinwagen 2007 \n", "4 privat Angebot $1,350 test kombi 2003 \n", "\n", " gearbox powerPS model odometer monthOfRegistration fuelType \\\n", "0 manuell 158 andere 150,000km 3 lpg \n", "1 automatik 286 7er 150,000km 6 benzin \n", "2 manuell 102 golf 70,000km 7 benzin \n", "3 automatik 71 fortwo 70,000km 6 benzin \n", "4 manuell 0 focus 150,000km 7 benzin \n", "\n", " brand notRepairedDamage dateCreated nrOfPictures \\\n", "0 peugeot nein 2016-03-26 00:00:00 0 \n", "1 bmw nein 2016-04-04 00:00:00 0 \n", "2 volkswagen nein 2016-03-26 00:00:00 0 \n", "3 smart nein 2016-03-12 00:00:00 0 \n", "4 ford nein 2016-04-01 00:00:00 0 \n", "\n", " postalCode lastSeen \n", "0 79588 2016-04-06 06:45:54 \n", "1 71034 2016-04-06 14:45:08 \n", "2 35394 2016-04-06 20:15:37 \n", "3 33729 2016-03-15 03:16:28 \n", "4 39218 2016-04-01 14:38:50 " ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "autos = pd.read_csv('autos.csv', encoding='Latin-1')\n", "autos.info()\n", "autos.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Our dataset contains 20 columns, most of which are stored as strings. There are a few columns with null values, but no columns have more than ~20% null values. There are some columns that contain dates stored as strings.\n", "\n", "We'll start by cleaning the column names to make the data easier to work with." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Clean Columns" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['dateCrawled', 'name', 'seller', 'offerType', 'price', 'abtest',\n", " 'vehicleType', 'yearOfRegistration', 'gearbox', 'powerPS', 'model',\n", " 'odometer', 'monthOfRegistration', 'fuelType', 'brand',\n", " 'notRepairedDamage', 'dateCreated', 'nrOfPictures', 'postalCode',\n", " 'lastSeen'],\n", " dtype='object')" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "autos.columns" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We'll make a few changes here:\n", "\n", "- Change the columns from camelcase to snakecase.\n", "- Change a few wordings to more accurately describe the columns." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
date_crawlednameselleroffer_typepriceab_testvehicle_typeregistration_yeargearboxpower_psmodelodometerregistration_monthfuel_typebrandunrepaired_damagead_creatednum_photospostal_codelast_seen
02016-03-26 17:47:46Peugeot_807_160_NAVTECH_ON_BOARDprivatAngebot$5,000controlbus2004manuell158andere150,000km3lpgpeugeotnein2016-03-26 00:00:000795882016-04-06 06:45:54
12016-04-04 13:38:56BMW_740i_4_4_Liter_HAMANN_UMBAU_Mega_OptikprivatAngebot$8,500controllimousine1997automatik2867er150,000km6benzinbmwnein2016-04-04 00:00:000710342016-04-06 14:45:08
22016-03-26 18:57:24Volkswagen_Golf_1.6_UnitedprivatAngebot$8,990testlimousine2009manuell102golf70,000km7benzinvolkswagennein2016-03-26 00:00:000353942016-04-06 20:15:37
32016-03-12 16:58:10Smart_smart_fortwo_coupe_softouch/F1/Klima/Pan...privatAngebot$4,350controlkleinwagen2007automatik71fortwo70,000km6benzinsmartnein2016-03-12 00:00:000337292016-03-15 03:16:28
42016-04-01 14:38:50Ford_Focus_1_6_Benzin_TÜV_neu_ist_sehr_gepfleg...privatAngebot$1,350testkombi2003manuell0focus150,000km7benzinfordnein2016-04-01 00:00:000392182016-04-01 14:38:50
\n", "
" ], "text/plain": [ " date_crawled name \\\n", "0 2016-03-26 17:47:46 Peugeot_807_160_NAVTECH_ON_BOARD \n", "1 2016-04-04 13:38:56 BMW_740i_4_4_Liter_HAMANN_UMBAU_Mega_Optik \n", "2 2016-03-26 18:57:24 Volkswagen_Golf_1.6_United \n", "3 2016-03-12 16:58:10 Smart_smart_fortwo_coupe_softouch/F1/Klima/Pan... \n", "4 2016-04-01 14:38:50 Ford_Focus_1_6_Benzin_TÜV_neu_ist_sehr_gepfleg... \n", "\n", " seller offer_type price ab_test vehicle_type registration_year \\\n", "0 privat Angebot $5,000 control bus 2004 \n", "1 privat Angebot $8,500 control limousine 1997 \n", "2 privat Angebot $8,990 test limousine 2009 \n", "3 privat Angebot $4,350 control kleinwagen 2007 \n", "4 privat Angebot $1,350 test kombi 2003 \n", "\n", " gearbox power_ps model odometer registration_month fuel_type \\\n", "0 manuell 158 andere 150,000km 3 lpg \n", "1 automatik 286 7er 150,000km 6 benzin \n", "2 manuell 102 golf 70,000km 7 benzin \n", "3 automatik 71 fortwo 70,000km 6 benzin \n", "4 manuell 0 focus 150,000km 7 benzin \n", "\n", " brand unrepaired_damage ad_created num_photos postal_code \\\n", "0 peugeot nein 2016-03-26 00:00:00 0 79588 \n", "1 bmw nein 2016-04-04 00:00:00 0 71034 \n", "2 volkswagen nein 2016-03-26 00:00:00 0 35394 \n", "3 smart nein 2016-03-12 00:00:00 0 33729 \n", "4 ford nein 2016-04-01 00:00:00 0 39218 \n", "\n", " last_seen \n", "0 2016-04-06 06:45:54 \n", "1 2016-04-06 14:45:08 \n", "2 2016-04-06 20:15:37 \n", "3 2016-03-15 03:16:28 \n", "4 2016-04-01 14:38:50 " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "autos.columns = ['date_crawled', 'name', 'seller', 'offer_type', 'price', 'ab_test',\n", " 'vehicle_type', 'registration_year', 'gearbox', 'power_ps', 'model',\n", " 'odometer', 'registration_month', 'fuel_type', 'brand',\n", " 'unrepaired_damage', 'ad_created', 'num_photos', 'postal_code',\n", " 'last_seen']\n", "autos.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Initial Data Exploration and Cleaning" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We'll start by exploring the data to find obvious areas where we can clean the data." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
date_crawlednameselleroffer_typepriceab_testvehicle_typeregistration_yeargearboxpower_psmodelodometerregistration_monthfuel_typebrandunrepaired_damagead_creatednum_photospostal_codelast_seen
count5000050000500005000050000500004490550000.0000004732050000.000000472425000050000.0000004551850000401715000050000.050000.00000050000
unique482133875422235728NaN2NaN24513NaN740276NaNNaN39481
top2016-03-09 11:54:38Ford_FiestaprivatAngebot$0testlimousineNaNmanuellNaNgolf150,000kmNaNbenzinvolkswagennein2016-04-03 00:00:00NaNNaN2016-04-07 06:17:27
freq378499994999914212575612859NaN36993NaN402432424NaN3010710687352321946NaNNaN8
meanNaNNaNNaNNaNNaNNaNNaN2005.073280NaN116.355920NaNNaN5.723360NaNNaNNaNNaN0.050813.627300NaN
stdNaNNaNNaNNaNNaNNaNNaN105.712813NaN209.216627NaNNaN3.711984NaNNaNNaNNaN0.025779.747957NaN
minNaNNaNNaNNaNNaNNaNNaN1000.000000NaN0.000000NaNNaN0.000000NaNNaNNaNNaN0.01067.000000NaN
25%NaNNaNNaNNaNNaNNaNNaN1999.000000NaN70.000000NaNNaN3.000000NaNNaNNaNNaN0.030451.000000NaN
50%NaNNaNNaNNaNNaNNaNNaN2003.000000NaN105.000000NaNNaN6.000000NaNNaNNaNNaN0.049577.000000NaN
75%NaNNaNNaNNaNNaNNaNNaN2008.000000NaN150.000000NaNNaN9.000000NaNNaNNaNNaN0.071540.000000NaN
maxNaNNaNNaNNaNNaNNaNNaN9999.000000NaN17700.000000NaNNaN12.000000NaNNaNNaNNaN0.099998.000000NaN
\n", "
" ], "text/plain": [ " date_crawled name seller offer_type price ab_test \\\n", "count 50000 50000 50000 50000 50000 50000 \n", "unique 48213 38754 2 2 2357 2 \n", "top 2016-03-09 11:54:38 Ford_Fiesta privat Angebot $0 test \n", "freq 3 78 49999 49999 1421 25756 \n", "mean NaN NaN NaN NaN NaN NaN \n", "std NaN NaN NaN NaN NaN NaN \n", "min NaN NaN NaN NaN NaN NaN \n", "25% NaN NaN NaN NaN NaN NaN \n", "50% NaN NaN NaN NaN NaN NaN \n", "75% NaN NaN NaN NaN NaN NaN \n", "max NaN NaN NaN NaN NaN NaN \n", "\n", " vehicle_type registration_year gearbox power_ps model \\\n", "count 44905 50000.000000 47320 50000.000000 47242 \n", "unique 8 NaN 2 NaN 245 \n", "top limousine NaN manuell NaN golf \n", "freq 12859 NaN 36993 NaN 4024 \n", "mean NaN 2005.073280 NaN 116.355920 NaN \n", "std NaN 105.712813 NaN 209.216627 NaN \n", "min NaN 1000.000000 NaN 0.000000 NaN \n", "25% NaN 1999.000000 NaN 70.000000 NaN \n", "50% NaN 2003.000000 NaN 105.000000 NaN \n", "75% NaN 2008.000000 NaN 150.000000 NaN \n", "max NaN 9999.000000 NaN 17700.000000 NaN \n", "\n", " odometer registration_month fuel_type brand unrepaired_damage \\\n", "count 50000 50000.000000 45518 50000 40171 \n", "unique 13 NaN 7 40 2 \n", "top 150,000km NaN benzin volkswagen nein \n", "freq 32424 NaN 30107 10687 35232 \n", "mean NaN 5.723360 NaN NaN NaN \n", "std NaN 3.711984 NaN NaN NaN \n", "min NaN 0.000000 NaN NaN NaN \n", "25% NaN 3.000000 NaN NaN NaN \n", "50% NaN 6.000000 NaN NaN NaN \n", "75% NaN 9.000000 NaN NaN NaN \n", "max NaN 12.000000 NaN NaN NaN \n", "\n", " ad_created num_photos postal_code last_seen \n", "count 50000 50000.0 50000.000000 50000 \n", "unique 76 NaN NaN 39481 \n", "top 2016-04-03 00:00:00 NaN NaN 2016-04-07 06:17:27 \n", "freq 1946 NaN NaN 8 \n", "mean NaN 0.0 50813.627300 NaN \n", "std NaN 0.0 25779.747957 NaN \n", "min NaN 0.0 1067.000000 NaN \n", "25% NaN 0.0 30451.000000 NaN \n", "50% NaN 0.0 49577.000000 NaN \n", "75% NaN 0.0 71540.000000 NaN \n", "max NaN 0.0 99998.000000 NaN " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "autos.describe(include='all')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Our initial observations:\n", "\n", "- There are a number of text columns where all (or nearly all) of the values are the same:\n", " - `seller`\n", " - `offer_type`\n", "- The `num_photos` column looks odd, we'll need to investigate this further." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 50000\n", "Name: num_photos, dtype: int64" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "autos[\"num_photos\"].value_counts()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It looks like the `num_photos` column has `0` for every column. We'll drop this column, plus the other two we noted as mostly one value." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "autos = autos.drop([\"num_photos\", \"seller\", \"offer_type\"], axis=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There are two columns, `price` and `auto`, which are numeric values with extra characters being stored as text. We'll clean and convert these." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 5000\n", "1 8500\n", "2 8990\n", "3 4350\n", "4 1350\n", "Name: price, dtype: int64" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "autos[\"price\"] = (autos[\"price\"]\n", " .str.replace(\"$\",\"\")\n", " .str.replace(\",\",\"\")\n", " .astype(int)\n", " )\n", "autos[\"price\"].head()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 150000\n", "1 150000\n", "2 70000\n", "3 70000\n", "4 150000\n", "Name: odometer_km, dtype: int64" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "autos[\"odometer\"] = (autos[\"odometer\"]\n", " .str.replace(\"km\",\"\")\n", " .str.replace(\",\",\"\")\n", " .astype(int)\n", " )\n", "autos.rename({\"odometer\": \"odometer_km\"}, axis=1, inplace=True)\n", "autos[\"odometer_km\"].head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exploring Odometer and Price" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "150000 32424\n", "125000 5170\n", "100000 2169\n", "90000 1757\n", "80000 1436\n", "70000 1230\n", "60000 1164\n", "50000 1027\n", "5000 967\n", "40000 819\n", "30000 789\n", "20000 784\n", "10000 264\n", "Name: odometer_km, dtype: int64" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "autos[\"odometer_km\"].value_counts()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can see that the values in this field are rounded, which might indicate that sellers had to choose from pre-set options for this field. Additionally, there are more high mileage than low mileage vehicles." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(2357,)\n", "count 5.000000e+04\n", "mean 9.840044e+03\n", "std 4.811044e+05\n", "min 0.000000e+00\n", "25% 1.100000e+03\n", "50% 2.950000e+03\n", "75% 7.200000e+03\n", "max 1.000000e+08\n", "Name: price, dtype: float64\n" ] }, { "data": { "text/plain": [ "0 1421\n", "500 781\n", "1500 734\n", "2500 643\n", "1000 639\n", "1200 639\n", "600 531\n", "800 498\n", "3500 498\n", "2000 460\n", "999 434\n", "750 433\n", "900 420\n", "650 419\n", "850 410\n", "700 395\n", "4500 394\n", "300 384\n", "2200 382\n", "950 379\n", "Name: price, dtype: int64" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "print(autos[\"price\"].unique().shape)\n", "print(autos[\"price\"].describe())\n", "autos[\"price\"].value_counts().head(20)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Again, the prices in this column seem rounded, however given there are 2357 unique values in the column, that may just be people's tendency to round prices on the site.\n", "\n", "\n", "There are 1,421 cars listed with $0 price - given that this is only 2% of the of the cars, we might consider removing these rows. The maximum price is one hundred million dollars, which seems a lot, let's look at the highest prices further." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "99999999 1\n", "27322222 1\n", "12345678 3\n", "11111111 2\n", "10000000 1\n", "3890000 1\n", "1300000 1\n", "1234566 1\n", "999999 2\n", "999990 1\n", "350000 1\n", "345000 1\n", "299000 1\n", "295000 1\n", "265000 1\n", "259000 1\n", "250000 1\n", "220000 1\n", "198000 1\n", "197000 1\n", "Name: price, dtype: int64" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "autos[\"price\"].value_counts().sort_index(ascending=False).head(20)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 1421\n", "1 156\n", "2 3\n", "3 1\n", "5 2\n", "8 1\n", "9 1\n", "10 7\n", "11 2\n", "12 3\n", "13 2\n", "14 1\n", "15 2\n", "17 3\n", "18 1\n", "20 4\n", "25 5\n", "29 1\n", "30 7\n", "35 1\n", "Name: price, dtype: int64" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "autos[\"price\"].value_counts().sort_index(ascending=True).head(20)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There are a number of listings with prices below \\$30, including about 1,500 at \\$0. There are also a small number of listings with very high values, including 14 at around or over $1 million.\n", "\n", "Given that eBay is an auction site, there could legitimately be items where the opening bid is \\$1. We will keep the \\$1 items, but remove anything above \\$350,000, since it seems that prices increase steadily to that number and then jump up to less realistic numbers." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "count 48565.000000\n", "mean 5888.935591\n", "std 9059.854754\n", "min 1.000000\n", "25% 1200.000000\n", "50% 3000.000000\n", "75% 7490.000000\n", "max 350000.000000\n", "Name: price, dtype: float64" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "autos = autos[autos[\"price\"].between(1,351000)]\n", "autos[\"price\"].describe()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exploring the date columns" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There are a number of columns with date information:\n", "\n", "- `date_crawled`\n", "- `registration_month`\n", "- `registration_year`\n", "- `ad_created`\n", "- `last_seen`\n", "\n", "These are a combination of dates that were crawled, and dates with meta-information from the crawler. The non-registration dates are stored as strings.\n", "\n", "We'll explore each of these columns to learn more about the listings." ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
date_crawledad_createdlast_seen
02016-03-26 17:47:462016-03-26 00:00:002016-04-06 06:45:54
12016-04-04 13:38:562016-04-04 00:00:002016-04-06 14:45:08
22016-03-26 18:57:242016-03-26 00:00:002016-04-06 20:15:37
32016-03-12 16:58:102016-03-12 00:00:002016-03-15 03:16:28
42016-04-01 14:38:502016-04-01 00:00:002016-04-01 14:38:50
\n", "
" ], "text/plain": [ " date_crawled ad_created last_seen\n", "0 2016-03-26 17:47:46 2016-03-26 00:00:00 2016-04-06 06:45:54\n", "1 2016-04-04 13:38:56 2016-04-04 00:00:00 2016-04-06 14:45:08\n", "2 2016-03-26 18:57:24 2016-03-26 00:00:00 2016-04-06 20:15:37\n", "3 2016-03-12 16:58:10 2016-03-12 00:00:00 2016-03-15 03:16:28\n", "4 2016-04-01 14:38:50 2016-04-01 00:00:00 2016-04-01 14:38:50" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "autos[['date_crawled','ad_created','last_seen']][0:5]" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2016-03-05 0.025327\n", "2016-03-06 0.014043\n", "2016-03-07 0.036014\n", "2016-03-08 0.033296\n", "2016-03-09 0.033090\n", "2016-03-10 0.032184\n", "2016-03-11 0.032575\n", "2016-03-12 0.036920\n", "2016-03-13 0.015670\n", "2016-03-14 0.036549\n", "2016-03-15 0.034284\n", "2016-03-16 0.029610\n", "2016-03-17 0.031628\n", "2016-03-18 0.012911\n", "2016-03-19 0.034778\n", "2016-03-20 0.037887\n", "2016-03-21 0.037373\n", "2016-03-22 0.032987\n", "2016-03-23 0.032225\n", "2016-03-24 0.029342\n", "2016-03-25 0.031607\n", "2016-03-26 0.032204\n", "2016-03-27 0.031092\n", "2016-03-28 0.034860\n", "2016-03-29 0.034099\n", "2016-03-30 0.033687\n", "2016-03-31 0.031834\n", "2016-04-01 0.033687\n", "2016-04-02 0.035478\n", "2016-04-03 0.038608\n", "2016-04-04 0.036487\n", "2016-04-05 0.013096\n", "2016-04-06 0.003171\n", "2016-04-07 0.001400\n", "Name: date_crawled, dtype: float64" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "(autos[\"date_crawled\"]\n", " .str[:10]\n", " .value_counts(normalize=True, dropna=False)\n", " .sort_index()\n", " )" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2016-04-07 0.001400\n", "2016-04-06 0.003171\n", "2016-03-18 0.012911\n", "2016-04-05 0.013096\n", "2016-03-06 0.014043\n", "2016-03-13 0.015670\n", "2016-03-05 0.025327\n", "2016-03-24 0.029342\n", "2016-03-16 0.029610\n", "2016-03-27 0.031092\n", "2016-03-25 0.031607\n", "2016-03-17 0.031628\n", "2016-03-31 0.031834\n", "2016-03-10 0.032184\n", "2016-03-26 0.032204\n", "2016-03-23 0.032225\n", "2016-03-11 0.032575\n", "2016-03-22 0.032987\n", "2016-03-09 0.033090\n", "2016-03-08 0.033296\n", "2016-03-30 0.033687\n", "2016-04-01 0.033687\n", "2016-03-29 0.034099\n", "2016-03-15 0.034284\n", "2016-03-19 0.034778\n", "2016-03-28 0.034860\n", "2016-04-02 0.035478\n", "2016-03-07 0.036014\n", "2016-04-04 0.036487\n", "2016-03-14 0.036549\n", "2016-03-12 0.036920\n", "2016-03-21 0.037373\n", "2016-03-20 0.037887\n", "2016-04-03 0.038608\n", "Name: date_crawled, dtype: float64" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "(autos[\"date_crawled\"]\n", " .str[:10]\n", " .value_counts(normalize=True, dropna=False)\n", " .sort_values()\n", " )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Looks like the site was crawled daily over roughly a one month period in March and April 2016. The distribution of listings crawled on each day is roughly uniform." ] }, { "cell_type": "code", "execution_count": 150, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2016-03-05 0.001071\n", "2016-03-06 0.004324\n", "2016-03-07 0.005395\n", "2016-03-08 0.007413\n", "2016-03-09 0.009595\n", "2016-03-10 0.010666\n", "2016-03-11 0.012375\n", "2016-03-12 0.023783\n", "2016-03-13 0.008895\n", "2016-03-14 0.012602\n", "2016-03-15 0.015876\n", "2016-03-16 0.016452\n", "2016-03-17 0.028086\n", "2016-03-18 0.007351\n", "2016-03-19 0.015834\n", "2016-03-20 0.020653\n", "2016-03-21 0.020632\n", "2016-03-22 0.021373\n", "2016-03-23 0.018532\n", "2016-03-24 0.019767\n", "2016-03-25 0.019211\n", "2016-03-26 0.016802\n", "2016-03-27 0.015649\n", "2016-03-28 0.020859\n", "2016-03-29 0.022341\n", "2016-03-30 0.024771\n", "2016-03-31 0.023783\n", "2016-04-01 0.022794\n", "2016-04-02 0.024915\n", "2016-04-03 0.025203\n", "2016-04-04 0.024483\n", "2016-04-05 0.124761\n", "2016-04-06 0.221806\n", "2016-04-07 0.131947\n", "Name: last_seen, dtype: float64" ] }, "execution_count": 150, "metadata": {}, "output_type": "execute_result" } ], "source": [ "(autos[\"last_seen\"]\n", " .str[:10]\n", " .value_counts(normalize=True, dropna=False)\n", " .sort_index()\n", " )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The crawler recorded the date it last saw any listing, which allows us to determine on what day a listing was removed, presumably because the car was sold.\n", "\n", "The last three days contain a disproportionate amount of 'last seen' values. Given that these are 6-10x the values from the previous days, it's unlikely that there was a massive spike in sales, and more likely that these values are to do with the crawling period ending and don't indicate car sales." ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(76,)\n" ] }, { "data": { "text/plain": [ "2015-06-11 0.000021\n", "2015-08-10 0.000021\n", "2015-09-09 0.000021\n", "2015-11-10 0.000021\n", "2015-12-05 0.000021\n", "2015-12-30 0.000021\n", "2016-01-03 0.000021\n", "2016-01-07 0.000021\n", "2016-01-10 0.000041\n", "2016-01-13 0.000021\n", "2016-01-14 0.000021\n", "2016-01-16 0.000021\n", "2016-01-22 0.000021\n", "2016-01-27 0.000062\n", "2016-01-29 0.000021\n", "2016-02-01 0.000021\n", "2016-02-02 0.000041\n", "2016-02-05 0.000041\n", "2016-02-07 0.000021\n", "2016-02-08 0.000021\n", "2016-02-09 0.000021\n", "2016-02-11 0.000021\n", "2016-02-12 0.000041\n", "2016-02-14 0.000041\n", "2016-02-16 0.000021\n", "2016-02-17 0.000021\n", "2016-02-18 0.000041\n", "2016-02-19 0.000062\n", "2016-02-20 0.000041\n", "2016-02-21 0.000062\n", " ... \n", "2016-03-09 0.033151\n", "2016-03-10 0.031895\n", "2016-03-11 0.032904\n", "2016-03-12 0.036755\n", "2016-03-13 0.017008\n", "2016-03-14 0.035190\n", "2016-03-15 0.034016\n", "2016-03-16 0.030125\n", "2016-03-17 0.031278\n", "2016-03-18 0.013590\n", "2016-03-19 0.033687\n", "2016-03-20 0.037949\n", "2016-03-21 0.037579\n", "2016-03-22 0.032801\n", "2016-03-23 0.032060\n", "2016-03-24 0.029280\n", "2016-03-25 0.031751\n", "2016-03-26 0.032266\n", "2016-03-27 0.030989\n", "2016-03-28 0.034984\n", "2016-03-29 0.034037\n", "2016-03-30 0.033501\n", "2016-03-31 0.031875\n", "2016-04-01 0.033687\n", "2016-04-02 0.035149\n", "2016-04-03 0.038855\n", "2016-04-04 0.036858\n", "2016-04-05 0.011819\n", "2016-04-06 0.003253\n", "2016-04-07 0.001256\n", "Name: ad_created, Length: 76, dtype: float64" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "print(autos[\"ad_created\"].str[:10].unique().shape)\n", "(autos[\"ad_created\"]\n", " .str[:10]\n", " .value_counts(normalize=True, dropna=False)\n", " .sort_index()\n", " )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There is a large variety of ad created dates. Most fall within 1-2 months of the listing date, but a few are quite old, with the oldest at around 9 months." ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "count 48565.000000\n", "mean 2004.755421\n", "std 88.643887\n", "min 1000.000000\n", "25% 1999.000000\n", "50% 2004.000000\n", "75% 2008.000000\n", "max 9999.000000\n", "Name: registration_year, dtype: float64" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "autos[\"registration_year\"].describe()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The year that the car was first registered will likely indicate the age of the car. Looking at this column, we note some odd values. The minimum value is `1000`, long before cars were invented and the maximum is `9999`, many years into the future." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Dealing with Incorrect Registration Year Data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Because a car can't be first registered before the listing was seen, any vehicle with a registration year above 2016 is definitely inaccurate. Determining the earliest valid year is more difficult. Realistically, it could be somewhere in the first few decades of the 1900s.\n", "\n", "One option is to remove the listings with these values. Let's determine what percentage of our data has invalid values in this column:" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.038793369710697002" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "(~autos[\"registration_year\"].between(1900,2016)).sum() / autos.shape[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Given that this is less than 4% of our data, we will remove these rows." ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2000 0.067608\n", "2005 0.062895\n", "1999 0.062060\n", "2004 0.057904\n", "2003 0.057818\n", "2006 0.057197\n", "2001 0.056468\n", "2002 0.053255\n", "1998 0.050620\n", "2007 0.048778\n", "Name: registration_year, dtype: float64" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Many ways to select rows in a dataframe that fall within a value range for a column.\n", "# Using `Series.between()` is one way.\n", "autos = autos[autos[\"registration_year\"].between(1900,2016)]\n", "autos[\"registration_year\"].value_counts(normalize=True).head(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It appears that most of the vehicles were first registered in the past 20 years." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exploring Price by Brand" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "volkswagen 0.211264\n", "bmw 0.110045\n", "opel 0.107581\n", "mercedes_benz 0.096463\n", "audi 0.086566\n", "ford 0.069900\n", "renault 0.047150\n", "peugeot 0.029841\n", "fiat 0.025642\n", "seat 0.018273\n", "skoda 0.016409\n", "nissan 0.015274\n", "mazda 0.015188\n", "smart 0.014160\n", "citroen 0.014010\n", "toyota 0.012703\n", "hyundai 0.010025\n", "sonstige_autos 0.009811\n", "volvo 0.009147\n", "mini 0.008762\n", "mitsubishi 0.008226\n", "honda 0.007840\n", "kia 0.007069\n", "alfa_romeo 0.006641\n", "porsche 0.006127\n", "suzuki 0.005934\n", "chevrolet 0.005698\n", "chrysler 0.003513\n", "dacia 0.002635\n", "daihatsu 0.002506\n", "jeep 0.002271\n", "subaru 0.002142\n", "land_rover 0.002099\n", "saab 0.001649\n", "jaguar 0.001564\n", "daewoo 0.001500\n", "trabant 0.001392\n", "rover 0.001328\n", "lancia 0.001071\n", "lada 0.000578\n", "Name: brand, dtype: float64" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "autos[\"brand\"].value_counts(normalize=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "German manufacturers represent four out of the top five brands, almost 50% of the overall listings. Volkswagen is by far the most popular brand, with approximately double the cars for sale of the next two brands combined.\n", "\n", "There are lots of brands that don't have a significant percentage of listings, so we will limit our analysis to brands representing more than 5% of total listings." ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Index(['volkswagen', 'bmw', 'opel', 'mercedes_benz', 'audi', 'ford'], dtype='object')\n" ] } ], "source": [ "brand_counts = autos[\"brand\"].value_counts(normalize=True)\n", "common_brands = brand_counts[brand_counts > .05].index\n", "print(common_brands)" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'audi': 9336,\n", " 'bmw': 8332,\n", " 'ford': 3749,\n", " 'mercedes_benz': 8628,\n", " 'opel': 2975,\n", " 'volkswagen': 5402}" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "brand_mean_prices = {}\n", "\n", "for brand in common_brands:\n", " brand_only = autos[autos[\"brand\"] == brand]\n", " mean_price = brand_only[\"price\"].mean()\n", " brand_mean_prices[brand] = int(mean_price)\n", "\n", "brand_mean_prices" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Of the top 5 brands, there is a distinct price gap:\n", "\n", "- Audi, BMW and Mercedes Benz are more expensive\n", "- Ford and Opel are less expensive\n", "- Volkswagen is in between - this may explain its popularity, it may be a 'best of 'both worlds' option." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exploring Mileage" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
mean_mileage
audi9336
bmw8332
ford3749
mercedes_benz8628
opel2975
volkswagen5402
\n", "
" ], "text/plain": [ " mean_mileage\n", "audi 9336\n", "bmw 8332\n", "ford 3749\n", "mercedes_benz 8628\n", "opel 2975\n", "volkswagen 5402" ] }, "execution_count": 66, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bmp_series = pd.Series(brand_mean_prices)\n", "pd.DataFrame(bmp_series, columns=[\"mean_mileage\"])" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "brand_mean_mileage = {}\n", "\n", "for brand in common_brands:\n", " brand_only = autos[autos[\"brand\"] == brand]\n", " mean_mileage = brand_only[\"odometer_km\"].mean()\n", " brand_mean_mileage[brand] = int(mean_mileage)\n", "\n", "mean_mileage = pd.Series(brand_mean_mileage).sort_values(ascending=False)\n", "mean_prices = pd.Series(brand_mean_prices).sort_values(ascending=False)" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
mean_mileage
bmw132572
mercedes_benz130788
opel129310
audi129157
volkswagen128707
ford124266
\n", "
" ], "text/plain": [ " mean_mileage\n", "bmw 132572\n", "mercedes_benz 130788\n", "opel 129310\n", "audi 129157\n", "volkswagen 128707\n", "ford 124266" ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" } ], "source": [ "brand_info = pd.DataFrame(mean_mileage,columns=['mean_mileage'])\n", "brand_info" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
mean_mileagemean_price
bmw1325728332
mercedes_benz1307888628
opel1293102975
audi1291579336
volkswagen1287075402
ford1242663749
\n", "
" ], "text/plain": [ " mean_mileage mean_price\n", "bmw 132572 8332\n", "mercedes_benz 130788 8628\n", "opel 129310 2975\n", "audi 129157 9336\n", "volkswagen 128707 5402\n", "ford 124266 3749" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "brand_info[\"mean_price\"] = mean_prices\n", "brand_info" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The range of car mileages does not vary as much as the prices do by brand, instead all falling within 10% for the top brands. There is a slight trend to the more expensive vehicles having higher mileage, with the less expensive vehicles having lower mileage." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }