Queer European MD passionate about IT
Browse Source

Update Mission257Solutions.ipynb

darinbradley 2 years ago
parent
commit
94996a678c
1 changed files with 20 additions and 29 deletions
  1. 20 29
      Mission257Solutions.ipynb

+ 20 - 29
Mission257Solutions.ipynb

@@ -11,7 +11,6 @@
    "cell_type": "code",
    "cell_type": "code",
    "execution_count": 1,
    "execution_count": 1,
    "metadata": {
    "metadata": {
-    "collapsed": false,
     "jupyter": {
     "jupyter": {
      "outputs_hidden": false
      "outputs_hidden": false
     }
     }
@@ -45,14 +44,13 @@
    "cell_type": "markdown",
    "cell_type": "markdown",
    "metadata": {},
    "metadata": {},
    "source": [
    "source": [
-    "We'll begin by getting a sense of what the data looks like."
+    "We'll begin by exploring the data."
    ]
    ]
   },
   },
   {
   {
    "cell_type": "code",
    "cell_type": "code",
    "execution_count": 2,
    "execution_count": 2,
    "metadata": {
    "metadata": {
-    "collapsed": false,
     "jupyter": {
     "jupyter": {
      "outputs_hidden": false
      "outputs_hidden": false
     }
     }
@@ -175,15 +173,15 @@
    "source": [
    "source": [
     "Here are the descriptions for some of the columns:\n",
     "Here are the descriptions for some of the columns:\n",
     "\n",
     "\n",
-    "* `name` - The name of the country.\n",
-    "* `area` - The total land and sea area of the country.\n",
-    "* `population` - The country's population.\n",
-    "* `population_growth`- The country's population growth as a percentage.\n",
-    "* `birth_rate` - The country's birth rate, or the number of births a year per 1,000 people.\n",
-    "* `death_rate` - The country's death rate, or the number of death a year per 1,000 people.\n",
-    "* `area`- The country's total area (both land and water).\n",
-    "* `area_land` - The country's land area in [square kilometers](https://www.cia.gov/library/publications/the-world-factbook/rankorder/2147rank.html).\n",
-    "* `area_water` - The country's waterarea in square kilometers.\n",
+    "* `name` — the name of the country.\n",
+    "* `area` — the total land and sea area of the country.\n",
+    "* `population` — the country's population.\n",
+    "* `population_growth`— the country's population growth as a percentage.\n",
+    "* `birth_rate` — the country's birth rate, or the number of births a year per 1,000 people.\n",
+    "* `death_rate` — the country's death rate, or the number of death a year per 1,000 people.\n",
+    "* `area`— the country's total area (both land and water).\n",
+    "* `area_land` — the country's land area in [square kilometers](https://www.cia.gov/library/publications/the-world-factbook/rankorder/2147rank.html).\n",
+    "* `area_water` — the country's water area in square kilometers.\n",
     "\n",
     "\n",
     "Let's start by calculating some summary statistics and see what they tell us."
     "Let's start by calculating some summary statistics and see what they tell us."
    ]
    ]
@@ -199,7 +197,6 @@
    "cell_type": "code",
    "cell_type": "code",
    "execution_count": 3,
    "execution_count": 3,
    "metadata": {
    "metadata": {
-    "collapsed": false,
     "jupyter": {
     "jupyter": {
      "outputs_hidden": false
      "outputs_hidden": false
     }
     }
@@ -252,12 +249,12 @@
    "cell_type": "markdown",
    "cell_type": "markdown",
    "metadata": {},
    "metadata": {},
    "source": [
    "source": [
-    "A few things stick out from the summary statistics in the last screen:\n",
+    "A few things are interesting in the summary statistics on the previous screen:\n",
     "\n",
     "\n",
-    "- There's a country with a population of `0`\n",
-    "- There's a country with a population of `7256490011` (or more than 7.2 billion people) \n",
+    "- There's a country with a population of `0`.\n",
+    "- There's a country with a population of `7256490011` (or more than 7.2 billion people).\n",
     "\n",
     "\n",
-    "Let's use subqueries to zoom in on just these countries _without_ using the specific values."
+    "Let's use subqueries to concentrate on these countries _without_ using the specific values."
    ]
    ]
   },
   },
   {
   {
@@ -271,7 +268,6 @@
    "cell_type": "code",
    "cell_type": "code",
    "execution_count": 4,
    "execution_count": 4,
    "metadata": {
    "metadata": {
-    "collapsed": false,
     "jupyter": {
     "jupyter": {
      "outputs_hidden": false
      "outputs_hidden": false
     }
     }
@@ -347,7 +343,6 @@
    "cell_type": "code",
    "cell_type": "code",
    "execution_count": 5,
    "execution_count": 5,
    "metadata": {
    "metadata": {
-    "collapsed": false,
     "jupyter": {
     "jupyter": {
      "outputs_hidden": false
      "outputs_hidden": false
     }
     }
@@ -429,9 +424,7 @@
   {
   {
    "cell_type": "code",
    "cell_type": "code",
    "execution_count": 6,
    "execution_count": 6,
-   "metadata": {
-    "collapsed": false
-   },
+   "metadata": {},
    "outputs": [
    "outputs": [
     {
     {
      "name": "stdout",
      "name": "stdout",
@@ -497,14 +490,13 @@
    "source": [
    "source": [
     "Let's explore density. Density depends on the population and the country's area. Let's look at the average values for these two columns.\n",
     "Let's explore density. Density depends on the population and the country's area. Let's look at the average values for these two columns.\n",
     "\n",
     "\n",
-    "We should take care of discarding the row for the whole planet."
+    "We should discard the row for the whole planet."
    ]
    ]
   },
   },
   {
   {
    "cell_type": "code",
    "cell_type": "code",
    "execution_count": 7,
    "execution_count": 7,
    "metadata": {
    "metadata": {
-    "collapsed": false,
     "jupyter": {
     "jupyter": {
      "outputs_hidden": false
      "outputs_hidden": false
     }
     }
@@ -565,17 +557,16 @@
    "cell_type": "markdown",
    "cell_type": "markdown",
    "metadata": {},
    "metadata": {},
    "source": [
    "source": [
-    "To finish, we'll build on the query above to find countries that are densely populated.  We'll identify countries that have:\n",
+    "To finish, we'll build on the query above to find countries that are densely populated. We'll identify countries that have the following:\n",
     "\n",
     "\n",
-    "- Above average values for population.\n",
-    "- Below average values for area."
+    "- Above-average values for population.\n",
+    "- Below-average values for area."
    ]
    ]
   },
   },
   {
   {
    "cell_type": "code",
    "cell_type": "code",
    "execution_count": 8,
    "execution_count": 8,
    "metadata": {
    "metadata": {
-    "collapsed": false,
     "jupyter": {
     "jupyter": {
      "outputs_hidden": false
      "outputs_hidden": false
     }
     }
@@ -849,7 +840,7 @@
    "name": "python",
    "name": "python",
    "nbconvert_exporter": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
    "pygments_lexer": "ipython3",
-   "version": "3.4.3"
+   "version": "3.8.5"
   }
   }
  },
  },
  "nbformat": 4,
  "nbformat": 4,