Queer European MD passionate about IT
Explorar el Código

Merge branch 'master' of github.com:dataquestio/solutions

yunoac hace 4 años
padre
commit
22a54470d0
Se han modificado 5 ficheros con 707 adiciones y 1762 borrados
  1. 100 1552
      Mission155Solutions.ipynb
  2. 143 183
      Mission191Solutions.ipynb
  3. 42 27
      Mission257Solutions.ipynb
  4. 292 0
      Mission280Solutions.ipynb
  5. 130 0
      Mission487Solutions.Rmd

La diferencia del archivo ha sido suprimido porque es demasiado grande
+ 100 - 1552
Mission155Solutions.ipynb


La diferencia del archivo ha sido suprimido porque es demasiado grande
+ 143 - 183
Mission191Solutions.ipynb


+ 42 - 27
Mission257Solutions.ipynb

@@ -11,20 +11,12 @@
    "cell_type": "code",
    "execution_count": 1,
    "metadata": {
-    "collapsed": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "'Connected: None@factbook.db'"
-      ]
-     },
-     "execution_count": 1,
-     "metadata": {},
-     "output_type": "execute_result"
+    "collapsed": false,
+    "jupyter": {
+     "outputs_hidden": false
     }
-   ],
+   },
+   "outputs": [],
    "source": [
     "%%capture\n",
     "%load_ext sql\n",
@@ -42,13 +34,17 @@
    "cell_type": "code",
    "execution_count": 2,
    "metadata": {
-    "collapsed": false
+    "collapsed": false,
+    "jupyter": {
+     "outputs_hidden": false
+    }
    },
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
+      " * sqlite:///factbook.db\n",
       "Done.\n"
      ]
     },
@@ -165,13 +161,17 @@
    "cell_type": "code",
    "execution_count": 3,
    "metadata": {
-    "collapsed": false
+    "collapsed": false,
+    "jupyter": {
+     "outputs_hidden": false
+    }
    },
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
+      " * sqlite:///factbook.db\n",
       "Done.\n"
      ]
     },
@@ -223,13 +223,17 @@
    "cell_type": "code",
    "execution_count": 4,
    "metadata": {
-    "collapsed": false
+    "collapsed": false,
+    "jupyter": {
+     "outputs_hidden": false
+    }
    },
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
+      " * sqlite:///factbook.db\n",
       "Done.\n"
      ]
     },
@@ -286,13 +290,17 @@
    "cell_type": "code",
    "execution_count": 5,
    "metadata": {
-    "collapsed": false
+    "collapsed": false,
+    "jupyter": {
+     "outputs_hidden": false
+    }
    },
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
+      " * sqlite:///factbook.db\n",
       "Done.\n"
      ]
     },
@@ -356,13 +364,17 @@
    "cell_type": "code",
    "execution_count": 6,
    "metadata": {
-    "collapsed": false
+    "collapsed": false,
+    "jupyter": {
+     "outputs_hidden": false
+    }
    },
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
+      " * sqlite:///factbook.db\n",
       "Done.\n"
      ]
     },
@@ -375,13 +387,13 @@
        "        <th>avg_area</th>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "        <td>62094928.32231405</td>\n",
+       "        <td>32242666.56846473</td>\n",
        "        <td>555093.546184739</td>\n",
        "    </tr>\n",
        "</table>"
       ],
       "text/plain": [
-       "[(62094928.32231405, 555093.546184739)]"
+       "[(32242666.56846473, 555093.546184739)]"
       ]
      },
      "execution_count": 6,
@@ -391,10 +403,9 @@
    ],
    "source": [
     "%%sql\n",
-    "SELECT\n",
-    "    AVG(population) avg_population,\n",
-    "    AVG(area) avg_area\n",
-    "FROM facts;"
+    "SELECT AVG(population) avg_population, AVG(area) avg_area\n",
+    "  FROM facts\n",
+    " WHERE name <> 'World';"
    ]
   },
   {
@@ -408,13 +419,17 @@
    "cell_type": "code",
    "execution_count": 7,
    "metadata": {
-    "collapsed": false
+    "collapsed": false,
+    "jupyter": {
+     "outputs_hidden": false
+    }
    },
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
+      " * sqlite:///factbook.db\n",
       "Done.\n"
      ]
     },
@@ -573,9 +588,9 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.4.3"
+   "version": "3.7.6"
   }
  },
  "nbformat": 4,
- "nbformat_minor": 2
+ "nbformat_minor": 4
 }

La diferencia del archivo ha sido suprimido porque es demasiado grande
+ 292 - 0
Mission280Solutions.ipynb


+ 130 - 0
Mission487Solutions.Rmd

@@ -0,0 +1,130 @@
+---
+title: 'Predicting Car Prices: Guided Project Solutions'
+output: html_document
+---
+
+# Introduction to the data
+
+```{r, message = FALSE, warning = FALSE }
+library(readr)
+library(tidyr)
+library(dplyr)
+cars <- read.csv("./data/imports-85.data")
+
+# Fixing the column names since the .data file reads headers incorrectly
+colnames(cars) <- c(
+  "symboling",
+  "normalized_losses",
+  "make",
+  "fuel_type",
+  "aspiration",
+  "num_doors",
+  "body_style",
+  "drive_wheels",
+  "engine_location",
+  "wheel_base",
+  "length",
+  "width",
+  "height",
+  "curb_weight",
+  "engine_type",
+  "num_cylinders",
+  "engine_size",
+  "fuel_system",
+  "bore",
+  "stroke",
+  "compression_ratio",
+  "horsepower",
+  "peak_rpm",
+  "city_mpg",
+  "highway_mpg",
+  "price"
+)
+
+# Removing non-numerical columns and removing missing data
+cars <- cars %>% 
+  select(
+    symboling, wheel_base, length, width, height, curb_weight,
+    engine_size, bore, stroke, compression_ratio, horsepower, 
+    peak_rpm, city_mpg, highway_mpg, price
+  ) %>% 
+  filter(
+    stroke != "?",
+    bore != "?",
+    horsepower != "?",
+    peak_rpm != "?",
+    price != "?"
+  ) %>% 
+  mutate(
+    stroke = as.numeric(stroke),
+    bore = as.numeric(bore),
+    horsepower = as.numeric(horsepower),
+    peak_rpm = as.numeric(peak_rpm),
+    price = as.numeric(price)
+  )
+
+# Confirming that each of the columns are numeric
+library(purrr)
+map(cars, typeof)
+```
+
+# Examining Relationships Between Predictors
+
+```{r}
+library(caret)
+featurePlot(cars, cars$price)
+```
+
+There looks to be a somewhat positive relationship between horsepower and price. City MPG and highway MPG look positive too, but there's a curious grouping that looks like it pops up. Many features look like they plateau in terms of price (ie even as we increase, price does not increase). Height seems not to have any meaningful relationship with price since the dots look like an evenly scattered plot.
+
+```{r}
+library(ggplot2)
+ggplot(cars, aes(x = price)) +
+  geom_histogram(color = "red") +
+  labs(
+    title = "Distribution of prices in cars dataset",
+    x = "Price",
+    y = "Frequency"
+  )
+```
+
+It looks like there's a reasonably even distirbution of the prices in the dataset, so there are no outliers.  There are 2 cars whose price is zero, so this might be suspect. This only represents 1% of the entire dataset, so it shouldn't have too much impact on predictions, especially if we use a high number of neighbors.
+
+# Setting up the train-test split
+
+```{r}
+library(caret)
+split_indices <- createDataPartition(cars$price, p = 0.8,  list = FALSE)
+train_cars <- cars[split_indices,]
+test_cars <- cars[-split_indices,]
+```
+
+
+# Cross-validation and hyperparameter optimization
+
+```{r}
+# 5-fold cross-validation 
+five_fold_control <- trainControl(method = "cv", number = 5)
+
+tuning_grid <- expand.grid(k = 1:20)
+```
+
+# Choosing a model
+
+```{r}
+# Creating a model based on all the features
+full_model <- train(price ~ .,
+                    data = train_cars,
+                    method = "knn",
+                    trControl = five_fold_control,
+                    tuneGrid = tuning_grid,
+                    preProcess = c("center", "scale"))
+```
+
+# Final model evaluation
+
+```{r}
+predictions <- predict(full_model, newdata = test_cars)
+postResample(pred = predictions, obs = test_cars$price)
+```
+

Algunos archivos no se mostraron porque demasiados archivos cambiaron en este cambio